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Abstract: The present work is a continuation of the previous papers written by the author on the
subject. In terms of the measurability (or measurable quantities) notion introduced in a minimal
length theory, first the consideration is given to a quantum theory in the momentum representation.
The same terms are used to consider the Markov gravity model that here illustrates the general
approach to studies of gravity in terms of measurable quantities.
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1. Introduction: Measurable and Nonmeasurable Quantities

This work is a direct continuation of my previous papers [1,2] and is interlaced with these
publications at some points. As shown in [1], provided the theory involves the minimal length lmin
as a minimal measurement unit for the quantities having the dimensions of length, this theory must
not have infinitesimal spatial-temporal quantities dxµ because the latter lead to the infinitely small
length ds [3]

ds2 = gµνdxµdxν (1)

that is inexistent because of lmin.
Of course, in this case only measurable quantities are meant. As a mathematical notion, the

quantity ds is naturally existent but, due to the involvement of lmin, it is immeasurable.
However it is well known that at high energies (on the order of the quantum gravity energies)

the minimal length lmin to which the indicated energies are “sensitive”, as distinct from the low ones,
should inevitably become apparent in the theory. But if lmin is really present, it must be present at
all the “Energy Levels” of the theory, low energies including. And this, in addition to the above
arguments, points to the fact that the mathematical formalism of the theory should not involve any
infinitesimal spatial-temporal quantities. Besides, some new parameters become involved, which are
dependent on lmin [4–13].

What are the parameters of interest in the case under study? It is obvious that, as the
quantum-gravitational effects will be revealed at very small (possibly Planck) scales, these parameters
should be dependent on some limiting values, e.g., lP ∝ lmin and hence Planck energy EP.

This means that in a high-energy gravitation theory the energy-dependent or, what is the same, measuring
scales-dependent parameters should be necessarily introduced.

But, on the other hand, these parameters could hardly disappear totally at low energies, i.e., for
General Relativity (GR) too. However, since the well-known canonical (and in essence the classical)
statement of GR has no such parameters [3], the inference is as follows: their influence at low
energies is so small that it may be disregarded at the modern stage in evolution of the theory and
of the experiment.

Still this does not imply that they should be ignored in future evolution of the theory, especially
on going to its high-energy limit.
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But at the present time, the mathematical apparatus of both special and general relativity theories
(and of a quantum theory as well) is based on the concept of continuity and on analysis of infinitesimal
spatial-temporal quantities. This is a corner stone for the Minkowski space geometry (MS) and also
for the Riemannian geometry (RG) [3].

However, this approach involves a problem when we proceed to a quantum description of
nature. Even at a level of the heuristic understanding, it is clear that, as measuring procedures
in a quantum theory are fundamental, the description with the use of infinitesimal quantities is
problematic because in its character the measuring procedure is discrete.

At a level of the mathematical formalism and physical principles, incompatibility of both the
Minkowski space geometry and Riemannian geometry with the uncertainty principle is expected in
any “format”, in relativistic and nonrelativistic cases. This problem is considered in greater detail in
the following sections of this work.

Thus, if the matter concerns the measurable quantities only, the Quantum Theory (QT) and
Gravity formalism should be changed: at least, a new formalism should not involve the infinitesimal
spatial-temporal quantities dxµ. Naturally, because of the involved lmin (initially assuming that
lmin ∝ lP) new theories should involve new parameters associated with lmin. Presently, such
parameters are inexplicitly involved (for example, E/EP in a quantum gravity phenomenology [4]).

But there is no need to discard the modern formalism of QT and Gravity, since it is clear that
at low energies it offers an excellent approximation, experimentally supported to a high accuracy
(see [5]). However, proceeding from the above, a change-over to high energies is impossible as, by
author’s opinion, this formalism is used in an effort to combine uncombinable things.

This work makes the arguments of [1,2] more forcible on the one hand, and presents a study of
the additional parameters associated with the involvement of lmin , in terms of which one can develop
a new formalism for a quantum theory and for gravity at all the scales energies too, on the other hand.

One of the key problems of the modern fundamental physics (Quantum Theory (QT) and Gravity
(GR)) is framing of a correct theory associated with the ultraviolet region, i.e., the region of the highest
(apparently Planck) energies approaching those of the Big Bang.

However, it is well known that at high energies (on the order of the quantum gravity energies)
the minimal length lmin to which the indicated energies are “sensitive”, as distinct from the low ones,
should inevitably become apparent in the theory. But if lmin is really present, it must be present at all
the “Energy Levels” of the theory, low energies including.

What follows from the existence of the minimal length lmin? When the minimal length is
involved, any nonzero measurable quantity having the dimensions of length should be a multiple
of lmin. Otherwise, its measurement with the use of lmin would result in the measurable quantity ς, so
that ς < lmin, and this is impossible.

This suggests that the spatial-temporal quantities dxµ are nonmeasurable quantities because the
latter lead to the infinitely small nonmeasurable quantity length ds Equation (1).

Of course, as a mathematical notion, the quantities dxµ, ds are naturally existent but one should
realize that there is no way to express them in terms of the minimal possible measuring unit lmin.

So, trying to frame a theory (QT and GR) correct at all the energy levels using only the
measurable quantities, one should realize that then the mathematical formalism of the theory
should not involve any infinitesimal spatial-temporal quantities. Besides, proceeding from the
acknowledged results associated with the Planck scales physics [4–13], one can infer that certain new
parameters dependent on lmin should be involved.

What are the parameters of interest in the case under study? It is obvious that, as the
quantum-gravitational effects will be revealed at very small (possibly Planck) scales, these parameters
should be dependent on some limiting values, e.g., lP ∝ lmin and hence Planck’s energy EP.

This means that in high-energy QT and GR the energy-or, what is the same, measuring
scales-dependent parameters should be necessarily introduced.
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But, on the other hand, these parameters could hardly disappear totally at low energies both in
QT and in GR.

