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Abstract: This study proposes mathematical models for functional differentiations that are viewed as
self-organization with external constraints. From the viewpoint of system development, the present
study investigates how system components emerge under the presence of constraints that act on a
whole system. Cell differentiation in embryos and functional differentiation in cortical modules are
typical examples of this phenomenon. In this paper, as case studies, we deal with three mathematical
models that yielded components via such global constraints: the genesis of neuronal elements, the
genesis of functional modules, and the genesis of neuronal interactions. The overall development of
a system may follow a certain variational principle.
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1. Introduction

In this study, we propose a theory for the differentiation of system components (i.e., elements)
caused by a constraint that acts on a whole system. We describe three mathematical models
for functional differentiation in the brain; the first model for the genesis of neuron-like excitable
components, the second for the genesis of cortical modules, and the third for the genesis of neuronal
interactions, thereby emphasizing the importance of constrained dynamics of self-organization.

First, let us briefly review the conventional theory of self-organization. Here, we will omit the
long-term discussions regarding the significance of self-organization that occurred in the fields of
philosophy and social sciences. We will describe only the phenomena and theories of self-organization
in the areas of natural science and engineering. As far as we know, such studies of self-organization
started, in association with the movement of cybernetics that took place between 1940 and 1950, in
which the theory of self-organization developed in the construction of control theory [1]. For example,
Ashby proposed the principle of the self-organizing dynamic system [2], in which a dynamic system
is a different concept from an (autonomous) dynamical system, in the sense that the former includes
input, whereas the latter has no input, in particular, situations of input changes are treated only as
bifurcations in a family of dynamical systems. He stated that the asymptotic state of any deterministic
dynamic system is an attractor, where each subsystem interacts with other subsystems that play a
role in the environment of such a subsystem, thus forming a controlled overall system. Von Foerster
proposed the principle of order out of noise, emphasizing the importance of random fluctuations for
producing a macroscopic-ordered and controlled motion [3].

Entropy 2016, 18, 74; doi:10.3390/e18030074 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://www.mdpi.com/journal/entropy


Entropy 2016, 18, 74 2 of 13

From the 1960s to the 1980s, the appearance of two scientific leaders in physics and chemistry,
i.e., Haken and Prigogine led to the scientific revolution of self-organization in far-from-equilibrium
systems. Those scientists faced the challenge of constructing theories for nonequilibrium statistical
physics and nonequilibrium thermodynamics, respectively, in which “nonequilibrium” meant “far
from equilibrium”. In fact, Prigogine extended thermodynamics to the area of nonlinear and
far-from-equilibrium systems in terms of the variational principle of entropy production minimum [4].
Because energy dissipation is a prerequisite in far-from-equilibrium systems, the concept of entropy
flow associated with energy dissipation should be introduced. In this respect, the entropy production
σ is defined as the sum of the change in the internal entropy of the system in question and the outflow
of the entropy from the system to the environment, as follows:

σ “
dSint

dt
` JSout (1)

Another significant approach was taken by Haken regarding the extension of equilibrium phase
transitions to far-from-equilibrium systems, thus introducing the slaving principle [5]. In fact, Haken
extended the Ginzburg–Landau (GL) formula to far-from-equilibrium and multicomponent systems;
the original GL equation is given in the form of the equation of motion of order parameter D (see [5]
for more details):

BD
Bt
“ αD´

W
2
|D|2D (2)

Many modes appear in each bifurcation point, which corresponds to the critical point of phase
transition; however, a few modes enslave the many other modes, which implies the appearance of
order parameters out of fluctuations. Therefore, the slaving principle extends the center manifold
theorem in bifurcation theory to systems with noise [6]. However, the slaving principle does not hold
in the appearance of chaos; thus, it is applicable to the index of chaotic motion.

