
entropy

Article

iDoRNA: An Interacting Domain-based Tool for
Designing RNA-RNA Interaction Systems

Jittrawan Thaiprasit 1, Boonserm Kaewkamnerdpong 1, Dujduan Waraho-Zhmayev 1,
Supapon Cheevadhanarak 2 and Asawin Meechai 3,*

1 Biological Engineering Program, Faculty of Engineering, King Mongkut’s University of Technology
Thonburi, Bangkok 10140, Thailand; jittrawan.thai@mail.kmutt.ac.th (J.T.); boonserm.kae@kmutt.ac.th (B.K.);
dujduan.war@kmutt.ac.th (D.W.-Z.)

2 Division of Biotechnology, School of Bioresources and Technology, King Mongkut’s University of
Technology Thonburi, Bangkok 10140, Thailand; supapon.che@kmutt.ac.th

3 Department of Chemical Engineering, Faculty of Engineering, King Mongkut’s University of Technology
Thonburi, Bangkok 10140, Thailand

* Correspondence: asawin.mee@kmutt.ac.th; Tel.: +66-2-470-9234 (ext. 405); Fax: +66-2-872-9118

Academic Editor: Wayne K. Dawson
Received: 3 April 2015; Accepted: 26 February 2016; Published: 7 March 2016

Abstract: RNA-RNA interactions play a crucial role in gene regulation in living organisms. They have
gained increasing interest in the field of synthetic biology because of their potential applications
in medicine and biotechnology. However, few novel regulators based on RNA-RNA interactions
with desired structures and functions have been developed due to the challenges of developing
design tools. Recently, we proposed a novel tool, called iDoDe, for designing RNA-RNA interacting
sequences by first decomposing RNA structures into interacting domains and then designing each
domain using a stochastic algorithm. However, iDoDe did not provide an optimal solution because
it still lacks a mechanism to optimize the design. In this work, we have further developed the
tool by incorporating a genetic algorithm (GA) to find an RNA solution with maximized structural
similarity and minimized hybridized RNA energy, and renamed the tool iDoRNA. A set of suitable
parameters for the genetic algorithm were determined and found to be a weighting factor of 0.7,
a crossover rate of 0.9, a mutation rate of 0.1, and the number of individuals per population set to 8.
We demonstrated the performance of iDoRNA in comparison with iDoDe by using six RNA-RNA
interaction models. It was found that iDoRNA could efficiently generate all models of interacting
RNAs with far more accuracy and required far less computational time than iDoDe. Moreover, we
compared the design performance of our tool against existing design tools using forty-four RNA-RNA
interaction models. The results showed that the performance of iDoRNA is better than RiboMaker
when considering the ensemble defect, the fitness score and computation time usage. However,
it appears that iDoRNA is outperformed by NUPACK and RNAiFold 2.0 when considering the
ensemble defect. Nevertheless, iDoRNA can still be an useful alternative tool for designing novel
RNA-RNA interactions in synthetic biology research. The source code of iDoRNA can be downloaded
from the site http://synbio.sbi.kmutt.ac.th.

Keywords: synthetic RNA; decomposition-based design; genetic algorithm

1. Introduction

Currently, RNA-RNA interactions have gained much interest as they play a crucial role in
gene regulation for both prokaryotes and eukaryotes [1–4]. Systems that are based on RNA-RNA
interactions have been utilized in various applications, including medicine, agriculture and industry.
For instance, gene inhibition systems based on the interaction of small interfering RNAs (siRNAs) with
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their target genes have been widely used for suppression of cancer-related genes as a means for cancer
therapy [5,6]. A system employing antisense RNA developed for controlling petunia flower color is
a good example of an RNA-RNA interaction application in agriculture [7]. In addition, a regulatory
system based on small RNAs (sRNAs) has been developed in an Escherichia coli (E. coli) system for
controlling, tuning and monitoring specific genes involving response to toxins, DNA damage and
cell death [8]. This programmed bacterium has great potential for industrial applications. With its
great potentials, RNA-RNA interactions have already become a topic of interest among synthetic
biologists who are exploring and developing new artificial RNA-RNA interaction-based systems with
broader applications.

For successful development of RNA-RNA interaction-based regulation systems, computational
tools that can help in the design of targeted RNA sequences and structures are needed. Computational
design tools can help in minimizing adverse regulation resulting from undesired RNA interactions.
Moreover, they can reduce the time spent in laborious experimental studies. So far, the various
computational tools that have been developed for designing RNA molecules can be divided into
two groups: first, tools that specifically aim to design structure-based RNAs; e.g., RNAInverse [9],
RNA-SSD [10], INFO-RNA [11], MODENA [12], NUPACK [13], and RNAiFold [14]. Since the functions
of the required RNAs are directly related to their structures, the purpose of these design tools is to
provide the best RNA sequences that can fold into the target secondary structures given by a user.
These structure-based RNAs have been used as gene regulators in response to external signals such as
a riboswitch [15,16] and a thermometer-RNA [17] having metabolites and temperature as the external
signals, respectively. The other group of computational design tools is principally for designing
antisense-based RNAs (i.e., siRNAs) used for suppression of target genes. Thus, these tools take
into consideration the context sequences of siRNA and its accessibility to target mRNA. Tools of
this type include siDirect [18], DEQOR [19], AsiDesigner [20], DSIR [21], and DEsi [22]. Although
the abovementioned RNA design tools have been useful, they are limited to designing single RNA
molecules which in turn limits their applications.

