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Abstract: Despite the fact that much has been said about processing in computer science, it
seems that there is still much to do. A classical approach assumes that the computations done
by computers are a kind of mathematical operation (calculations of functions values) and have no
special relations to energy transformation and flow. However, there is a possibility to get a new view
on selected topics, and as a special case, the sorting problem is presented; we know many different
sorting algorithms, including those that have complexity equal to O(n lg(n)), which means that this
problem is algorithmically closed, but it is also possible to focus on the problem of sorting in terms
of flow control, entropy and statistical mechanics. This is done in relation to the existing definitions
of sorting, connections between sorting and ordering and some important aspects of computer
processing understood as a flow that are not taken into account in many theoretical considerations in
computer science. The proposed new view is an attempt to change the paradigm in the description
of algorithms’ performance by computational complexity and processing, taking into account the
existing references between the idea of Turing machines and their physical implementations. This
proposal can be expressed as a physics of computer processing; a reference point to further analysis
of algorithmic and interactive processing in computer systems.
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1. Introduction

The idea of the Turing machine [1] that was shown in 1936 quickly became a basis of
mathematical considerations in computer engineering [2]. In the 1960s and 1970s, one can observe a
quick development of a new science called computer science. Among many important aspects of this
new scientific branch was the analysis of algorithms in terms of computational complexity; a great
achievement of the mathematical approach used in computer systems research. The importance of
the Turing machine concept is related to the fact that the equivalence is usually put between these
machines and algorithms (in Papadimitriou’s book [3], we have: “One can think of Turing machines
as the algorithms”). This influenced many aspects of computer science, and still, the analysis of
algorithms’ behavior is considered as the analysis of Turing machines. In this paper, we try to note
that the whole problem, despite the fact that in many cases, it is quite (or even sometimes very)
difficult, can be even more complicated, when the physical aspect of Turing machines’ (algorithms)
behavior is taken into account; the processing is done on physical devices (e.g., computers).

Turing machines are mathematical models of algorithmic processing, but not the physical
devices [4]; on the other hand, their implementations are the physical ones. Here, we
assume (according to [5]) that: ”Implementation means that a physical system is taken to represent
abstract mathematical or logical states”; however, we do not take a part in the discussion about
reversible nor irreversible computations and whether they can be physically implemented in
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a thermodynamically-reversible way at the microscopic scale. We would like to focus on
selected aspects of computer processing considering them as processes in which we have energy
transformation and dynamical transitions done by machine. The broadly-accepted definition of the
term machine assumes that it is a physical system working in well-defined, physical cycles, built
by man and intended to concentrate the dispersion of the energy in order to do some physical
work [6]. Each physical machine needs energy to work; implementations of Turing machines, as well.
This seems to be obvious, but if we accept this statement, immediately, many interesting problems
appear: dynamics of energy transformation, entropy production, state transitions, interactions
between processed tasks, differences between types of computer processing, influence of long-term
dependencies, etc. Modern computers are very complicated or even complex systems. This opinion
is not a new one; for the first time, it was expressed by Dijkstra in 1972: “the structural complexity of
a large software system is greater than that of any other system constructed by man (. . .)” [2] and also by
Murray Gell-Man: “(...) he added, choose topics that could be helped along by these big, rapid computers
that people were talking about—not only because we can use the machines for modeling, but also because
these machines themselves were examples of complex systems” [7]. Now, it seems that if we agree with
these opinions, expressed many years ago, there is a need for the deep revision of many well-known
aspects of computer science, at least taking into account current knowledge about complex systems.
The works in [8–11] show very interesting discussions about modern computers features expressed in
terms of Turing machines, including beliefs that current technologies are far beyond Turing machines.
Those features are not discussed in this paper, and we do not want to express that the existing
approach was/is totally wrong; however, we would like to emphasize that there is a possibility to go a
step ahead. Algorithmic processing is a kind of computer processing and energy transformation [12],
and its description only in terms of asymptotic behavior (worst, best and average case analysis) of
computational complexity expressed by O, Θ and Ω notations is not enough. The Turing machine,
as a mathematical model, has energy consumption for computing (or task processing) equal to zero;
thus, the problem of its efficiency η, considered in the case of all machines, does not exist. It might be
expected that this powerful theoretical model itself does not have any connections with machines
and the physical world (it was proposed to model the behavior of a reckoner), but the assumed
zero-energy consumption does not exclude the problem of entropy production.

Reading many classical books devoted to theoretical aspects of computer science and algorithms
(especially how algorithms work), one can hardly find any direct relationships between computer
science and physics, and if they exist, they are not related to the basic fact that computations are
physical processes. Moreover, computer processing (or computations) is a process that needs energy,
and computers are machines that allow for its transformation. In other words: they are working
(almost) exactly the same as a steam engine: they perform energy transformation into useful work
and not necessarily the entirety of the consumed energy is used for effective processing; some parts
are also transformed into heat. This can be checked quickly: put a hand over the fan and feel the
hot air. Immediately, the questions arise: What about this wasted energy? What about entropy
production? Obviously, it is also possible to assume that our computers, like Turing machines,
do not need energy for processing; Can they still produce entropy? To answer this question, we
focus on one very important type of processing, namely sorting. This allows for a description of
computer (algorithmic) processing as a process that should be also described in terms of physics,
showing us some new elements of so far (as it seems) well-known and well-understood aspects of
algorithms’ analysis.