The occurrence of macroscopic-ordered motion via cooperative and/or competitive interactions
between the microscopic components of the system, namely atomic or molecular level interactions,
is a characteristic of the self-organizing phenomena that are addressed by these theories. In other
words, the theories mentioned above treat the manner via which spatiotemporal patterns emerge as
macroscopic-ordered states from microscopic random motion under far-from-equilibrium conditions.
They succeeded in describing the phenomena, for example, of target patterns, spiral patterns,
propagating waves, periodic and chaotic oscillations in chemical reaction systems (such as the
Belousov–Zhabotinsky system), hydrodynamic systems (such as the Bénard thermal convection
system and the Taylor–Quette flow system), and optical systems (such as the laser oscillations system).

Another aspect may be highlighted when considering typical communication problems, as
the brain activity in each communicating person may change according to the purpose of the
communication (see, for example, [7–10]). It seems that this aspect can be formulated within
a framework of functional differentiation in which the functional elements (or components, or
subsystems) are produced by a certain constraint that acts on the whole system [11–13]. In fact, the
functional differentiation of the brain occurs via not only genetic factors, but also dynamic interactions
between the brain and the environments [14–17]. Pattee [18] discriminates constraints from dynamics.
He stated that dynamics occurs via interactions of elements of the systems and also via external forces,
whereas a constraint is given intentionally by the outside of the system, thereby controlling the system
dynamics. Furthermore, he introduced a conceptual test to discriminate dynamics from constraints in
terms of the rate dependence and the rate independence, respectively. In this respect, here, we use
the term, constraints in a sense that is similar to that of Pattee. In neonatal and successive periods of
development, an individual brain experiences structural and functional differentiation, which can be
promoted by environmental factors such as the intentions and actions of surrounding people, as well
as physical stimuli, such as object patterns. These intentions and actions, which convey a part of the
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environmental meaning, can become constraints of self-organization of neural dynamics in individual
brains. Conversely, physical stimuli can be treated as time-dependent inputs (see, Equation (3)).

Based on these ideas of constraints, we will introduce constraints, by which the system dynamics
is optimized. Let pφ, Ω) be a dynamical system, where Ω is a m-dimensional state space or phase space
and φ is a flow or a group action acting on the space Ω. Let x be a state variable defined in Ω. Then, a

dynamical system can be represented by the equations of motion:
dx
dt
“ f pxq , where t is a parameter

defined outside the space Ω, which is usually interpreted as time, and f is a dynamical law or a
vector field. A dynamical system may possess other parameters called bifurcation parameters, which
can be controlled from outside, and those bifurcation parameters indicate environmental conditions,
which should be viewed as being different from constraints [19]. Then, the equations are rewritten as
dx
dt
“ f px; λq , including the bifurcation parameters, thus representing a family of dynamical systems.

However, the system that we wish to consider here should include environmental variables, which
may have a feedback from the system variables, thus expressed as Gpx, tq. The feedback may happen
via system order parameters (see, for example, [19]), or constraints. A possible formulation is given by
Equations (3) and (4).

dx
dt
“ f px, λq ` G px, tq (3)

under the given constraint, A, which denotes the intention of the outside. In particular, here we consider
the restricted cases of the constraint to integrable functions, such as certain information quantities,
which are supposed to be derived from intention. If this supposition is allowed, an overall formula
can be provided by the variational principle:

δL “ δ

T
ż

0

tA ` µp
dx
dt
´ f px, λq ´ G px, tqqudt “ 0 (4)

where µ is a Lagrange multiplier. In usual mechanics with a physical constraint such as the movement
of a ball on a playground slide, a Lagrange multiplier is introduced to allow a particle to move along
such a boundary. However, in the case of optimal control problems, a Lagrange multiplier can be
introduced to satisfy a dynamical system with external inputs, and variations can be adopted to
optimize the external constraint A under the restriction of the dynamics given by Equation (3) [20,21].
Thus, a Lagrange multiplier may be a function not only of a state variable x, but also of its rate

.
x and

time t, and equations of motion of such a multiplier may be derived. In the present paper, we use the
maximum transmission of information as a constraint. In relation to the present approach, in the recent
development of a synergetic computer, Haken and Portugali [22] introduced the notion of information
adaptation to realize pattern recognition based on pattern formation in synergetic networks using
attention parameters as a constraint.