In the field of synthetic biology, RNA-RNA interaction is used as a foundation for construction
of a few biological regulators in synthetic organisms. For example, cis-and trans-encoded RNAs
have been employed to create various regulators; e.g., on/off switches [23,24], a comparator [25]
and logic gates [26]. These devices serve as diverse molecular controllers necessary for the creation
of programmable cells. Despite the increasing interest in RNA-RNA interactions, novel devices
and systems based on these molecular interactions are still limited in number. The design of novel
RNA-RNA interaction-based systems requires careful consideration of conformational changes in
RNA structures resulting from intermolecular and intramolecular interactions. The conformational
changes in RNA structures before and after their interaction dictate the functions. Thus, a good
RNA-RNA interaction design tool should provide reliable sequences of two RNAs, which can form
multi-state structures at both folding states before and after RNA-RNA interaction [24,27]. “Multi-state
structures” refers to two RNA changeable molecules that can fold into three distinct structures; i.e., two
independent structures of two RNA molecules that further interact to form a third independent
hybridized RNA molecule structure. Nevertheless, only a few RNA tools such as NUPACK [13],
RNAiFold [14,28], RiboMaker [29] and iDoDe [30] are able to cope with this challenge. NUPACK
is a remarkable design tool that provides nucleotide sequences for supporting the inverse folding
problem. The tool uses a substructure decomposition strategy for dividing the target structures and
finding a proper sequence by minimizing the ensemble defects [13]. Although, this tool is able to
design multi-state target structures that support the RNA-RNA interaction design problem, it still
requires a user-assigned substructure for initialization. RNAiFold is another outstanding tool that
uses constraint programming (CP), and a large neighborhood search (LNS) to design hybridized RNA
structures. The design method attempts to find optimal sequences of two RNA molecules whose
MFE hybridized structure is identical to a target hybridized structure. However, RNAiFold does
not support multi-state structures [14,28]. Recently, RiboMaker has been developed for providing
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RNA sequences of two molecules corresponding to multi-state target structures [26,29]. This tool
applies the evolutionary algorithm of Monte Carlo Simulated Annealing (MCSA) to optimize a
thermodynamic function in order to design conformation-based riboregulation; i.e., bacterial small
RNAs (sRNAs) in the 51-untranslated region of its target mRNA. At the same time, we proposed
another design tool, namely interacting domain-based design (iDoDe), that provides RNA sequences
with a set of intermolecular and intramolecular folded structures [30]. The iDoDe program applies a
domain-based decomposition and a stochastic algorithm proposed by Zhang [31] to generate suitable
RNA-RNA interactions. We showed that iDoDe was able to reduce the search space and unwanted
interactions, and provided RNA sequences which can fold into a given structure for simple RNA-RNA
interactions without any unwanted interactions. However, iDoDe falls short in satisfying the design of
complex RNA-RNA interactions, mainly due to its stochastic approach. To overcome this limitation,
an optimization algorithm had to be incorporated into the iDoDe algorithm to help efficiently design
these RNA-RNA interactions.

Several optimization methods have been applied to the field of molecular biology including
expectation maximization [32–34], simulated annealing [35–37], machine learning [38,39], linear
programming [40–42], and the genetic algorithm (GA) [43–47]. Among them, the GA is a well-known
heuristic and evolutionary algorithm used in many RNA-based tools to solve diverse RNA problems.
Computationally, the GA evolves solutions of a population through a recurrent searching process of
genetic operations including selection, crossover, and mutation. Each RNA solution or individual is
assigned a fitness value indicating its goodness, which serves as an objective function. For example,
in the RNA alignment tools, the GA seeks and clusters similar mRNAs in a genome through repeatedly
determining their similarity and distance [46,48]. On the other hand, some RNA structure prediction
tools use the GA to find a near optimal secondary structure by minimizing the free energy of RNA
structures [47,49]. In the case of RNA design tools, the GA was also used to find near optimal RNA
sequences corresponding to user’s requirement [12,50]. Consequently, with the help of the GA, it is
possible to gain a near optimal solution of a given RNA-RNA interaction.

Using a genetic algorithm, we have developed an improved tool called iDoRNA that helps to
design interacting domain-based RNA-RNA interactions. The iDoRNA program can provide a near
optimal RNA-RNA interaction set corresponding to the given requirements. In this article, we show
that iDoRNA can efficiently design various sets of RNA-RNA interaction systems; e.g., S1-A1, and
crRNA-taRNA. In comparison with iDoDe, iDoRNA performs much better in terms of both accuracy
and computational time usage. When compared with the benchmark tools; i.e., NUPACK, RNAiFold
2.0 and RiboMaker, iDoRNA performs better than RiboMaker, but is outperformed by NUPACK and
RNAiFold 2.0.

2. Methodology

2.1. Description of the Algorithm of iDoRNA

The iDoRNA algorithm developed in this work combines our previous algorithm used in
iDoDe [30] and a genetic algorithm (GA) [51] to help design a near optimal RNA individual for
a given RNA-RNA interaction. The workflows of iDoDe and iDoRNA are shown in Figure 1a,b. In this
section, we describe the details of the iDoRNA algorithm.

2.1.1. Representation of an RNA Individual

The representation of an RNA individual is illustrated in Figure 2. An RNA individual is a set
of two single-stranded RNAs (R1, R2) that can fold into themselves and bind to each other to form
a hybridized RNA (HR) possessing a specific structure and function. R1, R2 and HR are strings of
nucleotide sequences; i.e., R1.seq, R2.seq, and HR.seq, respectively. There are five properties used to
characterize an RNA individual including (i) minimum free energy RNA structure, (ii) Hamming
distance, (iii) similarity score, (iv) stability score and (v) fitness score. In iDoRNA, a population size (n)
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of the individuals is specified for GA optimization, and thus the number of total RNA individual is n
per each population.Entropy 2016, 18, 83 4 of 19 
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hybridized RNA; HD, hamming distance; MFE, minimal free energy of hybridized RNA; fsim, 
Similarity score; fsta, Stability score; F, Fitness score).  
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2.1.2. The iDoRNA Algorithm 

iDoRNA consists of three main modules including initialization, evaluation and reproduction 
as shown in Figure 1b. The description of each module is detailed as follows. 

Initialization 

To design an RNA-RNA interaction system with iDoRNA, a user must provide the desired 
lengths and secondary structures of R1, R2 and HR that make up the system. The user then provides 
additional constraints regarding nucleotide sequences on specific regions such as start codons and 
ribosome binding sites (RBS) by assigning uppercase letters of IUPAC codes to the constrained 
regions while leaving non-specified bases with the letter “N”. To represent the secondary structure 
of each RNA, a dot-bracket notation is used, where “.” refers to an unpaired base, “(“ and “)” refer to 
paired bases and “&” is a separator between R1 and R2 within the structure representation of the HR.  

With the given user’s input information, iDoRNA begins to design the sequences of R1, R2 and 
HR by first generating an initial population of n individuals using the initialization method of iDoDe 
as briefly described below. The details of the initialization method are also described in the 
Supplementary Information.  
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2.1.2. The iDoRNA Algorithm

iDoRNA consists of three main modules including initialization, evaluation and reproduction as
shown in Figure 1b. The description of each module is detailed as follows.