The whole paper is divided into six sections. After the Introduction, in Section 2, we focus on
better understanding what sorting and computer processing are in terms of order and flow control.
Section 3 shows the analysis of an insertion-sort algorithm and its possible dynamical behavior related
to feedback. The next section is devoted to considerations about the statistical mechanics of insertion
sort and entropy production during sorting. Section 5 shows the influence of feedback on the sorting
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procedure. The paper is concluded in Section 6, where we show some open questions and further
work that can be done for better understanding algorithms’ behavior.

2. Sorting and Computer Processing in Terms of Flow and Energy Transformation

2.1. Sorting

Sorting is one of the most important problems in theoretical computer science. It is a special kind
of processing, and its omnipresence is related to the fact that sorting has many practical applications.
Usually, it is assumed that the main goal of sorting is to try to find such a permutation

〈
a′1, a′2, . . . , a′N

〉
of input set that consists of N numbers (or in general, N keys) 〈a1, a2, . . . , aN〉 in order to obtain
a′1 ≤ a′2 ≤ . . . ≤ a′N . As can be seen, this searching is done based on ordering relation <, which is
specified on values (keys) in such a way that the following conditions for a, b, c are fulfilled [13]:

• only one possibility is true: a < b, a = b, b < a,
• if a < b and b < c, then a < c.

These properties are typical for linear order: a mathematical term. If sorting retains the order
from the input set for keys with the same values, it is called a stable one. This means that a′i < a′j
when ai = aj and i < j. There are several methods of sorting, and most of them are based on
well-known methods used in our life or the development of some unconventional ideas. Some of
them are very simple (like sorting by selection, sorting by insertion, bubble sorting), whereas some of
them are more sophisticated (quick sorting, heap sorting).

This description suggests that this is a well-defined procedure of data processing, but the
literature suggests also many other definitions, so a short reference is needed. If we refer to definitions
from dictionaries, the term sorting is defined as: ”rearranging information into ascending or descending
order by means of sortkeys” [14], ”the problem of arranging items in a predetermined order” [15], ”to put a
number of things in an order or to separate them into groups” [16] or [17] ”to place (records) in order, as
numerical or alphabetical, based on the contents of one or more keys contained in each record,” eventually
as a process of separating or arranging things according to class or kind. In books devoted to
computer science, this term is referred to as putting things into ascending or descending order.
Donald, E. Knuth stated also that [18]: ”[sorting is] marshaling things into ascending or descending
order. The process should perhaps be called ordering, not sorting (. . .). Some people have suggested that
‘sequencing’ would be the best name for the process of sorting into order; but this word often seems to lack
the right connotation”. As can be seen from these definitions, it is clear that the term ordering (order)
also appears as a process of putting something in a particular order; thus, whenever we think about
sorting, we should also remember ordering. This is a very important fact, because it makes a direct
connection between computer science considered as a mathematical discipline and physics, where the
term order (and opposite to disorder) has also a special meaning, usually referenced to the presence (or
absence in the case of disorder) of a special state in the system [19], because this term is also denoted
as [17]: ”a state in which all components or elements are arranged logically, comprehensibly, or naturally”.
Taking into account all of this, we can also define, for computer science considered as a physical
science [8], the term sorting as a process (done by computers) of the physical transformation of an
input set from one (disordered) state into another (ordered) one according to the well-defined rules
given by algorithms. Moreover, this transformation leads to the decrease of entropy of the sorted set.
Such a definition connects all important terms mentioned before and allows for the development of
an interdisciplinary description of the algorithms’ behavior. Details will be presented below in the
next sections.

2.2. Flowcharts

Now, it is important to discuss another aspect of the presented considerations. Let us note the
term processing, which is used quite commonly in the case of computers; it is well understood as a [17]
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”systematic series of actions directed to some end” or ”a continuous action, operation, or series of changes taking
place” in computers. In computer systems, processing is impossible without algorithms that define
sequential series of simple actions. The definition of the term algorithm will not be discussed here
(see, for example, [20]), but there are different ways of expressing how algorithms work. In computer
science, the most important ones are pseudocode or special diagrams.

We will focus on these diagrams because they show us something interesting. There are
well-described rules for creating such diagrams. The most important ones are:

• each diagram opens with START and ends with STOP;
• paths with arrows exist between successive parts (blocks) that show how the diagram behaves;
• no matter how complicated paths are, they have to finish in one common place called STOP.

Such diagrams are a very useful and convenient way to present graphically how a given
algorithm works, where the decision blocks and loops are, etc.