It should be noted that in the self-organization process, in addition to the constrained dynamics
in the sense mentioned above, various types of synaptic learning may take place, such as Hebbian
learning and winner-take-all algorithms. These learning algorithms may provide internal constraints
to the dynamics. This type of internal constraints is supposed to be contained in the dynamics given
by Equation (3). A typical internal constraint to the neural dynamics was intensively investigated by
von der Malsburg in studies of self-organization of orientation-sensitive cells in the primary visual
cortex [23]. In the model, decisive effects on the neural differentiation of orientation specificity may
be provided by a synaptic constraint: for each neuron the total strength of synaptic couplings is kept
constant, the internal constraint of which may be reasonable when considering the case of almost the
same quantity of nutrition supplied to each neuron in a spatially uniform circumstance. Furthermore,
Kohonen invented the self-organizing map (SOM), with at least two different subsystems: one is a
competitive neural network with a winner-take-all algorithm and the other called a plasticity-control
subsystem, which produces feature-specific differentiation of input data [24]. Amari also developed
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a mathematical model for topographic mapping by introducing a generalized Hebb synapse, a
plasticity of inhibitory interneurons as well as excitatory neurons and competitive neural networks
by mutual inhibition [25]. Thus, competitive neural networks impose a local constraint on the
activity of elementary neurons, thereby enhancing the feature differences of input data, which
gives rise to differentiation. In addition to the neural systems, a similar differentiation triggered
by internal constraints has been observed in bacterial populations and was simulated by its theoretical
models [26,27]. In these studies, Kaneko and Yomo, and Furusawa and Kaneko, found that fluctuations
are enhanced to realize cell differentiation by cell divisions, which are triggered by an internal
constraint, such as keeping the total nutrition in each cell constant.

Based on these aspects, different features of self-organization from a typical macroscopic pattern
formation formulated by, for instance, coupled dynamical systems and reaction-diffusion systems
may exist (see Figure 1). In this paper, we propose mathematical models that show the differentiation
of system components from a constraint acting on a whole system, i.e., at the macroscopic level.
In our model study, a genetic algorithm was used for the computation of the development of
both the interactions and the states of the dynamical systems. In this computational process, a
maximum transmission of information constraint was applied as a “variational” principle to operate
the development of the system. In the subsequent sections, we will show the computational results
of our mathematical models for neural differentiation, and will review (with some comments) a
mathematical formula for ephaptic couplings, which may provide a possible neural mechanism of
self-consistent dynamics with constraints.
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Figure 1. (a) A typical feature of the emergence of order parameters at the macroscopic level via
interactions between elementary units at the microscopic level; (b) Another feature of self-organization,
which promotes the emergence of components or subsystems at the microscopic or mesoscopic level
via constraints at the macroscopic level. In this paper, we treat this type of feature of self-organization.

2. Mathematical Model for the Differentiation of Neurons

To elucidate the neural mechanism underlying the genesis of neurons, we have tried to generate
a mathematical model of the differentiation of neurons in terms of the development of dynamical
systems under a constraint [28,29]. As a case study, we used the one-dimensional map given by
Equation (5), which is viewed as an elementary unit of the system.

x pt` 1q “ tanh pγ1 px ptq ´ α1 qq ´ωtanh pγ2 px ptq ´ α2qq ` J (5)

where x P p´8,8q is a state variable, t is a discrete time step, and the parameters
γi pi “ 1, 2q , αi pi “ 1, 2q , ω, and J are real numbers.
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The total system computed here is constituted by the unidirectional nearest neighbor coupling
of these units, but can be extended to include feedback couplings. We show in this paper only the
computation results of the case of unidirectional couplings with an open boundary condition. Input
time series are added to this system. Then the coupled system is described by Equation (6).

xpiqpt` 1q “ tanhpγ1pxpiqptq ´ α1 qq ´ωtanhpγ2pxpiqptq ´ α2qq ` dpxpi´1q ´ xpiqq (6)

where xpiqptq denotes the state of the i-th unit at time t, d is the coupling strength (which was kept
constant in each simulation).