Initialization

To design an RNA-RNA interaction system with iDoRNA, a user must provide the desired lengths
and secondary structures of R1, R2 and HR that make up the system. The user then provides additional
constraints regarding nucleotide sequences on specific regions such as start codons and ribosome
binding sites (RBS) by assigning uppercase letters of IUPAC codes to the constrained regions while
leaving non-specified bases with the letter “N”. To represent the secondary structure of each RNA,
a dot-bracket notation is used, where “.” refers to an unpaired base, “(“ and “)” refer to paired bases
and “&” is a separator between R1 and R2 within the structure representation of the HR.

With the given user’s input information, iDoRNA begins to design the sequences of R1, R2
and HR by first generating an initial population of n individuals using the initialization method of
iDoDe as briefly described below. The details of the initialization method are also described in the
Supplementary Information.
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Step 1: The target structures of R1, R2, and HR provided by the user are first divided
into a set of domains (D), defined as a substructure representing either interacting or
non-interacting segments. A set of domains consists of D1, D2, . . . , Dm, where the subscript
m is the number of domains. The details and the examples of the interacting domain-based
decomposition are described in the Supplementary Method and the Supplementary
Figure S1, respectively. Each domain D is a string of ` bases: r1, r2, . . . , r`, where
r ε {a, c, g, u, A, C, G, U} and the subscript ` is the domain length.

Step 2: In this step, all non-specified bases originally assigned by the user as “N” in all
domains are randomly replaced with lowercase RNA bases (a, c, g, or u) by using the
Domain-based Design (DD) algorithm [31].

Step 3: All domains (D1 to Dm) are concatenated into the 3 RNA strands; R1, R2, and HR,
indicated by R1.seq, R2.seq, and HR.seq, respectively. Each concatenated single-stranded
RNA (R1.seq or R2.seq) is a string of L bases: r1, r2, . . . , rL in the 5’-3’ direction, where the
subscript L is the RNA length. On the other hand, the concatenated hybridized RNA strand
(HR.seq) is a combined string of R1.seq and R2.seq separated by the symbol “&”. This set of
R1, R2 and HR is referred to the first RNA individual.

Step 4: Steps 2 and 3 are repeated n times to generate concatenated RNA strands of
n individuals.

Evaluation

Each RNA individual is evaluated for its five properties mentioned in Section 2.1.1. The definition
and the calculation of each property are given below:

Minimum Free Energy RNA Structure

A minimum free energy RNA structure is a secondary structure with the minimal free energy
(MFE) of a designed RNA sequence represented by a dot-bracket notation. Given R1.seq, R2.seq, and
HR.seq as input, the MFE secondary structures of R1, R2, and HR are predicted using the Vienna RNA
package [52]. Within this package, RNAfold is used to predict the structures of R1 and R2 (R1.str and
R2.str), and RNAduplex is used to predict the structure of HR (HR.str). Additionally, the value of
minimal free energy of the HR structure (MFEhr) is further used to calculate the stability of a designed
RNA individual.

Hamming Distance

In iDoRNA, the Hamming distance is applied to measure the difference in the structures of a
designed individual with the target structures specified by the user. It is determined by the summation
of distinct positions of the given individuals relative to the target. A position with a distinct structure
is assigned a value 1; otherwise it is assigned a value 0. For instance, the Hamming distance of the
hybridized RNA shown below has a value of 4 because there are four distinct positions between the
required and designed structures as indicated by the red positions.

Target HR structure: . . . . .( ( ( ( ( ( . . . . .) ) ) ) ) ) ( ( ( ( ( ( ( ( ( ( ( ( ( &. . . . . . . . . . . . ) ) ) ) ) ) ) ) ) ) )) )
HR.str: . . . . .( ( ( ( ( ( . . . . .) ) ) ) ) ) . . ( ( ( ( ( ( ( ( ( ( ( &. . . . . . . . . . . . ) ) ) ) ) ) ) ) ) ) ). .
HR.hd = 4 00000000000000000000001100000000000 - 0000000000000000000000011

For each RNA individual, there are three values of the Hamming distances: R1.hd, R2.hd, and HR.hd.

Similarity Score

The similarity score (fsim) is the value that indicates how similar the structures of a designed RNA
individual is to the target structures. The fsim is calculated by Equation (1):
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fsim “
1
3

3
ÿ

i“1

"

Li ´ HDi
Li

*

(1)

where HDi is the hamming distance of the i-th RNA and Li indicates the length of the i-th RNA. Note
that fsim has a value ranging from 0 to 1; where 0 indicates a poorly designed structure while 1 indicates
a well designed structure of an RNA individual.

Stability Score

The stability score (fsta) is the relative stability of an RNA individual. In this study, fsta was
calculated based on the ratio of hybridization energy of an MFE structure of a designed HR to the
reference energy. Previous studies have shown that the hybridization energy of hybridized RNAs has
a highly negative correlation with biological activity [24]. Thus, in this study, the hybridization energy
of hybridized RNA structure was used to represent the stability property of designed RNAs in our tool.
In general, a lower hybridization energy would lead to a more stable hybridized RNA, which is more
biologically active. Nevertheless, too low a hybridization energy could lead to a hybridized RNA with
too high a rigidity in the resulting structure and a consequent lack of the necessary conformational
dynamic properties, which in turn lead to a poor biological activity [53]. To avoid the hybridization
energy from being too low during energy minimization, we set the reference hybridization energy
(MFEre f ) as the target energy. Since the structural rigidity of a RNA duplex depends on its %GC
content, we set the target energy as a function of %GC content and length of the RNA duplex, which
can be defined by users. Throughout of this work, we set the %GC content at 50, which is an average
content in Escherichia coli genome [54]. Thus, the calculation of the stability score (fsta) is performed
using the following mathematical expressions:

fsta “
MFEHR
MFEre f

; if fsta ą 1, fsta “ 1 (2)

MFEre f “ pMFEGC,100% ˆ p
%GCcontent

100
qq ` pMFEGC,0% ˆ p1´

%GCcontent
100

qq (3)

where MFEGC,100% and MFEGC,0% are the hybridization energy of the duplex structure in the
required HR at 100% and 0% GC content, respectively. These values represent the highest and
the lowest stability of a given length of required HR structure. These 2 energies were obtained from
Equations (4) and (5), respectively:

MFEGC,100% “ ´3.30pNbpq ` 7.40 (4)

MFEGC,0% “ ´0.89pNbpq ` 5.02 (5)

where Nbp is the total number of paired bases (or HR length) of the required HR structure. All constants
were obtained from linear regression of relationship between calculated MFE (by RNAcofold [52])
of double-stranded segments and their length (Nbp) for the case of 100% and 0% GC contents. Note
that fsta has the value from 0 to 1; 0 indicates the least stable while 1 indicates the highest stable
structure of an RNA individual when compared with 50% GC-containing RNA duplex of the same
size. Thus, an RNA individual with fsta near 1 would have a high hybridization energy and thus high
biological activity.