These diagrams or graphical representations are also called flowcharts, because they show not
only boxes, representing consecutive steps, but they also imply (with arrows) the order (flow) of those
steps. This, in turn, implies the workflow of a process, and this is the key point of our considerations.
Usually, a flowchart is presented because it helps us to understand what is done in successive steps,
but let us turn around this way of thinking and assume that it is not only important what is done in
sequence, but also how elements from the input set are handled (processed by) our algorithm. In other
words, we focus not only on the sequence of operations, but also on data flow through our diagram.
This approach allows us to state that algorithmic computer processing is also a flow of input data
through paths (ways) and operations defined by algorithms (diagrams) in successive boxes in order
to obtain expected results of transformation that are possible due to algorithms. This flow begins at
START and finishes at STOP and is done by computers (physical machines that transform energy into
useful work: calculations). Thanks to this holistic approach, it is possible to show some interesting
phenomena that can happen during the traversing of a diagram (flowchart). Considering this new
approach, we can view algorithms with their flowcharts as a structure with connections that allow
control of flow.

2.3. Proposal of a New Approach

The considerations presented so far will be applied to a sorting algorithm, where the keys,
one-by-one, are taken from the input set, flow through the algorithm and, as result of processing, find
the appropriate place in the output set or are transformed; this will be discussed further in Section 3.
This flow has some special features that are the results not only of assumed ideas of processing in
algorithms, but also emerge as a consequence of interactions between input data and the processing
structure of the algorithm. Moreover, these diagrams are considered as a network; thus, the flow
(processing of a task) is done on a structure of connections that has a topology; it seems that this
topology should be well-defined, but as a result of the above-mentioned interaction, parasite paths
can appear.

Comparing the above considerations to the existing approach in theoretical computer science,
it is clear that these problems are considered in a very different way; an existing approach
uses paradigms related to the following watchwords: (i) Turing machines as universal and the
most powerful models of algorithmic processing; (ii) the computational complexity as a measure
of algorithms’ performance that fully describes algorithms’ behavior; (iii) the universality rule
as an approach that eliminates any considerations about phenomena that can appear during
processing; (iv) the mathematical analysis of computations (algorithms) in terms of algebra
(especially computational complexity with notations) and graphs; and (v) the need for all necessary
proofs for solvable and unsolvable problems. This is a rather strict mathematical approach, which
is very important and necessary, but it cannot exclude any other approaches in the description
of algorithms’ behavior, especially in terms of physics. The most important justification for these
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words is the fact that these computations are done on physical machines, whereas, so far, in the
existing paradigm, we relate any attempts of algorithms’ description to the idea of Turing machines,
which were mainly proposed to solve the Entscheidungsproblem and model the behavior of a reckoner.
Physical machines are in fact limited by rules related to thermodynamics and energy transformation,
and it is very interesting to see what is going on (what kind of phenomena appear) when processing
is done, especially when algorithm behavior is related to some features of the input sets.

Let us note that the existing paradigm in the description of the performance and behavior
of algorithms by the concept of computational complexity is stated on some very important
assumptions: (i) the description in terms of mathematical notations expressed by O, Θ and Ω;
(ii) the choice (not always obvious) of dominant operation; (iii) the asymptotic behavior for the
worst (sometimes best) input case; and (iv) independence between different instances of input
data and algorithm behavior. Obviously, this allows for a very useful and coherent theory to
exist; however, on the other hand, the assumption about the independence of this measure from
different instances of input sets excludes the possibility of any considerations, for example about
the interaction between input data and the algorithm. If the above assumption is rejected, there
is a possibility to indicate some of these phenomena, remembering previous considerations about
energy transformations and flow, as presented next. This opens new interesting possibilities in better
understanding what processing is, what kind of dependencies exist during those transformations,
and some considerations are presented in next Sections.

3. A New View on the Insertion-Sort Procedure

In this section, the considerations presented so far will be applied to sorting; as an example,
insertion sort is presented. This is a quite simple procedure of sorting that is established on the
observation of a bridge player who sorts his or her cards. He or she takes cards one-by-one from the
heap and starts searching for the right position from left to the right. This structure is described by
algorithm pseudocode and a flowchart.

1 for j ← 2 to length(A) do
2 key ← A[j]
3 i ← j-1
4 while (i > 0 and A[i] > key) do
5 A[i+1] ← A[i]
6 i ← i-1
7 A[i+1] ← key

It is very easy to see that this algorithm consists of two loops (Figure 1). The external one is
used to sort all data from the input set; the internal one finds the right place in the output set for
successive sorted keys to form the input set. The calculations’ computational complexity is based on
the number of internal loop executions (or equivalently, on the number of executions of the fourth
line of code above), and this loop is crucial for our considerations. Let us note that if we focus on
our algorithm as a net of connections in which sorted keys flow through existing paths, conditions
checked in the fourth line of the pseudocode decide how long sorted data will stay in the internal
loop. If we compare this loop to the trap for input data, it is easy to see that the amount of time
for which the trap is active depends on three conditions: two of them are expressed explicitly; the
third one is a matter of algorithm feedback. The first condition i > 0 expresses the actual position
in the input set; index i is proportional to the size of input, so the loop will be longer as i grows.
The second condition depends on the values of the sorted keys; if the value of sorted key from the
input set is small, the trap lasts longer than in the case when the sorted keys have large values. The
third condition is very visible if we focus on algorithm behavior in terms of the interaction between
the algorithm and the data structure, because the duration of the internal loop is also related to the
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number and values of keys sorted so far and is expressed by condition A[i] > key (note that as the
algorithm works, each sorted key is put into the first part of table A[i]). The existence of feedback
in this algorithm leads to the following cases: if in the condition in the fourth line of the pseudocode
(i > 0 and A[i] > key), only the first part i > 0 is met, the feedback is simple, and as a result, the
underlying process is short term. This is caused by the fact that the internal loop stops if the sorted
key has the minimal value, whereas the condition A[i]> key is a part of the feedback with a possible
memory effect that implies the existence of long-term processes; internal loop executions (trap) end
depending on the input and output sets’ properties.