We adopted a genetic algorithm for these networks, with an external input. We used a chaotic
time series as the external input. Because bifurcation parameters of dynamical systems are provided as
environmental variables that are kept constant during the state changes of dynamical systems, a set
of these parameters pγ1, γ2, α1, α2, ω, Jq is viewed as a “gene” of the dynamical system in question.
In this model, as an external constraint, we used the maximum transmission of information of input
data to all units of the coupled system. In the present model, the external constraint A in Equation (4)
changes in time much slower than the system dynamics itself.

Then, for each network, we calculated the time-dependent mutual information [30] between the
input chaotic time series and the time series of each structural unit of the network. The time-dependent
mutual information between input time series g ptq and i-th unit is defined in the following way.

Ipg ptq ; xpiqptqqptq “ ´
ÿ

k

p pkq logp pkq `
ÿ

l, k pplqpptqpk{lqlogpptq pk{lq (7)

where k denotes a state of xpiqptq and p(k) represents a stationary probability of xpiqptq, l denotes a state
of the input time series g ptq, and pptqpk{lq is a conditional probability of xpiqptq taking a state k at t
time steps after g ptq taking a state l. In general, mutual information between two states calculates the
information shared between these states. Thus mutual information does not necessarily imply the
transmitted information. However, in the unidirectionally coupled system with inputs, such as the
present system, shared information calculated by mutual information includes mainly the information
transmitted from one to the other.

Then, we recorded its maximum value over time, and a maximum value over units. Subsequently,
in the genetic algorithm, we adopted a copy, crossover, and mutations for the above-mentioned
set of parameters pγ1, γ2, α1, α2, ω, Jq, and followed by the selection of a dynamical system that
allowed more information transmission compared with the previous step of the development. The
coupling strength was fixed over all simulations. However, depending on the coupling strength, the
computational results were classified as three types of information channels in the following way.

(a) The case of strong couplings

A dynamical system that was constructed using a constant function was finally selected (see
Figure 2a). This type of dynamical system possesses a single stable fixed point. Any external signals
were successfully transmitted over all elementary units of the network without any deformation. Thus,
this type of network can be viewed as a static channel.

(b) The case of intermediate strength couplings

An excitable dynamical system that was constructed using a step function was finally selected
(see Figure 2b). This type of dynamical system possesses three fixed points: one is stable and the other
two are unstable. One of the unstable fixed points plays a role as a threshold in the sense that if the
initial condition is set below the threshold, a dynamical trajectory is monotonously attracted to the
stable fixed point; otherwise, it is attracted to this point only after a dynamical trajectory experiences a
large excursion around another unstable fixed point. Thus, the stable fixed point can be viewed as an
equilibrium membrane potential, and the large excursion of the dynamical trajectory can also be viewed
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as a transient impulse. Furthermore, the latter type of dynamical trajectory can overshoot the stable
fixed point after a large excursion, and is then attracted to the fixed point. Therefore, this excitable
dynamical system can be viewed as an active channel, such as those observed in conventional neurons.

