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Abstract:

 We extend previously proposed measures of complexity, emergence, and self-organization to continuous distributions using differential entropy. Given that the measures were based on Shannon’s information, the novel continuous complexity measures describe how a system’s predictability changes in terms of the probability distribution parameters. This allows us to calculate the complexity of phenomena for which distributions are known. We find that a broad range of common parameters found in Gaussian and scale-free distributions present high complexity values. We also explore the relationship between our measure of complexity and information adaptation.
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1. Introduction


Complexity is pervasive. However, there is no agreed definition of complexity. Perhaps complexity is so general that it resists definition [1]. Still, it is useful to have formal measures of complexity to study and compare different phenomena [2]. We have proposed measures of emergence, self-organization, and complexity [3,4] based on information theory [5]. Shannon information can be seen as a measure of novelty, so we use it as a measure of emergence, which is correlated with chaotic dynamics. Self-organization can be seen as a measure of order [6], which can be estimated with the inverse of Shannon’s information and is correlated with regularity. Complexity can be seen as a balance between order and chaos [7,8], between emergence and self-organization [4,9].



We have studied the complexity of different phenomena for different purposes [10,11,12,13,14]. Instead of searching for more data and measuring its complexity, we decided to explore different distributions with our measures. This would allow us to study broad classes of dynamical systems in a general way, obtaining a deeper understanding of the nature of complexity, emergence, and self-organization. Nevertheless, our previously proposed measures use discrete Shannon information. The later statement has two implications: on the one hand, in the continuous domain, entropy is a proxy of the average uncertainty for a probability distribution with a given parameter set, rather than a proxy of the system’s average uncertainty; on the other, even when any distribution can be discretized, this always comes with caveats [15]. For these reasons, we base ourselves on differential entropy [15,16] to propose measures for continuous distributions.



The next section provides background concepts related to information and entropies. Next, discrete measures of emergence, self-organization, and complexity are reviewed [4]. Section 4 presents continuous versions of these measures, based on differential entropy. The probability density functions used in the experiments are described in Section 5. Section 6 presents results, which are discussed and related to information adaptation [17] in Section 7.




2. Information Theory


Let us have a set of possible events whose probabilities of occurrence are [image: there is no content]. Can we measure the uncertainty described by the probability distribution [image: there is no content]? To solve this endeavor in the context of telecommunications, Shannon proposed a measure of entropy [5], which corresponds to Boltzmann–Gibbs entropy in thermodynamics. This measure, as originally proposed by Shannon, possesses a dual meaning of both uncertainty and information, even when the latter term was later discouraged by Shannon himself [18]. Moreover, we encourage the concept of entropy as the average uncertainty given the property of asymptotic equipartition (described later in this section). From an information-theoretic perspective, entropy measures the average number of binary questions required to determine the value of [image: there is no content]. In cybernetics, it is related to variety [19], a measure of the number of distinct states a system can be in.



In general, entropy is discussed regarding a discrete probability distribution. Shannon extended this concept to the continuous domain with differential entropy. However, some of the properties of its discrete counterpart are not maintained. This has relevant implications for extending to the continuous domain the measures proposed in [3,4]. Before delving into these differences, first we introduce the discrete entropy, the asymptotic equipartition property (AEP), and the properties of discrete entropy. Next, differential entropy is described, along with its relation to discrete entropy.



2.1. Discrete Entropy


Let X be a discrete random variable, with a probability mass function [image: there is no content]. The entropy [image: there is no content] of a discrete random variable X is then defined by


[image: there is no content]



(1)







The logarithm base provides the entropy’s unit. For instance, base two measures entropy as bits, base ten as nats. If the base of the logarithm is β, we denote the entropy as [image: there is no content]. Unless otherwise stated, we will consider all logarithms to be of base two. Note that entropy does not depend on the value of X, but on the probabilities of the possible values X can take. Furthermore, Equation (1) can be understood as the expected value of the information of the distribution.




2.2. Asymptotic Equipartition Property for Discrete Random Variables


In probability, the large numbers law states that, for a sequence of n independent and identically distributed (i.i.d.) elements of a sample X, the average value of the sample [image: there is no content] approximates the expected value [image: there is no content]. In this sense, the Asymptotic Equipartition Property (AEP) establishes that [image: there is no content] can be approximated by


[image: there is no content]








under the conditions that [image: there is no content], and [image: there is no content] is i.i.d.



Therefore, discrete entropy can be written also as


[image: there is no content]



(2)




where [image: there is no content] is the expected value of [image: there is no content] Consequently, Equation (2) describes the expected or average uncertainty of probability distribution [image: there is no content]



A final note about entropy is that, in general, any process that makes the probability distribution more uniform increases its entropy [15].




2.3. Properties of Discrete Entropy


The following are properties of the discrete entropy function. Proofs and details can be found in texbooks [15].



	
Entropy is always non-negative, [image: there is no content]



	
[image: there is no content]



	
[image: there is no content] with equality iff [image: there is no content] are i.i.d.



	
[image: there is no content] with equality iff X is distributed uniformly over X.



	
[image: there is no content] is concave.