i← 2

j > 0

A[j] > key

START

key A[i]

j i-1

A[j+1] A[j]

j j-1

A[j+1] key

i i+1

i > length (A)

T

F

T

F

STOP

Figure 1. Diagram flow for the insertion-sort algorithm.

These considerations can be presented on a special flowchart (Figure 2) that is an extended
version of the diagram presented in Figure 1. This new diagram is a result of some small modifications
in our algorithm. These modifications help us to show a possible dynamical behavior of insertion
sort. In the modified diagram (Figure 2), two new variables are introduced, namely: min and max.
They hold information about the minimal and maximal values of the so far sorted keys. As was
stated above, the condition that opens the internal loop in the analyzed algorithm consists of two
logical sub-conditions. They are joined by logical operator and; as a result, this loop is executed
if they are both fulfilled. However, this important condition can be broken into three cases. The
first one is devoted for checking A[j] ≥ max and, as a result, can be used to choose the shortest
of all possible paths in the algorithm. This case is responsible for sorting keys with the maximal
value. This path is always taken in the optimistic case (Figure 2, solid (green) line), and it is easy
to note (assuming that each operation in the whole diagram flow takes exactly the same amount of
time) that the total time T(n) needed for flow through this path is Tmin(n) = c · n (where c stands
for the number of intermediate steps in path P1 denoted by the solid (green) line in Figure 2, like
min ← A[1], max ← A[1], etc.), giving the classical computational complexity expressed by Ω(n).
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min A[1]

max A[1]

j 2

START

key A[j]

i j-1

key max
T

F

key < min
T

F

i = 0

min key

j j+1

A[i+1] A[i]

i i-1

TF
A[i+1] key

max key

A[i] > key

T

F

A[i+1] A[i]

i i-1

A[i+1] key

i > length (A)

T

F

STOP

Path P1

Path P2

Path P3
Loop III

Loop II

Figure 2. Modified diagram flow for the insertion-sort algorithm with a parasite path. The solid
(green) line stands for algorithm behavior in the optimistic case, path P1; the dotted (blue) line
expresses the flow in pessimistic case, path P2; and the dashed (red) line shows the flow of sorted
keys in other cases, path P3.

The second condition checks if A[j]<min and is met when the sorted key is minimal so far.
As a result, all keys sorted so far have to be moved to the right in the output. Similarly to the
first condition, this is the pessimistic case if all sorted keys follow this path (dotted (blue) line in
(Figure 2). Because in this case, for each sorted key, there is the need to execute Loop II and the
number of these loop executions is mj = 1, 2, 3, . . . , n− 1, the total time T(n) needed for flow through
this path is Tmax(n) = c ·∑n−1

j=1 mj (where c again denotes the number of intermediate steps, like
min ← A[1], A[i+1]← key, etc., in path P2, denoted by the dotted (blue) line in Figure 2). Because

∑n−1
j=1 mj =

n(n−1)
2 − n, the classical computational complexity for this case is expressed by O(n2).

However, there is a third possibility, when any of the above conditions are not met; thus, the
third condition A[i] > key is checked. It dictates how long the Loop III will last (Figure 2, dashed
(red) line, path P3). In contradiction to the second case, where the loop duration is dependent on the
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number of keys sorted so far (index i), this time, the loop duration depends also on the values of keys
sorted so far or, in other words, on algorithm output.

The determination of the behavior of the modified algorithm when the flow through all possible
Px paths is needed can be given assuming that:

• Dn is a set of input data instances with size n;
• d is one instance of input data;
• Td(n) is the needed number (or equivalently time) of path Px (including loops) executions for

instance d with size n;
• Xn is a random variable with values Td(n) for d ∈ Dn;
• pnk is a probability distribution of Xn (the probability that the algorithm will do k path Px

(including loops) executions or equivalently Td(n) = k for an input set with size n).

If the set Dn is finite, each input instance is equiprobable. If the probability distribution of Xn is
known, the calculations of its average value are possible by:

A(n) = ∑
k≥0

kpnk, (1)

leading to the average case computational complexity.
The set Dn consists of all possible n! permutations (instances) of n-element sets. If n = 2, then

Dn has two elements:

A[1] > A[2]
A[2] > A[1].

In the modified procedure, sorting of this instance requires, respectively: path P1 with one
execution and P2 with two executions of Loop II; path P1 with two executions. For n = 2, 3, the
details are in Table 1.