But, provided lmin exists, it must be involved at all the energy levels, both high and low.
The fact that lmin is omitted in the formulation of low-energy QT and GR and the theories give

perfect results leads to two different inferences:

1 The influence of the above-mentioned new parameters associated with lmin in low-energy QT and
GR is so small that it may be disregarded at the modern stage in evolution of the theory and of
the experiment.

2 The modern mathematical apparatus of conventional QT and GR has been derived in terms
of the infinitesimal spatial-temporal quantities dxµ which, as noted above, are nonmeasurable
quantities in the formalism of lmin.

2. Main Motivation

In this Section the principal assumptions are introduced which have been implicitly used
previously in [1] and especially in [2].

It is well known that in a quantum study the key role is played by the measuring procedure, its
fundamental principle being the Heisenberg Uncertainty Principle (HUP) [14,15]:

∆x ≥ h̄
∆p

(2)

(Note that the normalization ∆x∆p ≥ h̄ is used rather than4x∆p ≥ h̄/2.)
Now we can proceed to the following quite natural suppositions.

Supposition 1. Any small variation (increment) ∆̃xµ of any spatial coordinate xµ of the arbitrary point
xµ, µ = 1, ..., 3 in some space-time system R may be realized in the form of the uncertainty (standard
deviation) ∆xµ when this coordinate is measured within the scope of Heisenberg’s Uncertainty
Principle (HUP)

∆̃xµ = ∆xµ, ∆xµ '
h̄

∆pµ
, µ = 1, 2, 3 (3)

for some ∆pµ 6= 0.
Similarly, for µ = 0 for pair “time-energy” (t, E), the any small variation (increment) value

of time ∆̃x0 = ∆̃t0 may be realized in the form of the uncertainty (standard deviation) ∆x0 = ∆t
and then

∆̃t = ∆t, ∆t ' h̄
∆E

(4)

for some ∆E 6= 0.
Here HUP is given for the nonrelativistic case. In the relativistic case HUP has the distinctive

features [16] which, however, are of no significance for the general formulation of Supposition 1, being
associated only with particular alterations in the right-hand side of the second relation Equation (3)
as shown later.

It is clear that at low energies E � EP (momentums P � Ppl) Supposition 1 sets a lower bound
for the variations (increments) ∆̃xµ of any space-time coordinate xµ.

At high energies E (momentums P) this is not the case if E (P) have no upper limit. But, according
to the modern knowledge, E (P) are bounded by some maximal quantities Emax, (Pmax)

E ≤ Emax, P ≤ Pmax, (5)

where in general Emax, Pmax may be on the order of Planck quantities Emax ∝ EP, Pmax ∝ Ppl and also
may be the trans-Planck’s quantities.
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In any case the quantities Pmax and Emax lead to the introduction of the minimal length lmin and
of the minimal time tmin.

With this point of view, even at the ultimate (Planck) energies a minimal “detected” (i.e.,
measurable) space-time volume is, within the known constants, restricted to

Vmin ∝ l4
P. (6)

Consequently, “detectability” of the infinitesimal space-time volume

Vdxµ
= (dxµ)

4 (7)

is impossible as this necessitates going to infinitely high energies

E→ ∞. (8)

Because of this, it is natural to complete Supposition 1 with Supposition 2.

Supposition 2. There is the minimal length lmin as a minimal measurement unit for all quantities
having the dimension of length, whereas the minimal time tmin = lmin/c as a minimal measurement
unit for all quantities having the dimension of time, where c is the speed of light.

lmin and tmin are naturally introduced as ∆xµ, µ = 1, 2, 3 and ∆t in Equations (3) and (4) for
∆pµ = Pmax and ∆E = Emax.

For definiteness, we consider that Emax and Pmax are the quantities on the order of the Planck
quantities, then lmin and tmin are also on the order of Planck quantities lmin ∝ lP, tmin ∝ tP.

Suppositions 1 and 2 are quite natural in the sense that there are no physical principles with
which these suppositions are inconsistent.

3. Minimal Length and Measurability

In this Section particularly the results from Subsection 3.1 of [2] are used. Now from the start
we assume that the theory involves the minimal length lmin as a minimal measurement unit for all
quantities having the dimension of length.

Then it is convenient to begin our study not with HUP Equation (2) but with its widely known
high-energy generalization—the Generalized Uncertainty Principle (GUP) that naturally leads to the
minimal length lmin [17–29]:

∆x ≥ h̄
∆p

+ α′l2
P

∆p
h̄

. (9)

Here α′ is the model-dependent dimensionless numerical factor and lP is the Planckian length.
Note also that initially GUP Equation (9) was derived within a string theory [17–20] and,
subsequently, in a series of works far from this theory [21–27] it has been demonstrated that on going
to high (Planck) energies in the right-hand side of HUP Equation (2) an additional “high-energy”
term ∝ l2

P
4p

h̄ appears. Of particular interest is the work [21], where by means of a simple gedanken
experiment it has been demonstrated that with regard to the gravitational interaction Equation (9) is
the case.

As Equation (9) is a quadratic inequality, then it naturally leads to the minimal length
lmin = ξlP = 2

√
α′lP.

This means that the theory for the quantities with a particular dimension has a minimal
measurement unit. At least, all the quantities with such a dimension should be “quantized”, i.e.,
be measured by an integer number of these minimal units of measurement.

Specifically, if lmin—minimal unit of length, then for any length L we have the “Integrality
Condition” (IC)

L = NLlmin, (10)
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where NL > 0 is an integer number.
What are the consequences for GUP Equation (9) and HUP Equation (2)?
Assuming that HUP is to a high accuracy derived from GUP on going to low energies or that

HUP is a special case of GUP at low values of the momentum, we have

(GUP, ∆p→ 0) = (HUP). (11)

By the language of NL from Equations (10) and (11) is nothing else but a change-over to
the following:

(N∆x ≈ 1)→ (N∆x � 1). (12)

The assumed equalities in Equations (2) and (9) may be conveniently rewritten in terms of
lmin with the use of the deformation parameter αa. This parameter has been introduced earlier in
the papers [30–37] as a deformation parameter on going from the canonical quantum mechanics
to the quantum mechanics at Planck’s scales (early Universe) that is considered to be the quantum
mechanics with the minimal length (QMML):

αa = l2
min/a2, (13)

where a is the measuring scale.