2.4. Differential Entropy


Entropy was first formulated for discrete random variables, and was then generalized to continuous random variables in which case it is called differential entropy [20]. It has been related to the shortest description length, and thus, is similar to the entropy of a discrete random variable [21]. The differential entropy [image: there is no content] of a continuous random variable X with a density [image: there is no content] is defined as


[image: there is no content]



(3)




where S is the support set of the random variable. It is well-known that this integral exists if and only if the density function of the random variables is Riemann-integrable [15,16]. The Riemann integral is fundamental in modern calculus. Loosely speaking, is the approximation of the area under any continuous curve given by the summation of ever smaller sub-intervals (i.e., approximations), and implies a well-defined concept of limit [21]. [image: there is no content] can also be used to denote differential entropy, and in the rest of the article, we shall employ this notation.




2.5. Asymptotic Equipartition Property of Continuous Random Variables


Given a set of i.i.d. random variables drawn from a continuous distribution with probability density [image: there is no content], its differential entropy [image: there is no content] is given by


−1nlog2fX1,…,Xn→[image: there is no content]log2fX=Hf,



(4)




such that [image: there is no content]. The convergence to expectation is a direct application of the weak law of large numbers.




2.6. Properties of Differential Entropy


	
[image: there is no content] depends on the coordinates. For different choices of coordinate systems for a given probability distribution [image: there is no content], the corresponding differential entropies might be distinct.



	
[image: there is no content] is scale variant [15,22]. In this sense, [image: there is no content], such that [image: there is no content].



	
[image: there is no content] is traslational invariant [15,16,22]. In this sense, [image: there is no content].



	
[image: there is no content] [16]. The [image: there is no content] of a Dirac delta probability distribution, is considered the lowest [image: there is no content] bound, which corresponds to [image: there is no content].



	
Information measures such as relative entropy and mutual information are consistent, either in the discrete or continuous domain [22].







2.7. Differences between Discrete and Continuous Entropies


The derivation of Equation (3) comes from the assumption that its probability distribution is Riemann-integrable. If this is the case, then differential entropy can be defined just like discrete entropy. However, the notion of “average uncertainty” carried by the Equation (1) cannot be extended to its differential equivalent. Differential entropy is rather a function of the parameters of a distribution function, that describes how uncertainty changes as the parameters are modified [15].



To understand the differences between Equations (1) and (3), we will quantize a probability density function, and then calculate its discrete entropy [15,16].



First, consider the continuous random variable X with a probability density function [image: there is no content] This function is then quantized by dividing its range into h bins of length Δ. Then, in accordance to the Mean Value Theorem, within each [image: there is no content] bin of size [image: there is no content], there exists a value [image: there is no content] that satisfies


∫iΔi+1Δfxdx=f[image: there is no content]Δ.



(5)




Then, a quantized random variable [image: there is no content] is defined as


[image: there is no content]=[image: there is no content],ifiΔ≤X≤i+1Δ,



(6)




and, its probability is


[image: there is no content]=∫iΔi+1Δ[image: there is no content]=f[image: there is no content]Δ.



(7)




Consequently, the discrete entropy of the quantized variable [image: there is no content], is formulated as


H[image: there is no content]=−∑[image: there is no content]∞[image: there is no content]log2[image: there is no content]=−∑[image: there is no content]∞f[image: there is no content]Δlog2f[image: there is no content]Δ=−∑Δf[image: there is no content]log2f[image: there is no content]−∑f[image: there is no content]Δlog2Δ=−log2Δ−∑Δf[image: there is no content]log2f[image: there is no content]≊−log2Δ−∫[image: there is no content]∞f[image: there is no content]log2f[image: there is no content]dx.



(8)







To understand the final form of Equation (8), notice that as the size of each bin becomes infinitesimal, [image: there is no content], the left-hand term of Equation (8) becomes [image: there is no content]. This is due to the fact that Equation (8) is a Riemann integral (as mentioned before)


lim[image: there is no content]∑[image: there is no content]∞f[image: there is no content]Δ=∫[image: there is no content]∞fxdx=1.











Furthermore, as [image: there is no content], the right-hand side of Equation (8) approximates the differential entropy of X such that


lim[image: there is no content]∑[image: there is no content]∞Δf[image: there is no content]log2f[image: there is no content]=∫[image: there is no content]∞fxlog2fxdx.








Note that the left-hand side of Equation (8), explodes towards minus infinity such that


lim[image: there is no content]log2Δ≈−∞.








Therefore, the difference between [image: there is no content] and H[image: there is no content] is Hf−H[image: there is no content]=log2Δ, which approaches to [image: there is no content] as the bin size becomes infinitesimal. Moreover, consistently with this is the fact that the differential entropy of a discrete value is [image: there is no content] [16].



Lastly, in accordance to [15], the average number of bits required to describe a continuous variable X with a n-bit accuracy (quantization) is [image: there is no content] such that


H[image: there is no content]′=lim[image: there is no content]H[image: there is no content]+log2Δ→Hf.



(9)









3. Discrete Complexity Measures


Emergence E, self-organization S, and complexity C are close relatives of Shannon’s entropy. These information-based measures inherit most of the properties of Shannon’s discrete entropy [4], being the most valuable one that discrete entropy quantizes the average uncertainty of a probability distribution. In this sense, complexity C and its related measures (E and S) are based on a quantization of the average information contained by a process described by its probability distribution.