Table 1. Number of paths Px and loop executions for the input set size n = 2, 3.

n Instance P1 P2 P3 Td(n)

2 A[1] > A[2] 2 0 0 2
2 A[2] > A[1] 1 2 0 3
3 A[1] < A[2] < A[3] 3 0 0 3
3 A[1] < A[3] < A[2] 2 0 2 4
3 A[2] < A[1] < A[3] 2 2 0 4
3 A[2] < A[3] < A[1] 2 0 3 5
3 A[3] < A[2] < A[1] 1 5 0 6
3 A[3] < A[1] < A[2] 1 2 2 5

For n = 2, both cases can appear with p = 0.5; thus, the average number of path executions
according to Equation (1) is equal: A(n = 2) = 0.5 × 2 + 0.5 × 3 = 2.5. For n = 3, we
have p33 = 1/6, p34 = 1/3, p35 = 1/3, p36 = 1/6, and the average complexity equals:
A(n = 3) = 1/6× 3 + 1/3× 4 + 1/3× 5 + 1/6× 6 = 4.5.

Nothing can be said about the behavior of A(n) having the information about two cases. Thus,
for n = 1 . . . 10, Table 2 was made, where one can find: A′(n) = A(n) − A(n − 1) for n = 2, 3, . . .,
A′′(n) = A′(n)− A′(n− 1) for n = 3, 4, . . ..
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Table 2. The values of A(n), A′(n), A′′(n) for different input sets.

n A(n) A’(n) A”(n)

1 1 – –
2 2.5 1.5 –
3 4.5 2 0.5
4 7 2.5 0.5
5 10 3 0.5
6 13.5 3.5 0.5
7 17.5 4 0.5
8 22 4.5 0.5
9 27 5 0.5

10 32.5 5.5 0.5

Based on the information from Table 2, it is seen that A′(n) is a linear function of n, and it might
be expected that A(n) is given by a · n2 + b · n + c. Indeed, A(n) is represented as:

A(n) =
n2 − 3n

4
(2)

and this function is O(n2), showing us that in the average case, the modified algorithm has a
computational complexity the same as in the pessimistic case.

The existence of this feedback has a strong influence on algorithm behavior because:

• dynamical behavior of this algorithm is possible [21];
• the third path can be seen as a parasite path (loop); it appears as a consequence of interaction

between the algorithm and the input set;
• the first two cases can be described by a mathematical relation that exactly determines the loops’

duration (or equivalently, the number of necessary dominant operations) for each sorted key; in
other words, this number is deterministic;

• in the third case, a non-deterministic behavior can appear and, as a consequence, the dynamical
changes in the number of necessary dominant operations leading to the long-term processes;

• the flow in this algorithm can have a turbulent nature.

Let us focus on the possible deterministic and non-deterministic behavior of the analyzed
algorithm. Usually, it is assumed that typical algorithms are deterministic because, for each step,
they have very well-defined successive steps. However, if we follow our previous remarks and focus
on the data flow inside the algorithm, the definition of deterministic behavior can look a little bit
different: it will refer to the exact count of the number of dominant operations for each processed
element. In the case of insertion sort, it is possible to express this number for the best and worst
cases in a very simple way by equation; for the rest of the cases, it can be determined based on the
analysis of inversions and runs [18], but this is not so simple. Especially, it is quite easy to calculate the
number of inversions (situations where input sets’ successive keys are in reverse order or unsorted),
but there are still some unsolved problems in the case of runs (situations where input keys are in the
right order). As a final result for the optimistic and pessimistic cases for each key from the input set,
one can exactly indicate the number of executed dominant operations: respectively, this is one and
ni, where i denotes the index of the sorted key from an input set of size n. However, both cases are
only two of n! possible ones (called input instances), and for most of the rest, based on the classical
approach, it is impossible to give this number by equation. If we refer once again to the concept of
flow, it can be said that pessimistic and optimistic cases refer to the laminar flows, whereas the others
represent the turbulent flows. Typically, if the best and worst cases of computational complexity
for an algorithm vary, one can follow average computational complexity analysis, but this gives a
description in terms of asymptotic notation (here, given by O(n2)). This complexity measure is based
on the idea of averaging, and nothing interesting can be said about the exact behavior (flow control)
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of the algorithm expressed in the number of necessary dominant operations (see Figure 3). In other
words: if we refer to the concept of processing as a flow, we cannot use the traditional approach,
because it will not allow us to see some interesting phenomena.
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Figure 3. One possible example of sorting processing. For each sorted key from the input set (blue
line), the exact number of dominant operations was recorded (black line). As can be seen, when there
is a falling trend in the input set, the number of dominant operations rises; when there is a rising trend
in the input set, the number of operations falls. The red line shows how the algorithm should behave
if we follow asymptotic analysis for the worst case.

In our approach, we apply the concepts of statistical mechanics, but the description of the
algorithm behavior will not be given in terms of averaging, but in terms of statistical analysis of
the time series representing the computational costs of the processing (the number of dominant
operations for each processed element from the input set).