Fitness Score

To realize the objective design, iDoRNA simultaneously optimizes two RNA properties, similarity
and stability of designed RNA structures, by maximizing the fitness score (F), represented by fsim and
fsta. The fitness score is expressed as shown in Equation (6):

F “ pωSim ˆ fsim ` p1´ωSimq ˆ fstaq (6)
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where ωSim is a weighting factor of similarity. By this expression, F ranges from 0 to 1, where 1 indicates
a perfectly designed RNA individual. In iDoRNA, F is maximized during the GA optimization.

Reproduction

Reproduction is the module that determines an optimal individual based on GA which follows a
step of natural selection; i.e., crossover and mutation. To find an optimal RNA individual, new RNA
individuals are repeatedly rebuilt by genetic operations for improvement of designed RNAs. The steps
of reproduction based on GA are summarized in Figure 3, and described in details as follows.
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Selection Step

The number of individuals (n) obtained from the mutation step (called new children) are first
combined with the n individuals of a previous population. The 2n individuals of the combined
population are ranked in descending order of the fitness score by the merge sort algorithm [55].
The top n individuals are used as a parent pool. Note that for the first generation, the initial population
of n individuals obtained from the initiation step is directly used as the parent pool. Next, the n-parents
(or n/2-parent pairs) are selected from the parent pool using a probabilistic function, defined as the
fractional fitness of the parent. This probability of a parent is calculated by the ratio of the fitness score
of the parent to the sum of the finest scores of all parents. Then, pseudo-random numbers (Nrand) in
the range of [0,1] are generated one at a time, and used for choosing n parents for the crossover. If an
Nrand value is in a probability space of a parent, such a parent is selected. Thus, the chance of a parent
being selected is directly proportional to its fractional fitness. Note that a parent pair must not include
the same parent meaning parent 1 cannot pair with parent 1.

Crossover Step

Having selected n-parents, the sequences of R1 and R2 in each parent are improved by the
recombination of corresponding RNA domains (D) between each parent pair. To choose which D
is to be recombined, we set up a crossover rate (Cr) as a parameter for recombination acceptance
ranging from 0 to 1. Repeatedly, Nrand is randomly generated one at every D of an individual and
compared to Cr. A given D is accepted for a recombination between a parent pair when Nrand is
less than Cr. Thus, a crossover operation frequently occurs if Cr is set high, and vice versa. If a D is
accepted for recombination, a position on the D (between r1 and rl) is randomly generated to choose
a recombination point. An illustration of crossing over of a parent consisting three RNA domains
(D1–D3) with different l lengths is shown below. It can be seen that the recombination only occurs on
D1 and D3 because the Nrand for each domain is less than a given Cr. After the crossover is finished,
two new individuals called child 1 and child 2 are obtained.
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Mutation Step

n-Children obtained from the crossover step are subjected to mutation for further improvement
of R1 and R2 sequences. In this step, for every single base position of R1 and R2 in each child, a Nrand
is generated and used to pick a point of mutation by comparing it with a mutation rate (Mr). Mr is
defined as a parameter for mutation acceptance, which is in the range of 0 to 1. If the Nrand value of
a base position is less than a given Mr, then such a base is to be mutated by altering it to one of the
other possible bases. Once, the mutation step is finished, a new set of n-children is obtained. These
children are subsequently ranked in descending order according to fitness scores, and used as a new
population for further improvement in the next iteration.

Termination Criteria

In iDoRNA, there are two termination criteria: (i) the highest value of the fitness score of a
population is unchanged for 30 consecutive runs and (ii) the generation number reaches a defined
maximum number of iterations (Nterm). In this work, we set Nterm to 1000 generations. Therefore,
iDoRNA is terminated when one of the two criteria is met, and then provides a best predicted (or near
optimal) RNA individual as output.

2.2. Parameter Optimization

Important parameters involving the genetic algorithm were investigated to see their effects on
the design performances of iDoRNA. These parameters include weighting factor of similarity (ωsim),
population size (n), crossover rate (Cr), and mutation rate (Mr). An RNA-RNA interaction system of
crR12-taR12 [23] was used as a target design. The optimal value of each parameter is chosen based on
the fitness score and computational time.

2.3. Performance Assessment

For performance assessment, forty-four different RNA-RNA interaction models with different
levels of structural complexity were used (Supplementary Data S1). These models can be divided into
two groups; actual RNAs and artificial RNAs. Actual RNAs (models N01-N07) are the RNA structures
and specific sequences of a pair of RNAs that function in natural systems. On the other hand, artificial
RNAs (models A01-A37) are the RNA structures that we made up.

Models N01 to N07 were taken from previous experimental studies without pseudo-knot
structure [23,24,56–60]. The first two models called AS::S1 and taRNA::crRNA systems are proven
to successfully regulate a gene expression in vivo by mimicking the natural RNA structures and
motifs of RNA-OUT::RNA-IN and Hok::Sok, respectively [23,24]. Models N03 to N07 are natural
RNA-RNA interactiona, which play a prominent role in post-transcriptional regulation [56–60]. DsrA
of models N03 and N07 are involved in a translational regulation of mreB and RpoS in response to
cold stress [56,60]. While RyhB of models N04 and N06 blocks the translation of sodB and ompA
and triggers the degradation of both RNAs [57,59]. In model N05, FinP involves the control of cell
conjugation by binding traJ, 5’ untranslated-region of tra gene [58]. Models N01 to N07 possess high
complexity in structures at both single-stranded structures, R1 and R2, and their corresponding HRs
(see Supplementary Data S1 and S2).

