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Abstract: There are numerous studies showing that there is a constant increase in the ocean ambient
noise level and the ever-growing demand for developing algorithms for detecting weak signals in
ambient noise. In this study, we utilize dynamical and statistical complexity to detect the presence of
weak ship noise embedded in ambient noise. The ambient noise and ship noise were recorded in
the South China Sea. The multiscale entropy (MSE) method and the complexity-entropy causality
plane (C-H plane) were used to quantify the dynamical and statistical complexity of the measured
time series, respectively. We generated signals with varying signal-to-noise ratio (SNR) by varying
the amplification of a ship signal. The simulation results indicate that the complexity is sensitive
to change in the information in the ambient noise and the change in SNR, a finding that enables
the detection of weak ship signals in strong background ambient noise. The simulation results also
illustrate that complexity is better than the traditional spectrogram method, particularly effective
for detecting low SNR signals in ambient noise. In addition, complexity-based MSE and C-H plane
methods are simple, robust and do not assume any underlying dynamics in time series. Hence,
complexity should be used in practical situations.

Keywords: ambient noise; ship signal; Entropy; complexity; weak signal detection;
stochastic dynamics

1. Introduction

The background sound in the ocean is called ambient noise. Ambient noise is constituted by
contributions from numerous natural and anthropogenic source. These sounds blend to produce a
continuum of noise against which acoustic receivers must be used to detect a signal. Ocean acoustic
signals are typically of low signal-to-noise ratio. The received signals are perturbed by varying ambient
noise levels with constantly changing factors such as intensity of rainfall, wind speed and its direction,
anthropogenic sources, and human-related noises [1–3]. These processes exhibit multiple spatial and
temporal variations, strongly affecting ocean acoustic signals. Ambient noise fluctuations are usually
nonstationary and nonlinear due to the extraordinary complexity of ocean system [4]. Therefore, it is a
challenging task to detect and distinguish the weak acoustic signal in complex ocean ambient noise. It
has been reported that, in the past five decades, the artificial low frequency shipping noise radiation
has increased by 10–15 dB [5–7]. This has negative implications for mammalian marine wild life [8,9].
Hence, efforts have been made by ship designers and builders to lower the noise produced by their
individual ships in some cases to the spectral level of the ambient noise. This may hinder the capability
of a traditional spectrum analysis to detect the presence of weak acoustic signals in ambient noise. The
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growth in ship and torpedo technology has fueled the demand for more sensitive, reliable, and robust
algorithms to detect ever quieter engines in real time and in short time frames [10,11].

A critical assumption in traditional stochastic approach and spectrum analysis is that the spatial
and temporal variations of ambient noise are wide-sense stationary. However, nonstationarity
and nonlinear effects in these processes need to be considered, which may not be represented by
a spectrogram for a stationary process. The ocean acoustic time-series signals measured using
underwater sensors remain a largely untapped source of dynamical information. Previous studies
on the detection of weak signals in strong ambient noise have assumed that underlying dynamics
of ambient noise to be chaotic [12–14]. However, one study [4] showed that ambient noise exhibit
neither chaotic nor Gaussian behavior. Instead, ambient noise exhibits nonlinear stochastic behavior.
In this study, we utilize complexity, as it does not assume any underlying dynamics; rather, it extracts
information from time series. The complexity in ocean acoustic signals can be used as a distinguishing
feature to detect the signature of ship and marine mammals. In this study, the dynamical and statistical
complexity of ocean acoustic signals is investigated using MSE and C-H plane, respectively. Study
of entropy-based complexity may offer another way to detect the presence of weak and low SNR
signals in background ambient noise. Entropy measures quantify the regularity (predictability) of
time series. Traditionally, complexity relates to entropy in the way that entropy increases with the
degree of disorder and amounts to a maximum for completely random systems. Dynamical and
statistical complexity is quantitative and is based on sample entropy (quantifies the regularity of
finite length time series) and Shannon’s entropy (quantifies randomness at global level), respectively.
The complexity has been successfully applied in the areas, such as medicine [15,16], financial [17,18],
climatological [19,20], and acoustic time series [21–23]. From the above examples of the application
of complexity, it is clear that it offers a deeper understanding of the properties of time series beyond
what can be achieved with other more traditional analysis techniques. The present study, therefore,
investigates whether MSE and C-H plane-based complexity analysis can be applied to detect the
presence of low SNR ship signatures in ambient noise measured at the South China Sea.