4. Entropy Production

Different approaches in the description of sorting procedures in terms of entropy production
are known in the literature. In [22], it is shown how the entropy as the measure of the input data
uncertainty can be related to the computational difficulty of the given problem instance. In [23],
the total computational cost of the algorithm was shown as a function of the entropy of the input
(output) distribution. Following the remarks from Section 2, we stated that sorting is related to
the introduction of order into a processed set. If we refer to physics, this means that the energy
necessary for processing, which is delivered to the computer performing the sorting procedure, is
used to decrease the entropy in the input (unordered) set. During processing (i.e., a flow of elements
from the input set), entropy from the input set is carried outside. In this analysis, we refer to the
behavior of a Turing machine; thus, it is assumed that the entropy flow is only caused by the ordering
procedure. As was noted in Section 3, the insertion-sort algorithm can have dynamical behavior due
to the existence of feedback. In order to determine the levels of entropy production, we refer to [24],
where the following approach was proposed.
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Let n be the size of a processed set and ni denote the position of successively processed elements
from the input set, i = 1 . . . n. Both internal and external loops need to be executed in insertion sort
(given in Figure 1) to process the input set. The number of executions for each key is given by M, and
its maximal value is M = ni when the pessimistic case is sorted, while the minimal value is M = 1
when the optimistic case is processed. For each key, by M1, we denote the number of external loop
executions, and it is always equal to one; by M2, we denote the number of all necessary internal loop
executions, and it can change from zero (optimistic case) to ni − 1 in the pessimistic case. By M3, we
denote the number of those internal loop calls that are not executed because of input set properties.
Obviously, it is clear that M = M1 + M2 + M3.

The amount of entropy that is removed during processing for each sorted key can be calculated
based on the number of W possible configurations (microstates) of the number of both loops’
executions. This quantity is given as the number of all possible combinations CM1

M multiplied by
CM2

M−M1
[24]; thus:

W = CM1
M · CM2

M−M1
=

M!
M1! (M−M1)!

· (M−M1)!
M2! (M−M1 −M2)!

=
M!

M1!M2!M3!
. (3)

This result is consistent with the idea of permutations of a multiset (see, for example,
Donald, E. Knuth survey in [18] and the references therein).

In the optimistic case, for each key, WO equals:

WO =
ni!

1!0! (ni − 1)!
= ni. (4)

In the pessimistic case, WP equals:

WP =
ni!

1! (ni − 1)!0!
= ni. (5)

The obtained results can be a little surprising, but in the pessimistic case, the inverse order in
the input set is still a kind of order; thus, the amount of entropy carried outside is on the lowest
possible levels in both cases. Taking into account the Onsager relations [25,26], our system (processing
machine) is in a (quasi)equilibrium state, where the entropy production is minimal. As confirmation,
let us consider the number of microstates W in other cases. If at least one excess dominant operation
for key ni is needed, i.e., M1 = 1, M2 = 1, M3 = ni − 2, we have:

W =
ni!

1!1! (ni − 2)!
=

(ni − 2)! (ni − 1) ni
(ni − 2)!

= ni (ni − 1) (6)

and the number W is greater than in the WO or WP cases.
The maximum entropy production occurs when M2 = M3, i.e., when the number of internal

loop executions equals half of all possible executions (ni/2). For some values of ni = 1, 2, 3, . . ., this
value can be found in Table 3, where the entropy Si for each sorted key is also calculated using the
Boltzmann–Gibbs formula, S = k ln W with k = 1.
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Table 3. The number of microstates.

Key Number Number of Microstates Entropy
ni W Si = ln(W)

2 2 0.69315
3 3 1.09861
4 6 1.79176
5 10 2.30259
6 20 2.99573
7 35 3.55535
8 70 4.2485
9 126 4.83628

10 252 5.52943
11 462 6.13556
12 924 6.82871
13 1716 7.44775
14 3432 8.1409
15 6435 8.76951
16 12,870 9.46265
17 24,310 10.0986
18 48,620 10.7918
19 92,378 11.4336
20 184,756 12.1268
21 352,716 12.7734
22 705,432 13.4666
23 1,352,078 14.1172
24 2,704,156 14.8103
25 5,200,300 15.4642
26 10,400,600 16.1574
27 20,058,300 16.8142
28 40,116,600 17.5073
29 77,558,760 18.1665
30 155,117,520 18.8597
31 300,540,195 19.5211
32 601,080,390 20.2142
33 1,166,803,110 20.8775
34 2,333,606,220 21.5707
35 4,537,567,650 22.2357
36 9,075,135,300 22.9288
37 17,672,631,900 23.5953
38 35,345,263,800 24.2884
39 68,923,264,410 24.9563

Plotting Si versus ni (Figure 4) illustrates that in the average case (i.e., M2 = M3), the entropy
growth tends to be linear for ni → ∞.