3.1. Emergence


Emergence has been used and debated for centuries [23]. Still, emergence can be understood [24]. The properties of a system are emergent if they are not present in their components, i.e., global properties which are produced by local interactions are emergent. For example, the temperature of a gas can be said to be emergent [25], since the molecules do not possess such a property: it is a property of the collective. In a broad and informal way, emergence can be seen as differences in phenomena as they are observed at different scales [2,4].



Another form of entropy, rather related to the concept of information as uncertainty, is called emergence E [4]. Intuitively, E measures the ratio of uncertainty a process produces by new information that is a consequence of changes in (a) dynamics or (b) scale [4]. However, its formulation is more related to the thermodynamics entropy. Thus, it is defined as


E≡HX=−K∑i=1N[image: there is no content]log2[image: there is no content],



(10)




where [image: there is no content]=PX=x is the probability of the element i, and K is a normalizing constant.



Having the same equation to measure emergence, information, and entropy could be questioned. However, different phenomena such as gravity and electrostatic force are also described with the same equation. Still, this does not mean that gravitation and charge are the same. In the same fashion, there are differences between emergence, information, and entropy, which depend more on their usage and interpretation than on the equation describing them. Thus, it is justified to use the same expression to measure different phenomena [10].




3.2. Multiple Scales


In thermodynamics, the Boltzmann constant K, is employed to normalize the entropy in accordance to the probability of each state. However, Shannon’s entropy typical formulation [15,16,17] neglects the usage of K in Equation (10) (being its only constraint that [image: there is no content] [4]). Nonetheless, for emergence as a measure of the average production of information for a given distribution, K plays a fundamental role. In the cybernetic definition of variety [18], K is a function of the distinct states a system can be, i.e., the system’s alphabet size. Formally, it is defined as


[image: there is no content]



(11)




where b corresponds to the size of the alphabet of the sample or bins of a discrete probability distribution. Furthermore, K should guarantee that [image: there is no content]; therefore, b should be at least equal to the number of bins of the discrete probability distribution.



It is also worth noting that the denominator of Equation (11), [image: there is no content] is equivalent to the maximum entropy for a continuous distribution function, the uniform distribution. Consequently, emergence can be understood as the ratio between the entropy for given distribution [image: there is no content], and the maximum entropy for the same alphabet size [image: there is no content] [26], is


E=HPX[image: there is no content].



(12)








3.3. Self-Organization


Self-organisation, S, is the complement of E. In this sense, with more uncertainty less predictability is achieved, and vice versa. Thus, an entirely random process (e.g., uniform distribution) has the lowest organization, and a completely deterministic system one (Dirac delta distribution), has the highest. Furthermore, an extremely organized system yields no information with respect of novelty, while, on the other hand, the more chaotic a system is, the more information is yielded [4,26].



The metric of self-organization S was proposed to measure the organization a system has regarding its average uncertainty [4,27]. S is also related to the cybernetic concept of constraint, which measures changes in due entropy restrictions on the state space of a system [8]. These constraints confine the system’s behavior, increasing its predictability, and reducing the (novel) information it provides to an observer. Consequently, the more self-organized a system is, the less average uncertainty it has. Formally, S is defined as


S=1−E=1−HPX[image: there is no content],



(13)




such that [image: there is no content]. It is worth noting that, the maximal S (i.e., [image: there is no content]) is only achievable when the entropy for a given probability density function (PDF) is such that [image: there is no content], which corresponds to the entropy of a Dirac delta (only in the discrete case).




3.4. Complexity


Complexity C can be described as a balance between order (stability), and chaos (scale or dynamical changes) [4]. More precisely, this function describes a system’s behavior in terms of the average uncertainty produced by its probability distribution in relation the dynamics of a system. Thus, the complexity measure is defined as


[image: there is no content]



(14)




such that, [image: there is no content].





4. Continuous Complexity Measures


As mentioned before, discrete and differential entropies do not share the same properties. In fact, the property of discrete entropy as the average uncertainty in terms of probability, cannot be extended to its continuous counterpart. As a consequence, the proposed continuous information-based measures describe how the production of information changes respect to the probability distribution parameters. In particular, this characteristic could be employed as a feature selection method, where the most relevant variables are those which have a high emergence (the most informative).



The proposed measures are differential emergence ([image: there is no content]), differential self-organization ([image: there is no content]), and differential complexity ([image: there is no content]). However, given that the interpretation and formulation (in terms of emergence) of discrete and continuous S (Equation (13)) and C (Equation (14)) are the same, we only provide details on [image: there is no content]. The difference between [image: there is no content], [image: there is no content] and [image: there is no content] is that the former are defined on [image: there is no content], while the latter are on E. Furthermore, we make an emphasis in the definition of the normalizing constant K, which plays a significant role in constraining [image: there is no content]∈0,1, and consequently, [image: there is no content] and [image: there is no content] as well.