Definition 1. Deformation is understood as an extension of a particular theory by inclusion of one or several
additional parameters in such a way that the initial theory appears in the limiting transition [38].

Then with the equality (∆p∆x = h̄) Equation (9) is of the form

∆x =
h̄

∆p
+

α∆x
4

∆x. (14)

In this case due to Equations (10), (12) and (14) takes the following form:

N∆xlmin =
h̄

∆p
+

1
4N∆x

lmin (15)

or
(N∆x −

1
4N∆x

)lmin =
h̄

∆p
. (16)

That is
∆p =

h̄
(N∆x − 1

4N∆x )lmin
. (17)

From Equations (15)–(17) it is clear that HUP Equation (2) in the case of the equality appears to
a high accuracy in the limit N∆x � 1 in conformity with Equation (12).

It is easily seen that the parameter αa from Equation (13) is discrete as it is nothing else but

αa = l2
min/a2 =

l2
min

N2
a l2

min
=

1
N2

a
. (18)

At the same time, from Equation (18) it is evident that αa is irregularly discrete.
It is clear that from Equation (17) at low energies (N∆x � 1), up to a constant

h̄2

l2
min

=
h̄c3

4α′G
(19)
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we have
α∆x = (∆p)2. (20)

But all the above computations are associated with the nonrelativistic case. As known, in the
relativistic case, when the total energy of a particle with the mass m and with the momentum p
equals [39]:

E =
√

p2c2 + m2c4, (21)

a minimal value for ∆x takes the form [16]:

∆x ≈ ch̄
E

. (22)

And in the ultrarelativistic case
E ≈ pc (23)

this means simply that

∆x ≈ h̄
p

. (24)

Provided the minimal length lmin is involved and considering the “Integrality Condition” (IC)
Equation (10), in the general case for Equation (22) at the energies considerably lower than the Planck
energies E� EP we obtain the following:

∆x = N∆xlmin ≈
ch̄
E

,

or

E ≈ ch̄
N∆x

. (25)

Similarly, at the same energy scale in the ultrarelativistic case we have

p ≈ h̄/N∆x. (26)

Next under Supposition 2, we assume that there is a minimal measuring unit of time

tmin = lmin/vmax = lmin/c. (27)

Then the foregoing Equations (2)–(16) are rewritten by substitution as follows:

∆x → ∆t; ∆p→ ∆E; lmin → tmin; NL → Nt=L/c (28)

Specifically, Equation (16) takes the form

(N∆t −
1

4N∆t
)tmin =

h̄
∆E

. (29)

And similar to Equation (10), we get the “Integrality Condition” (IC) for any time t:

t ≡ t(Nt) = Nttmin, (30)

for certain an integer |Nt| ≥ 0.
According to Equation (29), let us define the corresponding energy E

E ≡ E(Nt) =
h̄

|Nt − 1
4Nt
|tmin

. (31)
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Note that at low energies E� EP, that is for |Nt| � 1, the formula Equation (31) naturally takes
the following form:

E ≡ E(Nt) =
h̄

|Nt|tmin
=

h̄
|t(Nt)|

. (32)

Definition 2. (Measurability)

(1) Let us define the quantity having the dimensions of length L or time t measurable, when it satisfies
the relation Equation (10) (and respectively Equation (30)).

(2) Let us define any physical quantity measurable, when its value is consistent with points (1) of
this Definition.

Thus, infinitesimal changes in length (and hence in time) are impossible (to that indicated in
Section 1) and any such changes are dependent on the existing energies.

In particular, a minimal possible measurable change of length is lmin. It corresponds to some
maximal value of the energy Emax or momentum Pmax, If lmin ∝ lP, then Emax ∝ EP,Pmax ∝ PPl ,
where Pmax ∝ PPl , where PPl is where the Planck momentum. Then denoting in nonrelativistic case
with4p(w) a minimal measurable change every spatial coordinate w corresponding to the energy E
we obtain

4Pmax (w) = 4Emax (w) = lmin. (33)

Evidently, for lower energies (momentums) the corresponding values of 4p(w) are higher and,
as the quantities having the dimensions of length are quantized Equation (10), for p ≡ p(Np) < pmax,
4p(w) is transformed to

|4p(Np)(w)| = |Np|lmin. (34)

where |Np| > 1 is an integer number so that we have

|Np −
1

4Np
|lmin =

h̄
|p(Np)|

. (35)

In the relativistic case the Equation (33) holds, whereas Equations (34) and (35) for
E ≡ E(NE) < Emax are replaced by

|4E(NE)
(w)| = |NE|lmin, (36)

where |NE| > 1 is an integer.
Next we assume that at high energies E ∝ EP there is a possibility only for the nonrelativistic

case or ultrarelativistic case.
Then for the ultrarelativistic case, with regard to Equations (23)–(29), Formula (35) takes the form

|NE −
1

4NE
|lmin =

h̄c
E(NE)

=
h̄

|p(Np)|
, (37)

where NE = Np.
In the relativistic case at low energies we have

E� Emax ∝ EP. (38)

In accordance with Equations (21) and (22) and Formula (34) is of the form

|4E(NE)
(w)| = |NE|lmin =

h̄c
E(NE)

, |NE| � 1, (39)

where NE is an integer number.
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In the nonrelativistic case at low energies Equation (38) due to Equation (35) we get

|4p(Np)(w)| = |Np|lmin =
h̄

|p(Np)|
, |Np| � 1, (40)

where Np is an integer number.
In a similar way for the time coordinate t, by virtue of Equations (30)–(32), at the same conditions

we have similar Equations (33)–(35)

4Emax (t) = tmin. (41)

For E ≡ E(Nt) < Emax

|4E(Nt)(t)| = |Nt|tmin, (42)

where |Nt| > 1 is an integer number, so that we obtain

|Nt −
1

4Nt
|tmin =

h̄c
E(Nt)

. (43)

In the relativistic case at low energies

E� Emax ∝ EP, (44)

in accordance with Equations (21) and (22), Equation (34) takes the form

|4E(Nt)(w)| = |Nt|lmin =
h̄c

E(Nt)
, |Nt| � 1, (45)

where Nt is an integer number.