This can be confirmed if one notes that when M2 = M3, the number of possible loop
configurations W for the even number of keys ni can be obtained as

W =
ni!( ni

2
)
! ·
( ni

2
)
!
.)

for odd number of keys ni, it is given as:

W =
ni!(

ni−1
2

)
! ·
(

ni+1
2

)
!
.
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Figure 4. Entropy Si production for successive keys ni (solid line with open squares) with the
approximation given by Equation (7) (line with open circles).

Thus, the entropy Si can be calculated as:

Si = ln

(
ni!( ni

2
)
! ·
( ni

2
)
!

)
= ln (ni!)− 2 ln

((ni
2

)
!
)

. (7)

Because:

ln ((ni)!) =
ni

∑
j=1

ln(j) ≈
∫ ni

1
ln(x)dx = x ln x− x

∣∣∣ni

1
= (ni) ln(ni)− ni + 1

and also:

ln
((ni

2

)
!
)
=

ni
2

∑
j=1

ln(j) ≈
∫ ni

2

1
ln(x)dx = x ln x− x

∣∣∣ ni
2

1
=

ni
2

ln(
ni
2
)− ni

2
+ 1,

Equation (7), for ni → ∞, can be written as:

Si ≈ (ni) ln(ni)− ni + 1− 2 ·
(ni

2
ln
(ni

2

)
− ni

2
+ 1
)

= ni · ln(ni)− ni + 1− ni · ln
(ni

2

)
+ ni − 2

= ni ln(ni)− ni ln
(ni

2

)
− 1

= ni · ln
(

2ni
ni

)
− 1

= ni · ln (2)− 1. (8)

The approximation of the entropy production given by Equation (7) shows (Figure 4) that for the
average case, the level of (extensive) entropy production for each key i is approximately represented
by the linear function a · n + b. It should be noted that this is again consistent with Onsager reciprocal
relations [25,26] and indicates that in the system, a thermodynamic non-equilibrium state exists, with
maximum, but linear entropy production.

It is also possible to show some calculations for other cases. Equation (6) shows that when at
least one excess dominant operation is done, the number of microstates is greater than in optimistic
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and pessimistic cases. This equation allows one to establish formulas for exact calculations of the
number of microstates. This is possible if we use the following reasoning: if one excess dominant
operation is done, we have:

W =
ni!

(ni − 2)!1!
.

For two dominant operations, this is:

W =
ni!

(ni − 3)!2!
.

If we denote the number of necessary dominant operations by di (for the i-th key from the input
set), the number of microstates W can be expressed as:

W =
ni!

(ni − (di + 1))!di!
. (9)

This can be written as:

W =
ni · (ni − 1) · (ni − 2) · . . . · (ni − di)

di!
. (10)

If ni > 170, the approximate calculations of W are almost impossible on typical computers.
However, taking into account that we are interested in calculations of entropy assuming that for each
key, it is given by Si = k ln(W), Equation (10) can be rewritten as:

Si = k ln(W) = ln (ni · (ni − 1) · (ni − 2) · . . . · (ni − di))− ln(di!). (11)

Because ln(∏i n) = ∑n
i=1 ln(i), finally, we have:

Si =
ni

∑
j=ni−di

ln(j)−
di

∑
i=1

ln(i) (12)
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Figure 5. Example of entropy production during sorting. The dark blue line denotes the number of
dominant operations; light blue line, the amount of produced entropy according to Equation (12); red
line, maximal number of dominant operations (pessimistic case); black line, the number of dominant
operations in the average case; green line, predicted amount of produced entropy according to
Equation (7).



Entropy 2016, 18, 93 15 of 19

Figure 5 shows one example of a sorting process with the trajectory of entropy production during
processing. The sorted set has 106 elements. Here, we assume that for each key ni, the produced
entropy Si is extensive. For the average case, it grows linear, thus the total amount of produced
entropy during sorting such a case by insertion sort can be expressed as a · n2 + b · n + c, which
indicates the direct relationship between the problem of entropy production and the average case of
the computational complexity of the insertion-sort algorithm. It is a very interesting problem itself,
because the questions arise: Do such references exist for different sorting algorithms, and is it possible
to use the concepts of other entropies (for example, nonextensive ones [27]) in such calculations?

5. Influence of the Input Set on Dynamical Behavior

Equation (3) shows the number of possible microstates for each successive sorted key. Usually,
it is assumed that such a set is a collection of elements that is processed by a Turing machine. From
the mathematical point of view, this collection is one of the possible permutations n! of the n-element
set [18], and this is a typical approach in combinatorics. One can assume that each sorted element is
independent of the others, but in our considerations, we focus on the situation where there can be,
but does not have to be, some level of correlation. Let us note that the input set can have n! possible
arrangements of key values. In many of them, one can indicate the existence of parts with many
inversions or long runs. This situation is usually analyzed by a mathematical approach based on
combinatorics with some existing open questions [18]. We propose a different approach, because we
treat computer processing in terms of a flow. This approach continues the considerations presented
in Section 3.