For the artificial models, models A01-A04 are simple models taken from Thaiprasit et al. [30].
They are simple RNA structures consisting of linear segments and hairpin-loops structures (R1 and
R2 in Supplementary Data S1 and S2) in the intramolecular folding state and different hybridized
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structures (HR in Supplementary Data S1 and S2) at the intermolecular folding state, where all R1
molecules of models A01-A04 are linear segments having a primary RNA structure with increasing
lengths (10 to 15 nt), whereas R2 molecules represent either a primary structure (i.e., linear segment
in model A01) or a secondary structure (i.e., hairpin-loops in models A02-A04) in the size of 10 to
30 bp. At the intermolecular folding state, interactions between R1 and R2 molecules give hybridized
structures of double-stranded RNA, except for models A03-A04 that also exhibit hairpin-loop structure
in R2.

Unlike models A01-A04, models A05-A37 were built from the set of benchmarking single stranded
RNAs given by Garcia et al. [14,28]. These single stranded RNAs are regulatory RNAs that are
able to function in Nature. In this study, we created the thirty-three artificial models of RNA-RNA
interaction from the set of single stranded RNA molecules as follows. Firstly, sequences and dot-bracket
structures of all benchmarking set available on RNAiFold [14] web server were downloaded. Secondly,
thirty-three sets whose lengths are less than 250 nucleotides were selected for providing an input of
RNA-RNA interaction model. Thirdly, an RNA strand of each set was divided into two strands using
the following criteria: (1) if the number of paired bases of such RNA is less than 15 pairs, the RNA
strand was split at the position that yields the highest number of pair bases of HR structure, (2) if
the number of paired bases of such RNA is more than 15 pairs, the RNA strand was divided equally.
Fourthly, dot-bracket structures of all individual RNAs and hybridized RNA were determined by
using RNAfold and RNAcofold of Vienna RNA package 2.1.8 [52], and used as artificial test models
(Supplementary Data S1).

For the tool assessment, iDoRNA was first compared its performance with iDoDe, and then against
three benchmark tools; i.e., NUPACK [13], RNAiFold 2.0 [28] and RiboMaker [29]. Models N01-N02
and A01-A04 were used for the first comparison with 30 independent trials, while all forty-four test
models were used to perform the latter with 10 independent trials. The best individuals were analyzed
using ensemble defect, fitness scores and computational time usage as criteria. When comparing with
iDoRNA, iDoDe randomly designs each RNA model using the same computational time required in
iDoRNA. The RNA individuals with the highest fitness score was compared with the optimal score of
the RNA individual suggested by iDoRNA. In addition, the success rate, which is defined as the ratio
of RNA individuals with perfect design (F = 1) to the total number of the designed RNA individuals
of both methods were compared to assess the performance. For the comparison of iDoRNA with the
benchmarks, the following procedure was used.

For NUPACK and RNAiFold 2.0, the tools were performed on design option that allows only
one target structure of either individual RNA or hybridized RNA. In this study, targets of design for
NUPACK and RNAiFold 2.0 were prepared from sequences and secondary structure of hybridized
RNA. For design RNA-RNA interaction using RiboMaker, the same input target structures and
constrained sequences used for iDoRNA were used as input. The default parameters; iteration
numbers of 5000 and Monte Carlo temperature of 1 were used. In this work, all of the designs were
performed on a machine with an Intel® Core™ i7-4790 Processor 1600 MHz and 16 GB RAM.

3. Results and Discussion

In this study, we have incorporated a genetic algorithm (GA) into our previous RNA tool (iDoDe)
to help optimally design a given RNA-RNA interaction system. This tool is renamed to iDoRNA,
which stands for interacting domain-based design tool of RNA-RNA interaction. Herein, we present
the effects of the parameters on design performance and, later, compare the performance of iDoRNA
with that of iDoDe and benchmark iDoRNA against three other available design tools: i.e., NUPACK,
RNAiFold 2.0 and RiboMaker.

3.1. Suitable Parameters for iDoRNA

To optimize the performance of iDoRNA, we studied the sensitivity of some parameters to
the tools’ performances in designing an RNA-RNA interaction system. These parameters include
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weighting factor (ωsim), crossover (Cr) and mutation (Mr) rates, and population size (n). To maintain
the computational time and the existing complex structure, the RNA-RNA interaction system used for
this test is the crRNA-taRNA system (model N02), which contains basic structural elements: unpaired
nucleotide, paired base, hairpin loop, bulge, and internal loop.

3.1.1. Effect of the Weighting Factor of Similarity

To study the sensitivity of the weighting factor of similarity on the iDoRNA performance, we set
the values of ωsim at 0.3, 0.5, 0.7, and 1.0 while keeping the values of Cr, Mr, and n constant at 0.9, 0.1
and 10, respectively. The performance was determined by observing the similarity and stability scores
of the RNA individuals at various generations (Figure 4). At the generation zero, the properties of
the initial RNA individuals generated directly from the iDoDe algorithm are fairly diverse, with the
similarity score ranging from 0.65 to 0.96, and the stability scores ranging from 0.7 to 1 (Figure 4a).
It is noteworthy that the best individual at this initial population was found to possess the similarity
and stability scores of 0.906 and 0.965, respectively. After these sets of individuals have gone through
several rounds of natural selection with the genetic algorithm, the properties of all individuals have
been improved with the number of generations (Figure 4b–d). These improvements can be observed
by the movement of the RNA individuals’ properties towards the upper right-hand corner of the plots
where both the similarity and stability scores are high, except for the case where the weighting factor
equals to 1. It can also be seen that the properties of the RNA individuals designed with ωsim at 0.3, 0.5,
and 0.7 are similar. However, the ωsim of 0.7 was chosen as the suitable parameter for further study
because it provides a relatively faster convergence and better overall properties.
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3.1.2. Effect of the Crossover and the Mutation Rates