(c) The case of weak couplings

An oscillatory dynamical system was finally selected (see Figure 2c). In the present model, this
type of dynamical system possessed a period two periodic trajectory. Thus, it can be viewed as an
oscillatory neuron.Entropy 2016, 18, 74 6 of 13 
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The evolution model treated here was restricted to a certain subspace of functional space, which
spanned only a restricted functional space, even compared with polynomials. However, it seems
to be reasonable to propose the present model as showing rather universal characteristics, despite
this restriction. One explanation for this observation is that eventually evolved dynamical systems
are optimal to produce weak chaotic behaviors in the overall dynamics of coupled systems, such as
allowing effective information transmission, regardless of coupling strength. The other explanation
is that dynamical systems constructed using polynomial functions cannot survive under the present
constraint as their coupled systems cannot transmit information of dynamically changing input
because of the extremely narrow parameter range that allows an effective transmission of input
information. One can extend the present model further to develop the dynamics in wider functional
subspace; however, this is associated with several technical problems, such that it is not easy to define
automatically the domain of definition that is necessary to restrict the overall dynamics in a certain
finite domain.

In the present model, which was constructed using a coupled one-dimensional map, the
elementary unit of the overall system was a one-dimensional map. The present simulations showed an
evolution dynamics in which the dynamical law in each elementary unit was changed according to
the external constraint, such as the maximum transmission of the input information. The dynamical
system finally selected was an excitable map or oscillatory map, with the exception of a trivial case. The
simulation results may provide an explanation for the generation of excitable or oscillatory systems,
such as neurons in biological evolution.

3. Mathematical Model for the Differentiation of Cortical Modules

In this section, we describe a mathematical model that produced distinct modules from
probabilistically uniform modules because of the symmetry breaking caused by the appearance
of chaotic behaviors. In the proposed mathematical model, a phase model of oscillators was used as
an elementary unit of the system; however, we show that these elementary units do not necessarily
evolve as functional units. This study aimed at elucidating the neural mechanism underlying the
functional differentiation of cortical areas which are known as Brodmann’s areas [31], and consists of
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about 10,000 functional modules [32,33]. It is well known that the mammalian neocortex consists of
almost uniform modules, each of which contains about 5,000 excitatory pyramidal neurons and several
kinds of inhibitory neurons. In spite of this uniformity, cortical modules have distinct functions; hence,
it is highly probable that functional differentiation is caused by the presence of asymmetric couplings
between modules. Such cortical asymmetric couplings possess the following generic characteristics:
ascending couplings project from superficial layers, such as layers I–III, to a middle layer, such as layer
IV, whereas descending couplings project from deep layers, such as layers V and VI, to both superficial
and deep layers [34].

To observe the process described above, we constructed a mathematical model for the structural
differentiation of two modules, consisting of a number of units that is assumed to be uniform in a
probabilistic sense [35]. In fact, before the development of the modules, the coupling probabilities
between units within each module and between modules were determined randomly, so that the
system was viewed as simply one module at the beginning of the development. For the sake of
brevity, we formally divided the system into two probabilistically identical modules and observed
the formation of feature differences of couplings between elementary units. We adopted a Weyle
transformation as a unit, and the couplings were provided by the sinusoidal function, which is similar
to a discrete time version of the Kuramoto model [36], as follows:

θ
pi,kq
t`1 “ ωpi,kq ` θ

pi,kq
t `

α

Npc

ÿ

pj,lqPGpi,kq

sin
´

θ
pj,lq
t ´ θ

pi,kq
t ´ ψ

ij
kl

¯

` σββ
pi,kq
t (8)

for the k-th unit in the ith modules. Here, ψ is assigned one of four possible values
"

0,
π

2
, π,

3π

2

*

randomly, according to the probabilities, and β denotes Gaussian noise and σβ is the strength of the
Gaussian noise. Moreover, α is the coupling strength of units, N is the total number of units, and pc is
the overall coupling probability of units, i.e., the ratio of coupled units to the total number of units.
In this model, as an external constraint, we used the maximum transmission of information. In the
present model, the external constraint A in Equation (4) changes in time much slower than the system
dynamics itself.

Then, by changing these probabilities, the product of transfer entropies defined by Equations (9)
and (10) was calculated, and the system with the maximum product of transfer entropies was selected
at each stage of the development.