Remark 1.
Remark 1.1. It should be noted that the lattice is usually understood as a uniform discrete

structure with one and the same constant parameter a (lattice pitch). But in this case we have a
nonuniform discrete structure (lattice in its nature), where the analogous parameter is variable, is a
multiple of lmin, i.e., a = Nalmin, and also is dependent on the energies. Only in the limit of high
(Planck’s) energies we get a (nearly) uniform lattice with (nearly) constant pitch a ≈ lmin or a = κlmin
where κ is on the order of 1.

Remark 1.2. Obviously, when lmin is involved, the foregoing formulas for the momenta p(Np)

and for the energies E(NE), E(Nt) may certainly give the highly accurate result that is close to the
experimental one only at the verified low energies: |Np| � 1, |NE| � 1, |Nt| � 1. In the case of
high energies E ∝ Emax ∝ EP or, what is the same |Np| → 1, |NE| → 1, |Nt| → 1, we have a certain,
experimentally unverified, model with a correct low-energy limit.

Remark 1.3. It should be noted that dispersion relations Equation (21) are valid only at low
energies E � EP. In the last few years in a series of works [40–44] it has been demonstrated
that within the scope of GUP the high-energy generalization of Equation (21)—Modified Dispersion
Relations (MDRs)—is valid.

Specifically, in its most general form the Modified Dispersion Relation (Formula (9) in [44]) may
be given as follows:

p2 = f (E, m; lp) ' E2 − µ2 + α1lpE3 + α2l2
pE4 + O

(
l3
pE5
)

, (46)

where in the notation of [44] the fundamental constants are c = h̄ = kB = 1, f is the function that
gives the exact dispersion relation, and in the right-hand side the applicability of the Taylor-series
expansion for E � 1/lP is assumed. The coefficients αi can take different values in different
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quantum-gravity proposals. m is the rest energy of a particle, and the mass parameter µ in the
right-hand side is directly related to the rest energy but µ 6= m if not all the coefficients αi
are vanishing.

The general case of (MDRs) Equation (46) in terms of the considerations given in this section is
yet beyond the scope of this paper and necessitates further studies of the transition from low E� EP
to high E ≈ EP energies.

For now it is assumed that at low energies Equation (21) is valid to within a high accuracy,
whereas at high energies, i.e., for |Np| → 1, |NE| → 1, |Nt| → 1, Equation (21) should be replaced by
Equation (46). Besides, it is important that in this paper, as distinct from [40–44], the author uses the
simplest (earlier) variant of GUP [17–27], involving a minimal length but not a minimal momentum.

Also note that references [40–44] give not nearly so complete a list of the publications devoted to
GUP (and, in particular, MDR)—a very complete and interesting survey may be found in [41].

Remark 1.4. The papers [1,2] point to the fact that the resolved discrete theory is very close to
the initial continuous one (lmin = 0) at low energies E� EP, i.e., at |Np| � 1, |NE| � 1.

In what follows all the considerations are given in terms of “measurable quantities” in the sense
of Definition 2 given in this Section. Specifically, in Section 5 these terms are used to consider the
Momentum Representation for a quantum theory.

4. Space-Time Lattice of Measurable Quantities and Dual Lattice

So, provided the minimal length lmin exists, two lattices are naturally arising.

I. Lattice of the space-time variation—LatS−T representing, to within the known multiplicative
constants, the sets of nonzero integers Nw 6= 0 and Nt 6= 0 in the corresponding formulas from the
set Equations (34) and (45) for each of the three space variables w .

= x; y; z and the time variable t

LatS−T
.
= (Nw, Nt). (47)

Which restrictions should be initially imposed on these sets of nonzero integers?

It is clear that in every such set all the integers (Nw, Nt) should be sufficiently “close”, because
otherwise, for one and the same space-time point, variations in the values of its different
coordinates are associated with principally different values of the energy E which are “far” from
each other.

Note that the words “close” and “far” will be elucidated further in this text.

Thus, at the admittedly low energies (Low Energies) E � Emax ∝ EP the low-energy part
(sublattice) LatS−T [LE] of LatS−T is as follows:

LatS−T [LE] = (Nw, Nt) ≡ (|Nx| � 1, |Ny| �, |Nz| � 1, |Nt| � 1). (48)

At high energies (High Energies) E → Emax ∝ EP we, on the contrary, have the sublattice
LatS−T [HE] of LatS−T

LatS−T [HE] = (Nw, Nt) ≡ (|Nx| ≈ 1, |Ny| ≈ 1, |Nz| ≈ 1, |Nt| ≈ 1). (49)

II. Next let us define the lattice momenta-energies variation LatP−E as a set to obtain
(px(Nx,p), py(Ny,p), pz(Nz,p), E(Nt)) in the nonrelativistic and ultrarelativistic cases for all
energies, and as a set to obtain (Ex(Nx,E), Ey(Ny,E), Ez(Nz,E), E(Nt)) in the relativistic (but
not ultrarelativistic) case for low energies E � EP, where all the components of the above
sets conform to the space coordinates (x, y, z) and time coordinate t and are given by the
corresponding Formulas (33)–(45) from the previous Section.
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Note that, because of the suggestion made after formula Equation (38) in the previous Section, we
can state that the foregoing sets exhaust all the collections of momentums and energies possible
for the lattice LatS−T .
From this it is inferred that, in analogy with point I of this Section, within the known multiplicative
constants, we have

LatP−E
.
= (

1
Nw − 1

1/4Nw

,
1

Nt − 1
1/4Nt

), (50)

where Nw 6= 0, Nt 6= 0 are integer numbers from Equation (47). Similar to Equation (48), we
obtain the low-energy (Low Energy) part or the sublattice LatP−E[LE] of LatP−E

LatP−E[LE] ≈ (
1

Nw
,

1
Nt

), |Nw| � 1, |Nt| � 1. (51)

were Nw, Nt are integer numbers.