The paper is organized as follows. Section 2 describes the measurement of ambient noise and
ship signals. Section 3 describes the method for evaluating the dynamical complexity measure (DCM)
and the statistical complexity measure (SCM). In Section 4, we explain that we generated signals
with different SNRs by varying the amplification of ship signal. Here, we compute spectrogram and
complexity measures applied to these signals, and compare the sensitivity of detection of ship signals
at a low SNR. Conclusions are stated in Section 5.

2. Data Measurement

The ambient noise and ship signals were recorded in the South China Sea, and the measurements
were made using 12 calibrated omnidirectional hydrophones, mounted in a vertical array at a depth
of 29 m. The hydrophones used in the experiment have a high sensitivity of ´170 dB re 1 V/µPa,
provided with an internal 10 dB pre-amplifier with a frequency response between 0.1 Hz´80 kHz. The
hydrophone was suspended from the ship by a 25-m extension cable. On the deck side, the cable was
connected to an input module, which acted as a splitter for signal transfer and the powering of the
hydrophone, with a DC supply battery. During recording, there were no observed disturbances from
biological or man-made sources. The engines were switched off, and the speed reduced to practically
zero. To stretch the hydrophone cable and to assure vertical deployment of the hydrophone, an
additional rope was taped along the hydrophone cable, a weight of 1.5 kg underneath the hydrophone.
Recordings at two distances, 2.5 km and 1 km away from the hydrophone, were made using the
same measurement setup. The experimental vessel was traveling at approximately 20 knots. To avoid
interference, it was ensured that, in the radius of about 10 km, no other vessels were present. The
data acquired at the sampling rate of 16 kHz over a period of 60 s with 960,000 samples were used for
analysis. Figure 1 depicts the recorded ambient noise and ship signals.
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Figure 1. Recordings of (a) ocean ambient noise, and (b,c) the ship at 2.5 km and 1 km away from the 
hydrophone for a duration of 60 s and a sampling frequency of 16 kHz, respectively. 

3. Complexity Methods 

3.1. Multiscale Entropy-Based Dynamical Complexity Measure 

The MSE method quantifies the dynamical complexity of a time series at multiple temporal 
scales. MSE is based on the estimation of the sample entropy of an observed time series at different 
granularities. This is achieved by successively coarse-graining the original time-series data into new 
coarser scale time series and reanalyzing their sample entropies. By plotting the sample entropy 
estimates against the temporal scaling parameter (the degree of coarse-graining), the effect of scale 
on the regularity of patterns in the data can be effectively visualized. Sample entropy quantifies the 
irregularity of a time series. A detailed description of the MSE method can be found in a previous 
publication [24]. 

For the analysis of a one-dimensional discrete time series of N measurements, [x1, …, xi, …, xN], 
we first construct consecutive coarse-grained time series, [yτ(τ)], for different values of the temporal 
scale factor, τ. First, we divide the original times series into non-overlapping windows of length τ, 
trimming any residual <τ elements at the end of the time series. Second, we average all data points 
inside each window. The resulting coarse-grained time-series elements are calculated as: 

Figure 1. Recordings of (a) ocean ambient noise, and (b,c) the ship at 2.5 km and 1 km away from the
hydrophone for a duration of 60 s and a sampling frequency of 16 kHz, respectively.