T ” TΘp1qÑΘp2q ¨ TΘp2qÑΘp1q (9)

TXÑY pτq “ H pY pt` τq|Y ptqq ´ H pY pt` τq|Y ptq , Xptqq (10)

where H(A|B) denotes the conditional entropy of A under the condition of B.
During the development of the system, we fixed the overall coupling probability of units,

the number of units, and the additive Gaussian noise, whereas other coupling probabilities and
probabilities for the phase shift, ψ, in the coupling terms were subjects for change. A set of these
changeable parameters was viewed as a gene in the genetic algorithm. Subsequently, we observed the
differentiation of the physical properties of modules, as follows. In one module, say module 1, most
couplings were in phase, although other coupling types remained; in contrast, in the other module, say
module 2, all surviving couplings were in phase. All the couplings from modules 1 to 2 were in phase,
whereas the opposite direction of couplings was antiphase. The number of couplings from modules
1 to 2 was much larger than that observed for the opposite direction of couplings. The final form of
differentiation is evolutionally stable in the sense that the system may evolve in a similar way and
reach the same selected states as long as the present fixed values of parameters or varieties of fixed
parameters are not changed. For example, the dynamics that were finally selected could change if some
of the fixed parameters were changed after the evolution dynamics once became stable. Furthermore,
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it is expected that the number of elementary units in each module and the number of modules itself
will change under the presence of input data. This problem will be the subject of future studies.

These computational results imply the appearance of a hierarchical structure of modules: module
1 governs module 2, i.e., module 1 for upper layers and module 2 for lower layers (see Figure 3). This
implication comes from another observation in synergetics; that slaving modes behave cooperatively
to form a few order parameters and slaved modes do not behave in such a way, showing more varieties
of interactions [5,6]. Thus, the developed system may express a conscious mind for module 1 and a
more unconscious mind (which might play a role in the direct interaction with the environment) for
module 2. In other words, modules 1 and 2 may behave like higher and lower levels of functional
units of the brain-body complex, respectively.
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We also investigated the overall dynamics of the coupled module system. To observe the
macroscopic dynamics, we defined two order parameters in the following way:

Rpiqptqexp
´?
´1Θpiqptq

¯

“
1
N

N
ÿ

k“1

exp
´?
´1θ

pi,kq
t

¯

(11)

Φ ptq “ Θp2q ptq ´Θp1q ptq pmod2πq (12)

Here, phase coherence, Rpiq ptq and mean phase, Θpiq ptq, can be order parameters, although we
used the relative mean phase defined by Equation (12) instead of a mean phase in each module.
The dynamics observed via these order parameters showed weak “chaotic” behaviors, but included
extremely slow oscillations, which covered periods of the order of a few seconds, compared with
the time scale of around 200 ms of fundamental coherent oscillations. Similar slow oscillations of a
period of a few seconds have been observed in the hippocampal CA1 of rats in several sleeping and
running states [37]. Another similar interesting behavior has been observed in the dynamics of the
default mode network, although such a time scale of modulation spanned around 20 min [38]. A
typical functional differentiation via structural differentiation is observed in the hippocampus [39]: in
reptiles, the hippocampus consists of unstructured, probabilistically uniform couplings of small and
large neurons, whereas the hippocampus of mammals consists of mainly differentiated CA1 and CA3
areas. Compared with uniform couplings, the CA3 area possesses recurrent connections, whereas the



Entropy 2016, 18, 74 9 of 13

CA1 area receives synaptic connections from the CA3 and sends its axons to other areas in the limbic
systems and to the neocortex, rather than back to the CA3.

4. Redefined Neural Behaviors via Ephaptic Couplings: A Tractable System Governed by
Self-Organization with Constraints

The two mathematical models described in Sections 2 and 3 provide a possible neural mechanism
by which components, or subsystems emerge via a constraint operating on a whole system. For the
systems described above, only numerical studies have been conducted. The following mathematical
model of ephaptic couplings between neurons represents an example of a similar system with more
definite descriptions of the structure of the system in terms of the Fredholm condition. Moreover, a
study of neural systems with ephaptic couplings reveals the importance of the role of neural fields in
the formation of functional components that are not necessarily identified with the elementary units of
self-organizing systems [40–42]. For example, a neuron can be an elementary unit in a neural system,
but may not become a functional unit, as functional units may be formed in a structure with a larger
size, e.g., in cell assemblies [42].