In accordance with Equation (49), the high-energy (High Energy) part (sublattice) LatP−E[HE] of
LatP−E takes the form

LatP−E[HE] ≈ (
1

Nw − 1
1/4Nw

,
1

Nt − 1
1/4Nt

), |Nw| → 1, |Nt| → 1. (52)

Considering Remark 1 from the previous Section, it should be noted that, as currently the
low energies E � Emax ∝ EP are verified by numerous experiments and thoroughly studied,
the sublattice LatP−E[LE] Equation (51) is correctly defined and rigorously determined by the
sublattice LatS−T [LE] Equation (48).

However, at high energies E → Emax ∝ EP we can not be so confident the sublattice LatP−E[HE]
may be defined more exactly.

Specifically, αa is obviously a small parameter. And, as demonstrated in [45,46], in the case of
GUP we have the following:

[~x,~p] = ih̄(1 + a1α + a2α2 + ...). (53)

But, according to Equation (18), |1/Na| =
√

αa, then, due to Equation (53), the denominators in
the right-hand side of Equation (52) may be also varied by adding the terms ∝ 1/N2

w, ∝ 1/N3
w...,∝

1/N2
t , ∝ 1/N3

t ..., that is liable to influence the final result for |Nw| → 1, |Nt| → 1.
The notions “close” and “far” for LatP−E will be completely determined by the dual lattice
LatS−T [LE] and by Formulas (34) and (45).

It is important to note the following.

In the low-energy sublattice LatP−E[LE] all elements are varying very smoothly enabling the
approximation of a continuous theory.

5. Measurable Quantities and Momentum Representation

For convenience, we denote the minimal length lmin 6= 0 by `.
Let us consider the above calculations using the formalism of the well-known work [28]. Then

GUP (Section 3.2 in [28]) has the following form:

[x, p] = ih̄(1 + βp2), (54)

where (β > 0) and

β =
`2

h̄2 . (55)
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In the form of Section 3 in the present work, Formula (7) from [28]

∆x∆p ≥ h̄(1 + β(∆p)2 + β〈p〉2) (56)

with regard to Equations (10), (15), (17) and (55) may be written as

h̄N∆x

(N∆x − 1
4N∆x )

≥ h̄(1 +
1

(N∆x − 1
4N∆x )

2
+

`2

h̄2 〈p〉
2). (57)

In the equality case this results in the following expression:

−h̄2(12N2
∆x + 1)

(4N2
∆x − 1)2`2

=
−h̄2

`2 (3 +
4

(4N2
∆x − 1)2

) = 〈p〉2. (58)

In this way at low energies E� EP, i.e., at |N∆x| � 1, 〈p〉2 is varying practically continuously.
Next, hereinafter we use the Formula (35) with the replacement of lmin = `, i.e., we have
N∆x = Np and

|pN | =
h̄

|Np − 1
4Np
|`

. (59)

We can write

ıh̄(1 + βp2) = ıh̄(1 +
`2

h̄2
h̄2

(Np − 1
4Np

)2`2
) = ıh̄(1 +

1
(Np − 1

4Np
)2
). (60)

Let us introduce the following symbols:

∆p pN = pN − pN+1; ∆−1
p ψ(pN) =

ψ(pN)− ψ(pN+1)

pN − pN+1
=

=
ψ(pN+1 + ∆p pN)− ψ(pN+1)

∆p pN
. (61)

Then we suppose that only in the classical dynamics variations of momenta (energies) have no
lower bounds and we have dp. At the same time, in a quantum dynamics, due to the limited spatial
domains, these variations have both upper and lower bounds.

In this case, as distinct from [28], in the theory there is a minimum variation of the momentum
∆pmin that within the scope of the measurability (Definition 2 in Section 3) takes the form

∆pmin ≡ p =
h̄
`

1
(N− 1

4N )
≈ h̄

`N
. (62)

As in Equation (61) at high |Np|, (|Np| � 1), ∆p pN = pN − pN+1 ∝ ( 1
Np
− 1

Np+1 ) =
1

Np(Np+1) , it
is clear that

Np(Np + 1) ≤ N or − 1
2
−
√
(

1
4
+ N) ≤ Np ≤ −

1
2
+
√
(

1
4
+ N). (63)

Considering that Np is an integer number and N� 1, it follows that

|Np| ≤ [
√

N]− 1 ≡ Ñ, (64)

where the square brackets [ ] in the right-hand side of Equation (64) denote an integer part of
the number.
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Next, due to Equations (60) and (61), an analog of Formulae (11) and (12) from [28] in the case
under study at low energies will be of the form

p.ψ(p)⇒ pNψ(pN) =
h̄

(Np − 1
4Np

)`
ψ(pN) ≈

h̄
Np`

ψ(pN),

x.ψ(p)⇒ x.ψ(pN) = ıh̄(1 +
1

(Np − 1
4Np

)2
)∆−1

p ψ(pN) ≈

≈ ıh̄(1 +
1

N2
p
)∆−1

p ψ(pN). (65)

The scalar product 〈ψ|φ〉 from [28]

〈ψ|φ〉 =
∫ +∞

−∞

dp
1 + βp2 ψ∗(p)φ(p) (66)

in the case of low energies 1� |N∆p| ≤ Ñ < ∞ is replaced by the sum

〈ψ|φ〉 =
∫ +∞

−∞

dp
1 + βp2 ψ∗(p)φ(p)⇒

⇒ 〈ψ|φ〉1�|Np |≤Ñ = ∑
1�|Np |≤Ñ

∆p(pN)ψ
∗(pN)φ(pN)

(1 + 1
(Np− 1

4Np )
2 )

≈

≈ ∑
1�|Np |≤Ñ

∆p(pN)ψ
∗(pN)φ(pN)

(1 + 1
N2

p
)

. (67)

And since |Np| � 1 is a variable, in fact pN is continuously varying and, proceeding from the
above formulae, we can assume that to a high accuracy the function φ(pN),(ψ∗(pN)) is differentiable
in terms of this variable.