4.1. Differential Emergence


As for its discrete form, the emergence for continuous random variables is defined as


[image: there is no content]=−K∫υζfXlog2fX,



(15)




where, [image: there is no content] is the domain, and K stands for a normalizing constant related to the distribution’s alphabet size. It is worth noting that this formulation is highly related to the view of emergence as the ratio of information production of a probability distribution respect the maximum differential entropy for the same range. However, since [image: there is no content] can be negative (i.e., entropy of a single discrete value), we choose [image: there is no content] such that


[image: there is no content]=EDED>00otherwise..



(16)







E′D is rather a more convenient function than ED, as 0≤E′D≤1. This statement is justified in the fact that the differential entropy of a discrete value is [image: there is no content] [15]. In practice, differential entropy becomes negative only when the probability distribution is extremely narrow, i.e., there is a high probability for few states. In the context of information changes due to parameter manipulation, an ED<0 means that the probability distribution is becoming a Dirac delta distribution. For notation convenience, from now on we will employ [image: there is no content] and [image: there is no content] interchangeably.




4.2. Multiple Scales


The K constant expresses the relation between uncertainty of a given [image: there is no content] Defined by [image: there is no content], respect to the entropy of a maximum entropy over the same domain [26]. In this setup, as the uncertainty grows, [image: there is no content] becomes closer to unity.



To constrain the value of [image: there is no content] in the discrete emergence case, it was enough to establish the distribution’s alphabet size, b of Equation (10), such that [image: there is no content] [4]. However, for any PDF, the number of elements between a pair of points a and b, such that [image: there is no content], is infinite. Moreover, as the size of each bin becomes infinitesimal, [image: there is no content], the entropy for each bin becomes [image: there is no content] [15]. In addition, it has been stated that b value should be equal to the cardinality of X [26]; however, this applies only to discrete emergence. Therefore, rather than a generalization, we propose an heuristic for the selection of a proper K in the case of differential emergence. Moreover, we differentiate between b for [image: there is no content], and b’ for H[image: there is no content]′.



As in the discrete case, K is defined as Equation (11). In order to determine the proper alphabet size b, we propose the next algorithm:

	
If we know a priori the true [image: there is no content], we calculate [image: there is no content], and [image: there is no content] is the cardinality within the interval of Equation (15). In this sense, a large value will denote the cardinality of a “ghost” sample [16]. (It is ghost, in the concrete sense that it does not exist. Its only purpose is to provide a bound for the maximum entropy accordingly to some large alphabet size.)



	
If we do not know the true [image: there is no content], or we are interested rather in H[image: there is no content]′ where a sample of finite size is involved, we calculate b’ as


[image: there is no content]



(17)




such that, the non-negative function [image: there is no content] is defined as


indxi=1iffPxi>00otherwise.



(18)




For instance, in the quantized version of the standard normal distribution ([image: there is no content]), only values within [image: there is no content] satisfy this constraint despite the domain of Equation (15). In particular, if we employ [image: there is no content] rather than [image: there is no content], we compress the [image: there is no content] value as it will be shown in the next section. On the other hand, for a uniform distribution or a Power-Law (such that [image: there is no content]), the whole range of points satisfies this constraint.










5. Probability Density Functions


In communication and information theory, uniform (U) and normal, also known as Gaussian (G) distributions play a significant role. Both are referent to maximum entropy: on the one hand, U has the maximum entropy within a continuous domain; on the other hand, G has the maximum entropy for distributions with a fixed mean (μ), and a finite support set for a fixed standard deviation (σ) [15,16]. Moreover, as mentioned earlier, [image: there is no content] is useful when comparing the entropies of two distributions over some reference space [15,16,28]. Consequently, U, but mainly G, are heavily used in the context of telecommunications for signal processing [16]. Nevertheless, many natural and man-made phenomena can be approximated with Power-Law (PL) distributions. These types of distributions typically present complex patterns that are difficult to predict, making them a relevant research topic [29]. Furthermore, Power-Laws have been related to the presence of multifractal structures in certain types of processes [28]. Moreover, Power-Laws are tightly related to self-organization and criticality theory, and have been studied under information frameworks before (e.g., Tsallis’s, and Renyi’s maximum entropy principle) [29,30].



Therefore, in this work we focus our attention to these three PDFs. First, we provide a short description of each PDF, then, we summarize its formulation, and the corresponding [image: there is no content] in Table 1.


Table 1. Studied PDFs with their corresponding analytical differential entropies.


	Distribution
	PDF
	Differential Entropy





	Uniform
	[image: there is no content]
	[image: there is no content]



	Normal
	[image: there is no content]
	[image: there is no content]



	Power-law
	[image: there is no content]
	[image: there is no content]









5.1. Uniform Distribution


The simplest PDF, as its name states, establishes that for each possible value of X, the probability is constant over the whole support set (defined by the range between a and b), and 0 elsewhere. This PDF has no parameters besides the starting and ending points of the support set. Furthermore, this distribution appears frequently in signal processing as white noise, and it has the maximum entropy for continuous random variables [16].



Its PDF and its corresponding [image: there is no content] are shown in first row of Table 1. It is worth noting that, as the cardinality of the domain of U grows, its differential entropy increases as well.




5.2. Normal Distribution


The normal or Gaussian distribution is one of the most important probability distribution families [31]. It is fundamental in the central limit theorem [16], time series forecasting models such as classical autoregressive models [32], modelling economic instruments [33], encryption, modelling electronic noise [16], error analysis and statistical hypothesis testing.