Markin provided a model for the ephaptic coupling between two identical neurons based on the
equivalent electric circuit that presents such a physical coupling, as follows [43]:

r2 ` r3

γ

B2V1

Bx2 ´ c1
BV1

Bt
“ jion1 `

r3

γ

B2V2

Bx2 (13)

r1 ` r3

γ

B2V2

Bx2 ´ c2
BV2

Bt
“ jion2 `

r3

γ

B2V1

Bx2 (14)

where V1 and V2 denote the membrane potentials of two neurons, respectively; r1 and r2 are the
resistivity of these neurons; r3 is the ionic resistivity of the external medium; γ “ r1r2 ` r2r3 ` r3r1;
c1 and c2 are the capacitance; jion1, and jion2 are the ionic currents; and t and x denote time and space
variables, respectively. Because the two neurons are assumed to be identical, we set r1 “ r2 and c1 “ c2.

In the following equations, we provide an essential part of the formulation, according

to Scott [44]. The coupling constant can be expressed as α ”
r3

r1 ` r3
“

r3

r2 ` r3
. Simple

calculations of the coefficients in Equations (13) and (14) with r1 “ r2 lead the following equations:
r1 ` r3

γ
“

r1 ` r3

tr1 pr1 ` r3q ` r1r3u
“

1
r1
p

1
1` α

) and
r3

γ
“

1
r1
p

α

1` α
). The rewriting of Equations (13) and

(14) yields the following equations:

1
1` α

B2V1

Bx2 ´
α

1` α

B2V2

Bx2 ´ r1c1
BV1

Bt
“ r1 jion1 (15)

1
1` α

B2V2

Bx2 ´
α

1` α

B2V1

Bx2 ´ r1c1
BV1

Bt
“ r1 jion2 (16)

Without loss of generality, changing the time scale as
t

r1c1
Ñ t brings the coefficients of time

derivatives in Equations (15) and (16) to one. We used f pVkq “ rk jion k (k = 1, 2), as rk jion k has
a dimension of voltage that indicates the membrane potential of each neuron. By expanding the
abovementioned coefficients in terms of α under the assumption that α is small, we obtain the
following equations up to the first order of α.

p1´ αq
B2V1

Bx2 ´ α
B2V2

Bx2 ´
BV1

Bt
– f pV1q (17)

p1´ αq
B2V2

Bx2 ´ α
B2V1

Bx2 ´
BV2

Bt
– f pV2q (18)
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Let us assume the existence of two traveling waves that are moving synchronously at two leading
edges, expressed as:

Vk px, tq “ Vk pzq “ Vk px´ vtq , k “ 1, 2 (19)

Here, we performed the transformation of the variables: z “ x ´ vt. Then, we obtained the
following equations by replacing partial derivatives with respect to x and t with a derivative with
respect to the single variable z:

p1´ αq
d2V1

dz2 ´ α
d2V2

dz2 ` v
dV1

dz
“ f pV1q (20)

p1´ αq
d2V2

dz2 ´ α
d2V1

dz2 ` v
dV2

dz
“ f pV2q (21)

For a sufficiently small α, we expanded the equations in terms of powers of α such as
Vk “ Vk0 ` αVk1 ` α2Vk2 ` ¨ ¨ ¨ pk “ 1, 2q, and v “ v0 ` αv1+α2v2+¨ ¨ ¨ . We substituted these power
series expansion for Vk pk “ 1, 2q and v in both Equations (20) and (21), and equated the terms of the
same order of powers of α.