To study the sensitivity of the crossover and the mutation rate parameters on the iDoRNA
performance, we first varied the values of Cr from 0.1 to 0.9 while keeping Mr constant at 0.1 and the
population size of 10. The plots of the fitness score versus the generation indicated that Cr of greater
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than 0.5 appeared to give fast convergence (Figure 5a). The Cr of 0.9 was chosen for further study, as it
requires the least number of generations to reach the optimum. Conversely, when we increased the
values of Mr from 0.1 to 0.9 while keeping the Cr constant at 0.9, the required number of generations
to achieve the optimum was increased (Figure 5b). Thus, the most suitable value of the mutation rate
was 0.1. Notably, the sensitivity of the design performance to the mutation rate is more than that to the
crossover rate, indicating that a slight change of the mutation rate would affect the tool’s performance
greatly, so this parameter should be considered carefully when performing a design of a more complex
RNA-RNA interaction system.
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3.1.3. Effect of the Population Size

To see how the population size affects the performance of iDoRNA, we varied the population
sizes from 4 to 100 RNA individuals per population. For each population size, ten independent runs
were performed, and the optimal RNA solutions and the averaged computational time were compared
(Table 1). It can be seen that both the optimum fitness and the required computational time increase as
n is increased. However, the optimum fitness reached its maximum at 0.996 when n was equal to or
greater than 8. Thus, the population size of eight RNA individuals was preferable since it required the
least computational time while still providing the maximum fitness. In summary, optimum values of
the weighting factor, the crossover rate, the mutation rate and the population size were 0.7, 0.9, 0.1,
and 8, respectively. These values was then used in the subsequent assessment of the iDoRNA tool.

Table 1. Effect of different population sizes (n) on computational time and fitness score.

Population Size Computational Time (s) * Optimal Fitness *

4 11.50 ˘ 1.90 0.993 ˘ 0.006
6 16.10 ˘ 2.42 0.995 ˘ 0.003
8 22.30 ˘ 3.77 0.996 ˘ 0.000

10 26.00 ˘ 5.19 0.996 ˘ 0.000
20 48.30 ˘ 6.68 0.996 ˘ 0.000
50 106.80 ˘ 7.87 0.996 ˘ 0.000
100 202.00 ˘ 14.52 0.996 ˘ 0.000

* The values shown are the average and its standard deviation from 10 independent runs.

3.2. Design Performance of iDoRNA

To elucidate the design ability of iDoRNA, we employed the program to design six artificial
RNA-RNA interaction models with increasing structural complexity. Thirty independent runs were
performed for each model using the suitable set of GA parameters obtained from the previous step.
Table 2 shows that iDoRNA was able to perfectly design models A01-04 as seen by the fitness score of 1.
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Table 2. Representation of the design performances of iDoRNA on computational time and fitness
score corresponding to number of IDs.

Model No.
RNA Complexity Computational

Time (s) *
Optimal
Fitness *Length of R1/R2 (Nucleotides) Number of ID

A01 10/10 3 4.8 ˘ 0.53 1.000 ˘ 0.000
A02 15/15 3 4.5 ˘ 0.50 1.000 ˘ 0.000
A03 10/20 4 6.3 ˘ 0.87 1.000 ˘ 0.000
A04 15/30 5 6.4 ˘ 0.56 1.000 ˘ 0.000
N01 35/67 17 17.1 ˘ 4.61 0.994 ˘ 0.001
N02 55/71 24 21.3 ˘ 3.76 0.996 ˘ 0.002

* The values shown are the average and its standard deviation from 30 independent runs.

However, for models N01 and N02 that are more complex in structure, our tool was able to
design them with the fitness score of 0.994 and 0.996, respectively. When carefully considering the
secondary structures of all 30 optimal RNAs of models N01 and N02 obtained by the tool, it was
found that the design errors causing imperfect fitness occurred at the internal loops of the hybridized
RNAs. While the internal loop of model N01 was found to contain an extra base within the internal
loop, model N02 had a missing internal loop. Thus, this design flaw should be subjected to further
improvement of the tool such as the addition of a repair step as a part of the GA. Although iDoRNA did
not provide a perfect design for models N01 and N02, the fitness scores were still very high, ensuring
the highly stable structures, very similar in structure to their respective target models. Regarding
the computational time, it should be noted that the time required to reach an optimum increases
with the increasing complexity of the RNA-RNA interaction system. While requiring less than 7 s
for designing models A01-A04, the tool needed about 22 and 25 s to provide the optimal designs for
models N01 and N02, respectively. This is reasonable because the computational time required in the
reproduction step is linearly dependent on the lengths of RNAs as well as the number of interacting
domains. In conclusion, iDoRNA can efficiently design all 6 RNA-RNA interaction models with high
fitness in short time.

3.3. Comparison of the Design Performance between iDoDe and iDoRNA

The design performances of iDoRNA was compared with iDoDe to see how much the GA helped
increasing the performance in term of the designing accuracy as well as the computational time
usage (Table 3). The six artificial RNA-RNA interaction models were used as the targets. For a fair
comparison, we compared the design accuracy of the RNA solutions obtained from the two tools with
the same computational time. In doing so, we used the total time required to run iDoRNA for each
RNA model as the termination criterion for the iDoDerun. The values of the GA parameters used were
the same as those in the previous section. The design results are summarized in Table 3.

Table 3. Comparison of RNA design performance between iDoDeand iDoRNA.

Model
No.

Time (s)
iDoRNA iDoDe * iDoDe **

Optimal
Fitness

Success
Rate

Optimal
Fitness

Success
Rate Time (s) Optimal

Fitness
Success

Rate

A01 5 1.000 10/10 1.000 1/28 177 1.000 7/1000
A02 5 1.000 10/10 1.000 1/31 173 1.000 42/1000
A03 6 1.000 10/10 0.875 0/23 237 0.922 0/1000
A04 6 1.000 10/10 0.938 0/22 301 0.968 0/1000
N01 17 1.000 10/10 0.949 0/86 495 0.967 0/1000
N02 21 0.996 0/10 0.934 0/54 252 0.881 0/1000

* iDoDe was performed using the same computational time as iDoRNA. ** iDoDe was performed for 1000 runs.
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It is obvious that iDoRNA performed much better than iDoDe for all test models. The optimal
RNA individuals provided by iDoRNA for all models were almost ideal, and only failed to reach the
fitness score of 1 for model N02. The success rate also indicates the design power of iDoRNA against
iDoDe. It should be noted is that while iDoRNA can provide a perfect design with a 100% success
rate for five out of the six models, iDoDe does not provide a perfect solution for models A03-A04
and N01-N02, mainly due to the random nature of the iDoDe design. Apparently, the RNA solutions
obtained from iDoDe did not have maximum fitness, thus they might yield unstable and dissimilar
structures with their target RNA-RNA interaction, especially, at the required bulges and internal-loops
of HR. Additionally, we repeatedly found was unwanted hairpin-loops on linear segments in the cases
of models N01 and N02. Therefore, with incorporation of GA in iDoRNA, we could overcome these
problems of iDoDe. Furthermore, instead of fixing the time, we attempted to run iDoDe for 1000 trials
to see if we could obtain a successful design for each model. It was clearly demonstrated that iDoDe
still fails to provide a perfect design for models A03-A04 and N01-N02 (Table 4). It can be concluded
that iDoRNA can give more accurate RNA solutions in a shorter time for any RNA-RNA interaction
based system. Thus, this shall be a promising tool for designing RNA-RNA interaction systems for
synthetic biology applications.