3. Complexity Methods

3.1. Multiscale Entropy-Based Dynamical Complexity Measure

The MSE method quantifies the dynamical complexity of a time series at multiple temporal
scales. MSE is based on the estimation of the sample entropy of an observed time series at different
granularities. This is achieved by successively coarse-graining the original time-series data into new
coarser scale time series and reanalyzing their sample entropies. By plotting the sample entropy
estimates against the temporal scaling parameter (the degree of coarse-graining), the effect of scale
on the regularity of patterns in the data can be effectively visualized. Sample entropy quantifies the
irregularity of a time series. A detailed description of the MSE method can be found in a previous
publication [24].

For the analysis of a one-dimensional discrete time series of N measurements, [x1, . . . , xi, . . . , xN],
we first construct consecutive coarse-grained time series, [yτ(τ)], for different values of the temporal
scale factor, τ. First, we divide the original times series into non-overlapping windows of length τ,
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trimming any residual <τ elements at the end of the time series. Second, we average all data points
inside each window. The resulting coarse-grained time-series elements are calculated as:

ypτqj “
1
τ

jτ
ÿ

i“pj´1qτ`1

xi (1)

for 1 ď j ď N/τ.
For scale τ = 1, the coarse-grained time series [y(τ)] is identical to the original time series. For

τ > 1, each coarse-grained time series contains
ˆ

N
τ

˙

elements, i.e., the length of the original time series

divided by the scale factor (omitting the remainder of the time series with <τ elements). It is denoted

as yτ = {yτ (1), . . . , yτ (i), . . . , yτ

ˆ

N
τ

˙

}. Defining an m-dimensional sequence vector, µm(i) = {yτ (i),

yτ (i + 1), . . . , yτ (i + m ´ 1)}, a distance measure for two vectors µm(i) and µm(j) with the length of m
points is defined as d(i,j) = max{|yτ (i + k) ´ yτ (j ´ k)|: 0 ď k ď m ´ 1}. The parameter r is defined
as the tolerance for accepting matches, and µm(i) is similar with µm(j) when d(i,j) ď r. The estimated
sample entropy (SE) for each coarse-grained time series [y(τ)] is plotted as a function of the scale factor
τ. Sample entropy depends on two parameters: pattern length m (m ě 1) and tolerance level r for
similarity comparison. We have evaluated the sample entropy for different combinations of pattern
length m (m = 1, 2, 3, 4) and for tolerance r varying between 0.1 ď r ď 0.25. We found that they yield
similar results in MSE analysis. In our study, we have used m = 4 and r = 0.15 [25]. CDCM is calculated
as the sum of sample entropy values over a pre-defined range of scales.

3.2. Statistical Complexity Measure (SCM)

The SCM is an information quantifier that enables the quantification of the degree of physical
structure and dynamical processes present in a time series [26,27]. Given a probability distribution P
of M probabilities associated with time series, the SCM quantifier denoted by CSCM is given by [28]

CSCMrPs “ QjrP, PesHSCMrPs (2)

where

QjrP, Pes “
SrpP` Peq{2s ´ SrPs{2´ SrPes{2

Qmax

and Qmax is the maximum possible value of Qj[P, Pe], obtained when one of the components of P is
equal to one, and all the others vanish, i.e.,

Qmax “ ´
1
2

„

M!` 1
M!

logpM!` 1q ´ 2logp2M!q ` logpM!q


(3)