Its PDF is characterized by a symmetric, bell-shaped function whose parameters are: location (i.e., mean μ), and dispersion (i.e., standard deviation [image: there is no content]). The standard normal distribution is the simplest and most used case of this family, its parameters are Nμ=0,[image: there is no content]=1. A continuous random variable [image: there is no content] is said to belong to a Gaussian distribution, X∼Nμ,[image: there is no content] , if its PDF [image: there is no content] is given by the one described in the second row of Table 1. As is shown in the table, the differential entropy of G only depends on the standard deviation. Furthermore, it is well known that its differential entropy is monotonically increasing concave in relation to σ [31]. This is consistent with the aforementioned fact that [image: there is no content] is translation-invariant. Thus, as σ grows, so does the value of [image: there is no content], while as [image: there is no content] such that [image: there is no content], it becomes a Dirac delta with [image: there is no content].




5.3. Power-Law Distribution


Power-Law distributions are commonly employed to describe multiple phenomena (e.g., turbulence, DNA sequences, city populations, linguistics, cosmic rays, moon craters, biological networks, data storage in organisms, chaotic open systems, and so on) across numerous scientific disciplines [28,29,30,34,35,36,37]. These type of processes are known for being scale invariant, being the typically scales (α, see below) in nature between one and 3.5 [30]. In addition, the closeness of this type of PDF to chaotic systems and fractals is such that, some fractal dimensions are called entropy dimensions (e.g., box-counting dimension, and Renyi entropy) [36].



Power-Law distributions can be described by continuous and discrete distributions. Furthermore, Power-laws in comparison with Normal distribution, generate events of large orders of magnitude more often, and are not well represented by a simple mean. A Power-Law density distribution is defined as


[image: there is no content]



(19)




such that, C is a normalization factor, α is the scale exponent, and [image: there is no content] is the observed continuos random variable. This PDF diverges as [image: there is no content] , and do not hold for all [image: there is no content] [37]. Thus, [image: there is no content] corresponds to lower bound of a Power-Law. Consequently, in Table 1, we provide the PDF of a Power-Law as proposed by [35], and its corresponding [image: there is no content] as proposed by [38].



The aforementioned PDFs, and their corresponding [image: there is no content] are shown in Table 1. Further details about the derivation of [image: there is no content] for U, and G can be found in [15,16]. For additional details on the differential entropy of the Power-Law, we refer the reader to [28,38].





6. Results


In this section, comparisons of theoretical vs. quantized differential entropy for the PDFs considered are shown. Next, we provide differential complexity results ([image: there is no content], [image: there is no content], and [image: there is no content]) for the mentioned PDFs. Furthermore, in the case of Power-Laws, we also provide and discuss the corresponding complexity measures results for real world phenomena, already described in [39]. In addition, it is worth noting that, since quantized [image: there is no content] of the Power-Law yielded poor results, the Power-Law’s analytical [image: there is no content] form was used.



6.1. Theoretical vs. Quantized Differential Entropies


Numerical results of theoretical and quantized differential entropies are shown in Figure 1 and Figure 2. Analytical [image: there is no content] results are displayed in blue, whereas the quantized H[image: there is no content]′ ones are shown in red. For each PDF, a sample of one million (i.e., [image: there is no content]) points where employed for calculations. The bin size Δ required by H[image: there is no content]′, is obtained as the ratio [image: there is no content]. However, the value of Δ has considerable influence in the resulting quantized differential entropy.


Figure 1. Theoretical and quantized differential entropies for (a) Uniform distribution and (b) Power-Law distributions .



[image: Entropy 18 00072 g001 1024]





Figure 2. Two comparisons of theoretical vs. quantized differential entropy for the Gaussian distribution.



[image: Entropy 18 00072 g002 1024]






6.1.1. Uniform Distribution


The results for U were expected. We tested several values of the cardinality of [image: there is no content], such that [image: there is no content]. Using the analytical [image: there is no content] formula of Table 1, the quantized H[image: there is no content]′, and [image: there is no content], we achieved exactly the same differential entropy values. Results for U are shown in the left side of Figure 1. As was mentioned earlier, as the cardinality of the distribution grows, so does the differential entropy of U.




6.1.2. Normal Distribution


Results for the Gaussian distribution were less trivial. As in the U case, we calculate both [image: there is no content] and H[image: there is no content]′, for a fixed [image: there is no content], and modified the standard deviation parameter such that, [image: there is no content]. Notice that the first tested distribution is the standard normal distribution.



In Figure 2, results obtained for the n-bit quantized differential entropy, and for the analytical form of Table 1 are shown. Moreover, we displayed two cases of the normal distribution: the left side of Figure 2 shows results for [image: there is no content] with range [image: there is no content] and a bin size, [image: there is no content], whereas, the right side provides results for a [image: there is no content] with range [image: there is no content] and [image: there is no content]. It is worth noting that, in the former case, the quantized differential entropy shows a discrepancy with [image: there is no content] after only [image: there is no content], which quickly increases with growing σ. On the other hand, for the latter case, there is an almost perfect match between the analytical and quantized differential entropies; however, the same mismatch will be observed if the standard deviation parameter is allowed to grow unboundedly [image: there is no content]. Nonetheless, this is a consequence of how H[image: there is no content]′ is computed. As mentioned earlier, as [image: there is no content], the value of each quantized [image: there is no content] grows towards [image: there is no content]. Therefore, in the G case, it seems convenient employing a Probability Mass Function (PMF) rather than a PDF. Consequently, the experimental setup of right side image of Figure 2 is employed for the calculation of the continuous complexity measures of G.