Table 4. Comparison of features between iDoRNA and the other tools for designing
RNA-RNA interaction.

Features NUPACK RNAiFold 2.0 RiboMaker iDoRNA

Service:

Source code C C++ C++ C

Web server 4 4 4 6

Input:

Target
structures:

Single stranded RNA 4 (Web server);
6 (Source code) 6 4 4

Hybridized RNA 4 4 4 4

Constrained sequences 4 4 4 4

IUPAC codes IUPAC codes IUPAC codes A C G U N IUPAC codes

Pseudo-knot 6 6 6 6

Specification:

Folding temperature 4 4 6 4

GC-content 4 4 6 4

Consecutive nucleotides prevention 4 4 6 6

Solution per run 4 4 6 6

Alternative energy parameters 4 6 6 6

Output:

Designed sequences ě 2 strands (Web server)
2 strands (Source code) 2 strands 2 strands 2 strands

Predicted
structures

Dot-bracket or
Dot-plus-parentheses

notation
4 4 4 4

Graphical structure 6 4 4 4

Design method:

Design objective min ensemble defect Constraint-based min Fobj max Fitness

Decomposition Hierarchical Structure
decomposition

Tree-like
decomposition 6

Interacting
domain-based
decomposition

Optimization* EO CP, LNS MCSA GA

Folding prediction NUPACK RNAcofold RNAfold,
RNAup

RNAfold,
RNAcofold

* List of optimization methods are ensemble defect optimization (EO), constraint-based programing (CP),
large neighborhood search (LNS), Monte Carlo simulated annealing (MCSA), and genetic algorithm (GA).
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3.4. Comparison of the Design Performance between iDoRNA with the other Design Tools

In this section, we compared the differences of the existing features between iDoRNA with other
published tools; i.e., NUPACK, RNAiFold 2.0, and RiboMaker (Table 4). Then, we benchmarked the
design performance of our tool against these benchmark tools using different criteria (Table 5).

Table 5. Comparison of RNA design performance between iDoRNA and the other RNA structural
design tools on 44 models.

HR-Length/
# of ID

Model
No.

Average Ensemble Defect Average Fitness Score

NUPACK RNAiFold RiboMaker iDoRNA NUPACK RNAiFold RiboMaker iDoRNA

Actual models

102-212/
17-35 N01-07 0.00-0.02 0.02-0.07 0.60-0.84 0.05-0.18 N/A N/A 0.18-0.44 0.90-1.00

Artificial models

10-49/
3-11 A01-06 0.01-0.03 0.01-0.19 0.64-0.79 0.02-0.21 N/A N/A 0.14-0.87 0.94-1.00

50-99/
12-20 A07-16 0.00-0.01 0.01-0.19 0.67-0.86 0.05-0.21 N/A N/A 0.34-0.66 0.92-1.00

100-149/
6-30 A17-28 0.00-0.02 0.00-0.09 0.64-0.81 0.00-0.28 N/A N/A 0.34-0.87 0.87-0.99

150-199/
22-51 A29-35 0.00-0.02 0.01-0.08 0.54-0.76 0.00-0.31 N/A N/A 0.24-0.57 0.87-0.99

200-250/
22-30 A36-37 0.01-0.04 0.01-0.02 0.64-0.59 0.10-0.18 N/A N/A 0.43-0.44 0.95-0.98

In order to explore different features between our tool and the other tools, we categorized all
features into five groups: service, input, specification, output, and design method as shown in Table 4,
the details of which are described as follows:

Service

Source codes of all tools are available for download. For tool development, NUPACK and iDoRNA
are developed on C programming language whereas RNAiFold 2.0 and RiboMaker are implemented
with C++. In the current version, iDoRNA does not provide a design service on web server, whereas
the others are available.

Input

Among the four design tools, NUPACK source code version and RNAiFold 2.0 allow only one
target structure to be used as an input whereas RiboMaker and iDoRNA are able to receive inputs
of single-stranded RNAs and hybridized RNA. In addition, all design tools allow users to constrain
specific bases with all IUPAC codes, except for RiboMaker that allows the specification with only A C
G U N bases. Unfortunately, all tools do not handle a pseudo-knot structure as the input.

Specification

We collected the features of this part which have been done on the available web server services
of NUPACK, RNAiFold 2.0 and RiboMaker to compare with our current tool’s abilities (source code
version). NUPACK, RNAiFold 2.0 and iDoRNA allow users to specify GC-content, and folding
temperature. For specific purposes, NUPACK and RNAiFold 2.0 provide an option for consecutive
nucleotides prevention. Moreover, NUPACK includes alternative energy parameters for calculation of
structural energy. It was noted that RiboMaker does not provide any features in this category.

Output

All four tools provide a set of two designed RNA sequences as output. However, NUPACK on the
web server is able to design more than two RNA strands which interact with each other. Also, all the
tools give the results of predicted structure(s) in dot-bracket (or dot-plus-parentheses in NUPACK)



Entropy 2016, 18, 83 15 of 19

structures and a graphical structure by different visualization methods (NUPACK by NUPACK [13],
RNAiFold 2.0 and RiboMaker by VARNA [61], and iDoRNA by RNAfold 2.0 and RNAcofold [52]).