Below, we assume that the input set is a time series. For example, it can be generated as a
trajectory of some process; here, it is proposed to use the concept of fractional Brownian motion
(fBm), because this process has many features that are very useful in our considerations. The most
important is the fact that its statistical self-similarity (described by Hurst H parameter) can be used
for the description of the statistical properties of the dependencies between the values of keys and,
thus, the existence of inversions and long runs. It is known that the trajectories of fBm for values of
H > 0.5 have long trends (property of persistence) that, for our sorting procedure, can be understood
as local pessimistic and optimistic cases (see Figure 6). The property of graphical self-similarity (to be
more precise, self-affinity) shows that in each such trend, there are other minor trends.

Recorded quantities of dominant operations for the insertion-sort procedure show not only the
behavior of our algorithm (Figure 6), but also how produced entropy Si behaves during sorting
according to Equation (12). One example is shown in Figure 7: the sorted set is a trajectory of fBm
with H = 0.9. The amount of produced entropy is not only dependent on visible trends, but on the
situation when the trend is changing from falling to rising and reverse.

As noted in Section 3, a feedback exists in this algorithm, and it has a strong influence on the
procedure behavior. In order to show this influence, the plot in Figure 8 was created, illustrating
the relations between values of input keys X(n) and the number of dominant operations Y(n), and
the plot in Figure 9 illustrates the relations between the values of input keys X(n) and produced
entropy Si.
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Figure 6. Dependencies between one trajectory of fractional Brownian motion (fBm) X(n) and the
number of dominant operations Y(n) required for its sorting. Red lines show falling (global and minor
trends) in the input set, while green lines refer to local and global rising trends. The blue line shows
the number of dominant operations; it is clear that each falling trend in the input set (inversions in the
input set) denotes the growth of the number of dominant operations, whereas rising trends (runs in
the input set) are related to a decrease of the dominant operations.
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Figure 7. Dependencies between one trajectory of fBm X(n) and the amount of produced entropy
during its sorting. It is very visible (compared to Figure 6) that the levels of produced entropy Si

depend not only on the values of sorted keys (indirectly, on the number of dominant operations), but
also on the change of trends (inversions and runs) in the input set.
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Figure 8. Direct relation between the values of sorted keys X(n) and the number of dominant
operations Y(n) needed for their sorting. The whole graph shows bifurcations in the algorithm
behavior in relation to existing feedback.
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Figure 9. The direct relation between the values of sorted keys X(n) and the amount of produced
entropy during their sorting Si. Produced entropy depends not only on key values, but also on
existing feedback.

As can be seen Figures 6–9, behavior of the analyzed algorithm is very complex. Let us note
the feedback existing in the algorithm; its existence influences the number of necessary dominant
operations for each sorted key. If successive keys from the input are ordered according to relation
<(rising trend, optimistic case) or respectively according to relation > (falling trend, pessimistic case),
the number of dominant operations for each sorted key will be equal to one or ni, respectively, and
such a complex behavior in both cases will not be visible. Now, let us also note that our sorting
procedure is done by a physical machine (computer) that is used not only to perform this process,
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but also, it is expected that it controls its possible dynamical behavior. It is clear that understanding
the idea of processing is more complicated than it seems to be: it is not only a simple mathematical
operation (transformation of bits), but also a process that can be very complex.

6. Conclusions

In this paper, a short study of the insertion-sort algorithm was presented as an example of a
new approach to algorithms and computer processing analysis. Despite the fact that this is a very
well-known and very simple procedure, we were able to show its possible dynamical behavior
in terms of flow control and statistical mechanics. This approach can be considered as a new
view on algorithms analysis relating the basic concepts of thermodynamics and flow control. We
assumed that the Turing machine is not only a mathematical concept that models the behavior of
a reckoner, but also a concept that should have relations to basic terms in physics (especially for
sorting procedures). The proposed view is in accordance with the existing approach so far based on
computational complexity (best, mean, worst case analysis expressed in mathematical notations), but
it assumes that the algorithm and input data are not independent beings: they interact, and during
(computer) processing, one can see phenomena that do not belong to the classical (mathematical)
domain, mostly based on combinatorics, asymptotic models and some universal rules. The proposed
considerations can be applied in the case of other sorting procedures, where best, worst and average
complexities vary (like bubble sort, quick-sort; some results about the influence of the input structure
were given in [28]) as a consequence of specific input data properties. As a counterexample, the
selection sort algorithm can be given; its behavior does not depend on the input data structure.
Furthermore, other types of algorithms can be indicated: a special group is graph algorithms (for
example, spanning tree algorithms (Kruskal’s algorithm, Prim’s algorithm, Boruvka’s algorithm)
with all included modifications, especially if graphs have special features (are dense, edge weights
are integers (see [29])); Dijkstra’s or Bellman-Ford methods for shortest paths with improvements in
representation of graphs stored in different data structures (see, for example, [30])).

There are several interesting issues that should be researched further, which are the result of the
presented approach:

• What kind of statistical properties can be related to the number of dominant operations and
entropy production during sorting?

• What are the properties of diagrams presenting entropy production and the number of dominant
operations relating to the properties of the input sets?

• What kind of similar (or not) dependencies exist in other sorting algorithms, including those that
are based on recurrence?

• How can the proposed approach be developed in the case of other algorithmic procedures
focusing especially on the interaction between input data and algorithms?
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