For the zeroth-order equation, we obtained:

d2Vk0

dz2 ` v0
dVk0
dz

“ f pVk0q pk “ 1, 2q (22)

which can be solved if the functional form of f is explicitly given.
For the first-order equation, we obtained:

d2Vk1

dz2 ` v0
dVk1
dz

´ f 1 pVk0qVk1 “
d2V10

dz2 `
d2V20

dz2 ´ v1
dVk0
dz

pk “ 1, 2q (23)

These equations can be written in the following way, using the differential operators, L1 and L2:

L1V11 “ F1 pV10, V20 , v1q (24)

L2V21 “ F2pV10, V20 , v1 q (25)

We introduced the adjoint operator L` of the differential operator L, which is defined by
pLu, wq “ pu, L`w), where (x, y) denotes an inner product of x and y that is defined by the integral
under the condition that upzq, wpzq Ñ 0 as z Ñ8 . Taking partial integration of the integral pLu, wq
under the conditionthat upzq, wpzq Ñ 0 as z Ñ8 , this adjoint operator is explicitly expressed as:

Lk
` “

d2

dz2 ´ v0
d
dz
´ f 1 pVk0q (26)

In this model, as an external constraint, we demanded the existence of travelling waves. Therefore,
the external constraint A in Equation (4) will be the following Fredholm conditions.

The solvability condition, i.e., the Fredholm condition, of the equations of motion is provided by:

8
ż

´8

gkFkdx “ 0 (27)

for gk pzq such as Lk
`gk pzq “ 0 with gk pzq “ 0 as z Ñ8 .

In other words, the interaction terms given by the right-hand sides of the equations of motion,
Equations (24) and (25), must be orthogonal to the null space of the adjoint operator, thereby allowing
traveling waves. In the context of the selective development of dynamical systems mentioned above,
the interactions cannot be free; rather, they must change to satisfy the constraint of the solvability
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condition. Thus, each neuronal equation must change to subserve this constraint of the neural
interactions. The constraint of this case may stem from the demand or intention of the outside that
traveling wave solutions should exist in this interacting system. This example shows how the dynamics
of neural subsystems change according to the change in interactions caused by constraints that act
on a whole neural system. The mathematical formulation of the generation of components under
constraints that act on a whole system may also possess a structure that is similar to that of the
present formulation.

5. Summary and Discussion

We described the dynamics of functional differentiation by investigating three mathematical
models of self-organization with external constraints. We obtained the distinct characteristics of
self-organization behaviors that appeared in the genesis of neuronal components, such as neurons and
cortical modules. In Section 2, we showed numerically the dynamic behaviors of the emergence of
neuronal components in the evolutionary development of unidirectionally coupled dynamical systems.
In Section 3, we also showed numerically the emergence of functional modules caused by symmetry
breaking in randomly coupled neural networks. The numerical results obtained from these models
may lead to a neural mechanism of functional differentiation. An overall dynamics was identified that
exhibited weak chaotic behaviors, including chaotic itinerancy (see, for example, [45] for neural chaotic
itinerancy), as well as showing chaotic transitions between synchronization and desynchronization [46].
Such specific transitions, which have been observed in neural systems and were typically described
by Gray et al. [47], may represent one of the fundamental dynamic processes that underlie cognitive
behaviors in terms of the correlation principle [48]. This principle was proposed by Singer [48] based
on his finding of coherent neural oscillations. The clarification of the relationship between cortical
coherent oscillations and constrained dynamics, as treated in this paper, will be very valuable.

In these evolution processes, we used a variational principle, such as the selection of dynamical
systems that allows the maximum transmission of information: conditional mutual information
or transfer entropy. A similar dynamical development has been addressed in other texts: neural
Darwinism by Edelman [49] and optimum free energy by Friston [50]. Finally, we discussed a
solvability condition for a coupled neuron system with ephaptic coupling, which suggests the existence
of a formalism of the variational principle that can be solved to satisfy constraints that act on a
whole system.
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