On the other hand, at high energies, when for |Np| ≈ 1 the presentation is fairly discrete, the
scalar product Equation (66) is replaced by the sum

〈ψ|φ〉 =
∫ +∞

−∞

dp
1 + βp2 ψ∗(p)φ(p)⇒

⇒ 〈ψ|φ〉|Np |≈1 = ∑
|Np |≈1

∆p(pN)ψ
∗(pN)φ(pN)

(1 + 1
(Np− 1

4Np )
2 )

. (68)

We consider only two cases: (a) 1 � |Np| ≤ Ñ, “Quantum Consideration, Low Energies” and
(b) |Np| ≈ 1,“Quantum Consideration, High Energies”. The case (c)

Ñ� |Np| < ∞ (69)

is omitted in this Section as it is associated with the “Classical Picture”.
Then at all the energy scales 〈ψ|φ〉Np may be formally represented as follows:

〈ψ|φ〉Np = 〈ψ|φ〉1�|Np |≤Ñ + 〈ψ|φ〉|Np |≈1. (70)

However, with the formalism and terms proposed in this work, and also with the use of the
Formula (12) that in this case takes the form

(|Np| ≈ 1)→ (1� |Np| ≤ Ñ), (71)
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it seems more logical to consider the two components in Equation (70) separately, the first component
originating in the process of the low-energy transition from the second component as follows:

〈ψ|φ〉|Np |≈1
|Np |�1
⇒ 〈ψ|φ〉1�|Np |≤Ñ. (72)

Clearly, the first part of formula (13) from [28] holds as well in the general case for each of the
components Equation (70)

〈(ψ|p)|φ〉 = 〈ψ|(p|φ)〉 (73)

The second part of formula (13) from [28]

〈(ψ|x)|φ〉 = 〈ψ|(x|φ)〉 (74)

takes place (to a high accuracy) for the low-energy case 1 � |Np| ≤ Ñ < ∞, i.e., for the first
component in Equation (70).

Indeed, in this case, due to the condition |Np| � 1, we have

∆p pN ≈ dp; ∆−1
p ψ(pN) ≈ ∂pψ(pN)

or

lim
|Np |→∞,(Ñ→∞)

∆p pN = dp; lim
|Np |→∞,(Ñ→∞)

∆−1
p ψ(pN) = ∂pψ(pN). (75)

Then in this (low-energy) case there exists the analog of formula (15) from [28]

〈ψ|(x|φ)〉 = ∑
1�|Np |≤Ñ−1

∆p(pN)

(1 + 1
N2

p
)

ψ∗(pN)ih̄(1 +
1

N2
p
)∆−1

p (φ(pN)) =

= ∑
1�|Np |≤Ñ−1

∆p(pN)ψ
∗(pN)ih̄∆−1

p (φ(pN)) ≈

≈ 〈(ψ|x)|φ〉 = ∑
1�|Np |≤Ñ−1

∆p(pN)(ih̄∆−1
p ψ(pN))

∗φ(pN). (76)

It is important to note the following remarks:

(1) The operator x is defined in the case of low energies only for the functional space
φ(pN)1�|Np |≤Ñ−1. Really, because of the existence of the Formula (61), the extreme point Np, (such
that (Np + 1)(Np + 2) > N) “moves” this operator beyond the domain under study ∆pmin = p.
Therefore, replacing Np 7→ Np + 1, Np + 1 7→ Np + 2 in Formula (63), one can easily get the
estimate of Ñ− 1 instead of Ñ as seen in Equation (76).

(2) Despite the fact that the operator x is also defined at high energies, i.e., for φ(pN)|Np |≈1, in general
the property Equation (74) in this case has no place for lack of Formulae (75).

(3) In all the cases when we consider |Np| � 1 (low energies) the “cutoff” for some upper bound
pmax,(pmax � Ppl),1 � Npmax < |Np|, p 6= pmax is determined by the initial conditions of the
solved problem.

(4) It is clear that in the relativistic case ∆pmin = p leads to a minimal variation in the energy

|∆Emin| = (∆p)minc =
p
N

c. (77)

(5) In this work a minimal variation of the momentum ∆pmin has been introduced from the additional
assumptions but, as shown in [47], a minimal variation of the momentum may arise from the
Extended Uncertainty Principle (EUP) as follows:

∆xi∆pj ≥ h̄δij[1 + β2 (∆xi)
2

ł2
], (78)
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where l is the characteristic, large length scale l � lp and β is a dimensionless real constant
on the order of unity [47]. From Equation (78) we get an absolute minimum in the momentum
uncertainty

∆pi ≥
2h̄β

l
. (79)

In [48] GUP and EUP are combined by the principle called the Symmetric Generalized
Uncertainty Principle (SGUP):

∆x∆p ≥ h̄
(

1 +
(∆x)2

L2 + ł2
(∆p)2

h̄2

)
, (80)

where l � L and l defines the limit of the UV-cutoff (not being such up to a constant factor as in
the case of GUP).Then

∆xmin = 2l/
√

1− 4ł2/L2 = `,

whereas L defines the limit for IR-cutoff i.e., we have a

∆pmin = 2h̄/(L
√

1− 4ł2/L2).

(6) Of course, this paper is only the first step to resolve the Quantum Theory in terms of the
measurable quantities using Definition 2. It is necessary to study thoroughly the low-energy case
E � EP and the correct transition to high energies E ∝ EP. The author is planning to treat these
problems in his further works.