Design Method

During the initialization step, NUPACK, RNAiFold 2.0, and iDoRNA separate the target structures
into substructures by different decomposition methods before sequence generation. On the contrary,
RiboMaker generates the random sequences of all structures without a decomposition step. Among
optimization methods, only constraint-based programing (CP) used in RNAiFold 2.0 is a non-heuristic
method which designs sequences based on defined constraints, whereas the other methods are based
on a heuristic method. All the tools, except for NUPACK which uses its own prediction method,
use additional methods from Vienna RNA package [52] for predicting a possible structure of the
designed sequences.

To benchmark our tool with the other existing tools, forty-four test models containing different
lengths and characteristics of secondary structural elements (Supplementary Data S1) were designed.
Among these test models, N01-N07 are models built from the reported structures of previous laboratory
experiments, which represent actual RNA-RNA interaction; A01-A04 are simple artificial models
representing the classical secondary structural elements: unpaired nucleotides, paired bases, and
hairpin loops; and A05-A37 are the artificial models built from structural RNA sets. In this work,
we compared the performance of iDoRNA with NUPACK, RNAiFold 2.0 and RiboMaker using the
same computational environment. To avoid inverse folding times in large and complex structures,
we used RNAiFold 2.0 with a Large Neighborhood Search (LNS) method, and set the time constraint
of each run to within 2 hours. Criteria for comparison include ensemble defects, fitness scores and
computational times. Note that the fitness score was used as the criterion to compare the performance
between RiboMaker and iDoRNA only. This is because F score could not be determined due to the
unavailability of secondary structures of R1 and R2 provided by NUPACK and RNAiFold 2.0. The
results of interacting domain patterns from each test model obtained from the interacting domain-based
decomposition algorithm is shown in Supplementary Data S3, while the best design results for all test
models from iDoRNA is reported in Supplementary Data S4. The performance comparison between
these design tools is shown in Table 5 and Supplementary Data S5 which are discussed as follows.

Firstly, Table 5 shows that when using ensemble defects as the criteria, NUPACK outperforms
RNAiFold 2.0, RiboMaker and iDoRNA in designing all 44 test models. The ensemble defect results
indicate that all designed RNA sequences from NUPACK are able to fold into the HR structures with
less average number of incorrectly paired nucleotides at equilibrium than those of the other tools. This
is not surprising because the design objective of NUPACK is to minimize the ensemble defects [13]
while RNAiFold 2.0 and iDoRNA use other different objectives (Table 4). Secondly, while NUPACK
and RNAiFold 2.0 require HR as input, both RiboMaker and iDoRNA require input containing a set
of R1, R2 and HR. Thus, it is noteworthy to carefully consider the performance differences between
iDoRNA with RiboMaker. When using ensemble defect as the criterion, we found that iDoRNA shows
better performance than RiboMaker in designing all test models. Furthermore, it is seen that iDoRNA
also outperforms RiboMaker when considering the F-score as the criterion. This is because the objective
function of RiboMaker includes the energies of hybridization region, individual RNA structures, and
hamming distance, and it does not allow the specification of all single-stranded structures [29] which
could lead to a lower similarity and thus the fitness score. On the contrary, the objective function of
iDoRNA is to maximize the fitness score which is formulated from two RNA properties; i.e., structural
similarity and stability Nevertheless, it can also be seen that iDoRNA could only provide the designs
with a perfect F score (F = 1) for all four simple models (A01-A04), but not for the actual and the
remaining artificial models (Supplementary Data S5). Finally, when considering the computational
time, it is shown that the performance of iDoRNA is better than RiboMaker but worse than NUPACK
and RNAiFold 2.0 (See Supplementary Data S5).
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4. Conclusions

In this study, we have proposed a new computational tool named iDoRNA for designing RNA
sequences of a given RNA-RNA interaction. This tool employed a domain-based decomposition
algorithm to decompose input RNAs into interacting domains as well as a genetic algorithm (GA)
as an optimization tool to search for an optimal set of RNA-RNA interactions. We used a fitness
function derived from the structural similarity between designed and target RNAs, and the MFE of
hybridized RNA as the design objective. For the best design, we suggested ωsim of 0.7, Cr of 0.9, Mr of
0.1, n of 8 individual per population as the optimal design parameters that provide optimal RNA-RNA
interactions with the shortest computational time. Given a set of RNA-RNA interaction models with
various structural complexities, we demonstrated that iDoRNA was able to efficiently design sequences
of two RNA molecules that can form exact structures at both intramolecular and intermolecular states
of the target models. For design performance, we showed that iDoRNA performed markedly better
than our previously published iDoDe as it can design multi-state RNAs of all models with higher
fitness in less computational time. In addition, we also showed that iDoRNA performed relatively well
when compared with other established design tools. Thus, with the use of GA as heuristic optimization,
iDoRNA represents an alternative powerful tool for designing RNA-RNA interaction as a novel device
in synthetic biology.

However, iDoRNA still has some drawbacks, which are topics for further research. Firstly, it still
fails to properly design some secondary structural elements that are present in hybridized RNAs.
Secondly, it only designs sequences of RNA-RNA interaction with the desired secondary structures.
Thirdly, the current version of iDoRNA is not yet capable of designing RNA-RNA interactions
containing more than two RNA molecules. Fourthly, additional optimization criteria (i.e., ensemble
defects and base pair distances), as well as input specifications (i.e., consecutive nucleotides prevention
should be provided as user options). Furthermore, this design tool may prove beneficial to biologists
and other potential users in the form of a web interface. With these future improvement, iDoRNA could
become an even more powerful tool for the development of the novel RNA devices in synthetic biology.

Supplementary Materials: The following are available online at www.mdpi.com/1099-4300/18/3/83/s1,
Figure S1: Example of RNA structures resulting in interacting domain-based decomposition on simple model 4
visualized by NUPACK. Data S1: List of test model and their characteristics of RNA-RNA interaction models used
for tool assessment (.xlsx). Data S2: List of test model and their secondary structures of RNA-RNA interaction
models used for tool assessment (.pdf). Data S3: Sets of domains obtained from interacting domain-based
decomposition algorithm (.xlsx). Data S4: The best designed RNA of 44 models obtained from iDoRNA (.xlsx).
Data S5: Comparison of RNA design performance between iDoRNA and the other RNA design tools (NUPACK,
RNAiFold and RiboMaker) on 44 models which have different RNA sizes, secondary structures and number of
interacting domain (# of ID) (.xlsx).
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