6.1.3. Power-Law Distribution


Results for the Power-Law distribution are shown in the right side of Figure 1. In both U and G, a PMF instead of a PDF was used to avoid cumbersome results (as depicted in the corresponding images). However, for the Power-Law distribution, the use of a PDF is rather convenient. As discussed in the next section and highlighted by [35], [image: there is no content] has a considerable impact on the value of [image: there is no content]. For Figure 1, the range employed was [image: there is no content], with a bin size of [image: there is no content], a [image: there is no content]=0.99, and modified the scale exponent parameter such that, [image: there is no content]. For this particular setup, we can observe that as α increases, [image: there is no content] and H[image: there is no content]′ decreases its value towards [image: there is no content]. This effect is consequence of increasing the scale of the Power-Law such that, the slope of the function in a log-log space, approaches to zero. In this sense, with larger αs, the [image: there is no content] becomes closer to a Dirac delta distribution, thus, [image: there is no content]. However, as will be discussed later, for larger αs, larger [image: there is no content] values are required, in order for [image: there is no content] to display positive values.





6.2. Differential Complexity: ED, [image: there is no content], and [image: there is no content]


U results are trivial: ED=1, and [image: there is no content],[image: there is no content]=0. For each upper bound of U, [image: there is no content]=[image: there is no content][image: there is no content]=1, which is exactly the same as its discrete counterpart. Thus, U results are not considered in the following analysis.



Continuous complexity results for G and PL are shown in Figure 3 and Figure 4, respectively. In the following, we provide details of these measures.


Figure 3. Complexity of the Gaussian distribution.



[image: Entropy 18 00072 g003 1024]





Figure 4. Complexity measures for the Power-Law. Lower values of the scale exponent α are displayed in dark blue, colors turns into reddish for larger scale exponents.
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6.2.1. Normal Distribution


It was stated in Section 4 that the size of the alphabet is given by the function [image: there is no content]. This rule establishes a valid cardinality such that [image: there is no content], thus, only those states with a positive probability are considered. For P[image: there is no content], such operation can be performed. Nevertheless, when the analytical [image: there is no content] is used, the proper cardinality of the set is unavailable. Therefore, in the Gaussian distribution case, we tested two criteria for selecting the value of b:

	
[image: there is no content] is employed for H[image: there is no content]′.



	
A constant with a large value ([image: there is no content]) is used for the analytical formula of [image: there is no content].








In Figure 3, solid dots are used when K is equal to the cardinality of [image: there is no content], whereas solid squares are used for an arbitrary large constant. Moreover, for the quantized case of [image: there is no content] , Table 2 shows the cardinality for each sigma, [image: there is no content], and its corresponding [image: there is no content]. As can be observed, for a large normalizing constant K, a logarithmic relation is displayed for ED and [image: there is no content]. In addition, the maximum [image: there is no content] is achieved for [image: there is no content], which is where ED=[image: there is no content]. However, for H[image: there is no content]′ the the maximum [image: there is no content] is found around [image: there is no content], such that [image: there is no content]≤ϵ∣ϵ→0. A word of advice must be made here. The required cardinality to normalize the continuous complexity measures such that 0≤ED,[image: there is no content],[image: there is no content]≤1, must have a lower bound. This bound should be related to the scale of the [image: there is no content] [40], and the quantization size Δ. In our case, when a large cardinality [image: there is no content], and [image: there is no content] are used, the normalizing constant flattens [image: there is no content] results respect those obtained by [image: there is no content]; moreover, the large constant increases [image: there is no content], and takes greater standard deviations for achieving the maximum [image: there is no content]. However, these complexity results are rather artificial in the sense that, if we arbitrarly let [image: there is no content] then trivially we will obtain ED=0,[image: there is no content]=1,and[image: there is no content]=0. Moreover, it has been stated that the cardinality of [image: there is no content] should be employed as a proper size of b [26]. Therefore, when H[image: there is no content]′ is employed, the cardinality of [image: there is no content] must be used. On the contrary, when [image: there is no content] is employed, a coarse search for increasing alphabet sizes could be used so that the maximal [image: there is no content] satisfies [image: there is no content][image: there is no content]≤1.


Table 2. Alphabet size [image: there is no content], and its corresponding normalizing K constant for the normal distribution G.