6. Gravity Markov’s Model in Terms of Measurable Quantities

This heuristic model was introduced in the work [49] at the early eighties of the last century.
This model already considered by the author in his previous paper [46] is treated from the standpoint
of the above-mentioned arguments. In [49], it is assumed that “by the universal decree of nature a
quantity of the material density $ is always bounded by its upper value given by the expression that
is composed of fundamental constants” ([49], p. 214):

$ ≤ $p =
c5

G2h̄
, (81)

with $p as “Planck’s density”.
Then the quantity

℘$ = $/$p ≤ 1 (82)

is the deformation parameter as it is used in [49] to construct the following of Einstein equations
deformation or ℘$-deformation (Formula (2) in [49]):

Rν
µ −

1
2

Rδν
µ =

8πG
c4 Tν

µ(1− ℘2
$)

n −Λ℘2n
$ δν

µ, (83)

where n ≥ 1/2, Tν
µ–energy-momentum tensor, Λ—cosmological constant.

The case of the parameter ℘$ � 1 or $� $p correlates with the classical Einstein equations, and
the case when ℘$ = 1—with the de Sitter Universe. In this way Equation (83) may be considered as
℘$-deformation of the General Relativity.

As shown in [46], ℘$-of Einstein equations deformation Equation (83) is nothing else but
α-deformation of GR for the parameter αl at a = l from Equation (13).

If $ = $l is the average material density for the Universe of the characteristic linear dimension l,
i.e., of the volume V ∝ l3, we have

℘l,$ =
$l
$p

∝ α2
l = ωα2

l , (84)
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where ω is some computable factor.
Then it is clear that αl-representation Equation (83) is of the form

Rν
µ −

1
2

Rδν
µ =

8πG
c4 Tν

µ(1−ω2α4
l )

n −Λω2nα4n
l δν

µ, (85)

or in the general form we have

Rν
µ −

1
2

Rδν
µ =

8πG
c4 Tν

µ(αl)−Λ(αl)δ
ν
µ. (86)

But, as r.h.s. of Equation (86) is dependent on αl of any value and particularly in the case αl � 1,
i.e., at l � `, l.h.s of Equation (86) is also dependent on αl of any value and Equation (86) may be
written as

Rν
µ(αl)−

1
2

R(αl)δ
ν
µ =

8πG
c4 Tν

µ(αl)−Λ(αl)δ
ν
µ. (87)

Thus, in this specific case we obtain the explicit dependence of GR on the available energies
E ∼ 1

l , that is insignificant at low energies or for l � ` and, on the contrary, significant at high
energies, l → `.

6.1. Low Energies, E� EP

1. Low energies. Nonmeasurable case. In this case at low energies, using Formula (13) in the limit
` = 0 for a = l, we get a continuous theory coincident with the General Relativity.

2. Low energies. Measurable case. In this case at low energies, using Formulas (13) and (18)
for ` 6= 0, for a = l (and hence for Nl � 1), we get a discrete theory which is a “nearly
continuous theory”, practically similar to the General Relativity with the slowly (smoothly)
varying parameter αl(t), where t—time.

So, due to low energies and momentums (E � EP, p � PPl), the “continuous case” 1 (General
Relativity) and the “discrete case” 2 that is actually a “nearly continuous case”.

6.2. High Energies, E ≈ EP

At high energies we consider the measurable case only. Then it is clear that at high energies the
parameter αl(t) is discrete and for the limiting value of αl(t) = 1 we get a discrete series of equations
of the form Equation (87) (or a single equation of this form met by a discrete series of solutions)
corresponding to αl(t) = 1; 1/4; 1/9; ...

As this takes place, Tν
µ(αl) ≈ 0, and in both cases 2 and Section 6.2 Λ(αl) is not longer a

cosmological constant, being a dynamical cosmological term.
Note that because of Formula (20) given in Section 3, √αl(t) in cases 2 and Section 6.2 is an

element of the lattice LatP−E from Section 4. And in case 2 it is an element of the sublattice LatP−E[LE],
whereas case 2 is associated with the sublattice LatP−E[HE].

It seems expedient to make some important remarks:

(1) In Formulae (71) and (72) of Section 5 in this work we have considered the transition

Quantum Theory in High Energies (QTHE)⇒
⇒ Quantum Theory in Low Energies (QTLE). (88)
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However, according to the modern knowledge, the (quantum) gravity phase begins only at very
high energies at Planck scales, i.e., the case (a) from Section 5 is inexistent, and hence it is more
correct to consider the transition

Quantum Theory in High Energies (QTHE)⇒
⇒ Classical Theory (Low Energies). (89)

And this corresponds to the case (c) that has been omitted from consideration in Section 5
Equation (69) with Ñ = 1

(|Np| ≈ 1)→ (1� |Np| < ∞). (90)

(2) Generally speaking, as Section 6.2 and case 2 in Section 6.1 are associated with measurable
cases for low energies and high energies, respectively, all the terms of the Equation (87):
Rν

µ(αl), R(αl), Tν
µ(αl), Λ(αl) must be expressed in terms of measurable quantities in view of

Definition 2 from Section 3. But this problem still remains to be solved. In fact, it is reduced to the
construction of the following “measurable” deformations in the sense of Definition 2 in Section 3
as follows:

lim
`→0

(Rν
µ(αl � 1), R(αl � 1), Tν

µ(αl � 1), Λ(αl � 1))→

→ (Rν
µ, R, Tν

µ , Λ) (91)

and

lim
(αl≈1)→(αl�1)

(Rν
µ(αl ≈ 1), R(αl ≈ 1), Tν

µ(αl ≈ 1), Λ(αl ≈ 1))→

→ lim
lmin→0

(Rν
µ(αl � 1), R(αl � 1)δν

µ, Tν
µ(αl � 1), Λ(αl � 1))→

→ (Rν
µ, R, Tν

µ , Λ). (92)

Here the first Equation (91) is a pure low-energy limiting transition from the measurable variant
of gravity to the nonmeasurable one (or from a discrete theory to a continuous theory), whereas
the second Equation (92) from the beginning is associated with the measurable transition from
high energies to low energies and then is coincident with the first one.

(3) It should be noted that in [1,2] in terms of measurable quantities, as an example, we have studied
gravity for the static spherically-symmetric horizon space. It has been shown that, “...despite
the absence of infinitesimal spatial-temporal increments owing to the existence of lmin and the
essential ‘discreteness’ of a theory, this discreteness at low energies is not ‘felt’, the theory in fact
being close to the original continuum theory. The indicated discreteness is significant only in the
case of high (Planck) energies ” [1]. The Markov model considered in this section represents the
generalization of the above-mentioned example. Of course, this model requires further thorough
investigation in terms of measurable quantities.

7. Conclusions

7.1. Measurable and Non-Measurable Transitions in Gravity

The illustration considered in the preceding Section (Gravity Markov’s Model) is universal
considering the following:
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First, using the formalism of this work, it is required to construct a measurable deformation of
the General Relativity (GR) at low energies (Formula (91)). This deformation is denoted in terms
of Grav[LE]`

Grav[LE]` `→0⇒ GR. (93)

Next, we should construct the high-energy deformation (denoted in terms of Grav[HE]`), this
time for Grav[LE]` (the first arrow in the Formula (92))

Grav[HE]`
αl→0⇒ Grav[LE]`. (94)

At the present time the majority of the proposed approaches to quantization of gravity are
associated with the construction of the following transition:

GR⇒Grav[HE]`. (95)

But, by the author opinion, this is impossible. It seems that for correct quantization of gravity
one needs reversal of the arrow from Equation (94)

Grav[LE]`(αl ≈ 0, αl 6= 0)
αl→1⇒ Grav[HE]`(αl ≈ 1). (96)

The above results indicate that the low-energy “measurable” gravity variant Grav[LE]` should
be very close to GR but different at the same time.

The author is hopeful that the correct construction of a low-energy Grav` close to GR allows for
a more natural transition to quantum (Planck) gravity. Besides, within the notion of measurability,
gravity could be saved from some odd solutions, from wormholes in particular.

7.2. Measurable and Non-measurable Transitions in Quantum Theory

The situation is similar for a quantum theory too. In the general case, based on the
parameter αa (Formula (18) of Section 3), this means that there exists the following correct limiting
high-energy transition:

lim
` 6=0,|Na |�1

αa
High Energy⇒ lim

` 6=0,|Na |≈1
αa (97)

and there is no correct limiting high-energy transition

lim
`=0

αa
High Energy⇒ lim

` 6=0,|Na |≈1
αa. (98)

The first of them corresponds to the transition from a measurable theory at low energies to a
measurable theory at high energies

QT[LE]` Na→1⇒ QT[HE]`. (99)

whereas the second

QT Na→1⇒ QT[HE]` (100)

(here QT[LE]`, QT[HE]`, QT are quantum theories with the minimal length ` 6= 0 at low energies
E� Ep, at high energies E ≈ Ep, and the well-known (continuous) quantum theory with lmin = 0).

However, the whole theoretical physics, where presently at low energies E � EP the minimal
length ` is not involved at all (i.e., lmin = 0), is framed around a search for the nonexistent limits
Equation (98) (correspondingly Equation (100)).
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Of course, in this case the low-energy “measurable” variant QT[LE]` of QT by its results will
be very close to the initial theory QT, as indicated in [1,2], and Section 5 of the present work. But
these theories are different by nature: the first of them is discrete and the second one is continuous.
Nevertheless, it is clear that the main requirement in this case is associated with the “Compatibility
Principe”:

at low energies the resolved variant QT[LE]` must, to a high accuracy, represent the well-known approved
results of the corresponding continuous theory QT.

These theories should be differing considerably at least on going to high energies E ≈ Ep.
The hypothesis set by the author is that correct construction of the “measurable” transition to

high energies (Formula (99)) should naturally lead to solution of the ultraviolet divergences problem
(initially in terms of the finite measurable quantities).

7.3. Summary of Sections 7.1 and 7.2 is Such [2]

1. When in the theory the minimal length lmin 6= 0 is actualized (involved) at all the energy
scales, a mathematical apparatus of this theory must be changed considerably: no infinitesimal
space-time variations (increments) must be involved, the key role being played by the definition
of measurability (Definition 2 from Section 3).

2. As this takes place the theory becomes discrete at all the energy scales but at low energies (far
from the Planck energies) the sought for theory must be very close in its results to the starting
continuous theory (with lmin = 0). In the process a real discreteness is exhibited only at high
energies which are close to the Planck energies.

3. By this approach the theory at low and high energies is associated with a common single set of the
parameters (NL from Formula (10)) or with the dimensionless small parameters (1/NL =

√
αL)

which are lacking if at low energies the theory is continuous, i.e., when lmin = 0.

The principal objective of my further studies is to develop for quantum theory and gravity,
within the scope of the considerations given in points 1–3, the corresponding discrete
models (with lmin 6= 0) for all the energy scales and to meet the following requirements:

4. At low energies the models must, to a high accuracy, represent the results of the corresponding
continuous theories.

5. The models should not have the problems of transition from low to high energies and, specifically,
the ultraviolet divergences problem. By author’s opinion, the problem associated with points 4
and 5 is as follows.

6. It is interesting to know why, with the existing lmin 6= 0, tmin 6= 0 and discreteness of nature, at low
energies E� Emax ∝ EP the apparatus of mathematical analysis based on the use of infinitesimal
space-time quantities (dxµ, ∂ϕ

∂xµ
, and so on) is very efficient giving excellent results. The answer is

simple: in this case lmin and tmin are very far from the available scale of L and t, the corresponding
NL � 1, Nt � 1 being in general true but insufficient. There is a need for rigorous calculations.
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