	σ
	[image: there is no content]=∑indPrX>0
	HU=log2[image: there is no content]
	K=1[image: there is no content]





	[image: there is no content]
	78
	6.28
	0.16



	[image: there is no content]
	154
	7.26
	0.14



	[image: there is no content]
	308
	8.27
	0.12



	[image: there is no content]
	616
	9.27
	0.11



	[image: there is no content]
	1232
	10.27
	0.10



	[image: there is no content]
	2464
	11.27
	0.09



	[image: there is no content]
	4924
	12.27
	0.08



	[image: there is no content]
	9844
	13.27
	0.075



	[image: there is no content]
	19,680
	14.26
	0.0701



	[image: there is no content]
	39,340
	15.26
	0.0655



	[image: there is no content]
	78,644
	16.26
	0.0615



	[image: there is no content]
	157,212
	17.26
	0.058



	[image: there is no content]
	314,278
	18.26
	0.055



	[image: there is no content]
	628,258
	19.26
	0.0520



	[image: there is no content]
	1,000,000
	19.93
	0.050










6.2.2. Power-Law Distribution


In this case, [image: there is no content] rather than H[image: there is no content]′ is used for computational convenience. Although the cardinality of [image: there is no content] is not available, by simply substituting [image: there is no content] we can see that the condition is fulfilled by the whole set. Therefore, the large C criterium, earlier detailed, is used. Still, given that a numerical Power-Law distribution is given by two parameters, a lower bound [image: there is no content] and the scale exponent α, we depict our results in 3D in Figure 4. From left to right, ED,[image: there is no content],and[image: there is no content] for the Power-Law distribution are shown, respectively. In the three images, the same coding is used: x-axis displays the scale exponent (α) values, y-axis shows [image: there is no content] values, and z-axis depicts the continuous measure values; lower values of α are displayed in dark blue, turning into reddish colors for larger exponents.



As it can be appreciated in Figure 4, for small [image: there is no content] (e.g., [image: there is no content]=1) values, low emergence is produced despite the scale exponent. Moreover, maximal self-organization (i.e.,[image: there is no content]=1) is quickly achieved (i.e., [image: there is no content]), providing a PL with at most fair complexity values. However, if we let [image: there is no content] take larger numbers, [image: there is no content] grows, achieving the maximal complexity (i.e., [image: there is no content]≈0.8) of this experimental setup at [image: there is no content]=15,α=1. This behavior is also observed for other scale exponent values, where emergence of new information is produced as the [image: there is no content] value grows. Furthermore, it has been stated that for [image: there is no content], which displays a Power-Law behavior, it is required that ∀xi∈PX∣xi>[image: there is no content] [37]. Thus, for every α there should be an [image: there is no content] such that [image: there is no content]>0. Moreover, for larger scale exponents, larger [image: there is no content] values are required for the distribution shows emergence of new information at all.





6.3. Real World Phenomena and Their Complexity


Data of phenomena that follows a Power-Law is provided in Table 3. These Power-Laws have been studied by [35,37,39], and the Power-Law parameters were published by [39]. The phenomena in the table mentioned above compromises data from:

	
Numbers of occurrences of words in the novel Moby Dick by Hermann Melville.



	
Numbers of citations to scientific papers published in 1981, from the time of publication until June 1997.



	
Numbers of hits on websites by users of America Online Internet services during a single day.



	
Number of received calls to A.T.&T. U.S. long-distance telephone services on a single day.



	
Earthquake magnitudes occurred in California between 1910 and 1992.



	
Distribution of the diameter of moon craters.



	
Peak gamma-ray intensity of solar flares between 1980 and 1989.



	
War intensity between 1816–1980, where intensity is a formula related to the number of deaths and warring nations populations.



	
Frequency of family names accordance with U.S. 1990 census.



	
Population per city in the U.S. in agreement with U.S. 2000 census.







Table 3. Power-Law parameters and information-based measures of real world phenomena.












	
	Phenomenon
	[image: there is no content]
	α (Scale Exponent)
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]





	1
	Frequency of use of words
	1
	2.2
	1.57
	0.078
	0.92
	0.29



	2
	Number of citations to papers
	100
	3.04
	7.1
	0.36
	0.64
	0.91



	3
	Number of hits on web sites
	1
	2.4
	1.23
	0.06
	0.94
	0.23



	4
	Telephone calls received
	10
	2.22
	4.85
	0.24
	0.76
	0.74



	5
	Magnitude of earthquakes
	3.8
	3.04
	2.38
	0.12
	0.88
	0.42



	6
	Diameter of moon craters
	0.01
	3.14
	[image: there is no content]
	0
	1
	0



	7
	Intensity of solar flares
	200
	1.83
	10.11
	0.51
	0.49
	0.99



	8
	Intensity of wars
	3
	1.80
	4.15
	0.21
	0.79
	0.66



	9
	Frequency of family names
	10000
	1.94
	15.44
	0.78
	0.22
	0.7



	10
	Population of U.S. cities
	40000
	2.30
	16.67
	0.83
	0.17
	0.55









More details about these Power-Laws can be found in [35,37,39].



For each phenomenon, the corresponding differential entropy and complexity measures are shown in Table 3. Furthermore, we also provide Table 4 which is a color coding for complexity measures proposed in [4]. Five colors are employed to simplify the different value ranges of [image: there is no content], [image: there is no content], and [image: there is no content] results. According to the nomenclature suggested in [4], results for these sets show that, very high complexity 0.8≤[image: there is no content]≤1 is obtained by the number of citations set (i.e., 2), and intensity of solar flares (i.e., 7). High complexity, 0.6≤[image: there is no content]<0.8 is obtained for received telephone calls (i.e., 4), intensity of wars (i.e., 8), and frequency of family names (i.e., 9). Fair complexity 0.4≤[image: there is no content]<0.6 is displayed by earthquakes magnitude (i.e., 5), and population of U.S. cities (i.e., 10). Low complexity, 0.2≤[image: there is no content]<0.4 is obtained for frequency of used words in Moby Dick (i.e., 1) and web hits (i.e., 3), whereas, moon craters (i.e., 6) have very low complexity 0≤[image: there is no content]<0.2. In fact, earthquakes, and web hits, have been found not to follow a Power-Law [35]. Furthermore, if such sets were to follow a Power-Law, a greater value of [image: there is no content] would be required as can be observed in Figure 4. In fact, the former case is found for the frequency of words used in Moby Dick. In [39], parameters of Table 3 are proposed. However, in [35], another set of parameters are estimated (i.e., [image: there is no content]=7,α=1.95). For the more recent estimated set of parameters, a high complexity is achieved (i.e., [image: there is no content]=0.74), which is more consistent with literature about Zipf’s law [39]. Lastly, in the case of moon craters, the [image: there is no content]=0.01 is rather a poor choice according to Figure 4. For the chosen scale exponent, it would require at least a [image: there is no content]≈1, for the Power-Law to produce any information at all. It should be noted that [image: there is no content] can be adjusted to change the values of all measures. In addition, it is worth mentioning that if we were to normalize and discretize a Power-Law distribution to calculate its discrete entropy (as in [4]), all Power-Law distributions present a very high complexity, independently of [image: there is no content] and α, precisely because these are normalized. Still, this is not useful for comparing different Power-Law distributions.


Table 4. Color coding for [image: there is no content], [image: there is no content], and [image: there is no content] results.


	Category
	Very High
	High
	Fair
	Low
	Very Low





	Range
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]



	Color
	Blue
	Green
	Yellow
	Orange
	Red











7. Discussion


In this paper, we extended complexity measures based on Shannon’s entropy to the continuous domain. Shannon’s continuous entropy cannot measure the average predictability of a system as its discrete counterpart. Rather, it measures the average uncertainty of a system given a configuration of a probability distribution function. Therefore, continuous Emergence, Self-organization, and Complexity describe the expected predictability of a system given it follows a probability distribution with a specific parameters set. It is common in many disciplines to describe real world systems using a particular probability distribution function. Therefore, the proposed measures can be useful to describe the production of information and novelty in such cases, or how information and uncertainty would change in the system if parameters were perturbed. Certainly, the interpretation of the measures is not given, as this will depend on the use we make of the measures for specific purposes.



From exploring the parameter space of the uniform, normal, and scale-free distributions, we can corroborate that high complexity values require a form of balance between extreme cases. On the one hand, uniform distributions, by definition, are homogeneous and thus all states are equiprobable, yielding the highest emergence. This is also the case of normal distributions with a very large standard deviation and for Power-Law distributions with an exponent close to zero. On the other hand, highly biased distributions (very small standard deviation in G or very large exponent in PL) yield a high self-organization, as few states accumulate most of the probability. Complexity is found between these two extremes. From the values of σ and α, this coincides with a broad range of phenomena. This does not tell us something new: complexity is common. The relevant aspect is that this provides a common framework to study of the processes that lead phenomena to have a high complexity [41]. It should be noted that this also depends on the time scales at which change occurs [42].



Many real-world phenomena are modelled under some probability distribution assumption. These impositions are rather a consequence of analytical convenience than intrinsic to the phenomenon under study. Nevertheless, these usually provide a rough but useful approximation for explanatory purposes: ranging from models of wind speed (Weibull distribution) to economic models (Logistic distribution), PDFs “effectively” describe phenomena data. Thus, in future work, it would be very useful to characterize PDFs like the Laplace, Logistic, and Weibull distribution to shed light in terms of complexity, emergence, and self-organization of systems, which can be modelled by these PDFs.



On the other hand, it is interesting to relate our results with information adaptation [17]. In a variety of systems, adaptation takes place by inflating or deflating information, so that the “right” balance is achieved. Certainly, given that it is possible to derive upper and lower bounds for the differential entropy of a PDF (e.g., [20]), it should be also possible to define analytical bounds for the complexity measures for the given PDF. However, for practical purposes, complexity measures are constrained by the selected range of the PDF parameters. Thus, the precise balance change from system to system and from context to context. Still, the capability of information adaptation has to be correlated with complexity, as the measure also reflects a balance between emergence (inflated information) and self-organization (deflated information).



As future work, it will be interesting to study the relationship between complexity and semantic information. There seems to be a connection with complexity as well, as we have proposed a measure of autopoiesis as the ratio of the complexity of a system over the complexity of its environment [4,43]. These efforts should be valuable in the study of the relationship between information and meaning, in particular in cognitive systems.



Another future line of research lies in the relationship between the proposed measures and complex networks [44,45,46,47], exploring questions such as: how does the topology of a network affect its dynamics? How much can we predict the dynamics of a network based on its topology? What is the relationship between topological complexity and dynamic complexity? How controllable are networks [48] depending on their complexity?
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