The quantity HSCM denotes the amount of disorder given by the normalized Shannon entropy
S/Smax [29]. The quantity Qj is disequilibrium and will be different from zero, if there are more
likely states among the accessible ones. The varying range of HSCM [P] is between 0 and 1. When
HSCM « 1, it means that the time series is completely random (for example white noise). When
HSCM « 0, it means that the time series is periodic and deterministic (for example sine signal). When
HSCM is between 0 and 1, it mean that there is some kind of underlying dynamics embedded in the
time series. In order to evaluate the quantifiers HSCM and CSCM, a probability distribution P should
be evaluated from the time series. The Bandt and Pompe [30] methodology was employed in our
analysis due to its well-known advantages such as simplicity, robustness, and very fast computational
evaluation. To utilize the Bandt and Pompe [30] methodology for evaluating the pdf P, it requires
the suitable partitions of M-dimensional embedding space. This is expected to reveal significant
details concerning the ordinal structure of a given one-dimensional time series For the time series
{xt: t = 1 ,..., N}, an embedding dimension M > 1 and embedding time delay d, we are interested in
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“ordinal patterns” of order (length) M generated by (s) ÞÑ (xs´pM´1qd, xs´pM´2qd, . . . , xs´d, xs). This is
assigned to each time s the M-dimensional vector of values at times s, s – d, . . . , s ´ (M ´ 1)d. Clearly,
the greater the M-value, the more of the information in the past is incorporated into our vectors. By
“ordinal pattern” related to the time (s), we mean the permutation π = (r0, r1, . . . , rM´1) defined
by xs´rM´1d ď xs´rM´2d ď, . . . ,ď xs´r1 ď xs´ r0. In order to get a unique result, we set ri < ri´1 if
xs´ri = xs´´ri´´1. Thus, for all the M! possible permutations π of order M, their associated relative
frequencies can be naturally computed by the number of times this particular order sequence is found
in the time series divided by the total number of sequences. It is possible to quantify the diversity
of the ordering symbols (patterns of length M) derived from a scalar time series by evaluating the
permutation entropy [31,32]. The embedding dimension M plays an important role in the evaluation
of the appropriate probability distribution because M determines the number of accessible states M!
and conditions the minimum acceptable length N "M! of the time series that one needs in order to
work with reliable statistics [25]. In our study, we have considered M = 4 and d = 1. Bandt and Pompe
suggested working with 4 ďM ď 6 and specifically considered an embedding delay d = 1 [30]. It has
been recently shown that this parameter is strongly related, if it is relevant, to the intrinsic time scales
of the system under analysis [33,34].

The SCM is not a trivial function of the entropy because it depends on two different probability
distributions: the one associated to the system under analysis, P, and the uniform distribution, Pe.
Furthermore, it was shown that, for a given HSCM value, there is a range of possible CSCM values [35].
Thus, it is clear that CSCM carries important information on correlation structures between the
components of the physical system. A detailed analysis of the statistical complexity behavior
demonstrates the existence of bounds to CSCM that we called Cmax and Cmin. These bounds can
be systematically evaluated, by recourse to a careful geometrical analysis performed in the space of
probabilities (P, Ω), where Ω is the sample space [29]. The corresponding values of Cmax and Cmin

depend only on the probability space’s dimension and on the functional form adopted by the amount
of disorder HSCM and the disequilibrium Qj. The C-H causality plane is the representation space,
obtained by plotting the permutation statistical complexity CSCM vs. permutation entropy HSCM of the
system. The term causality denotes that the temporal correlation between successive samples is taken
into account by using the permutation probability distribution to estimate both quantifiers.

4. Simulation Results

For the purpose of complexity analysis of ocean acoustic data, we simulated signals with varying
SNR. To generate signals with varying SNR, we used recorded ship noise as a signal and background
ambient noise to represent noise. In this paper, we are verifying the sensitivity of complexity methods
for the detection of a low SNR signal. Hence, we consider the ship signal recorded 2.5 km away
from the hydrophone. Table 1 shows the resulting SNR for various combinations of ship signals with
ambient noise. By varying the amplification of the ship signal, different signals of varying SNRs
are generated. We followed this approach because it is challenging to record ships located at great
distances since the estimation of accurate SNRs becomes difficult due to a constantly varying ocean
environment. We considered that the recording of ships at distant locations may result in interference
from other sources. In order to avoid this, we opted to carry out the recording in a well-known and
isolated location. Firstly, we computed the spectrogram of the simulated signal. A spectrogram is
a visual representation of the distribution of acoustic energy across frequencies and over time. The
horizontal axis represents the discrete frequency steps, the vertical axis of a spectrogram typically
represents time, and the amount of power is represented as the intensity at each time-frequency
point [36]. The principle source of complexity in the analysis of passive sonar-recorded acoustic signal
is that all noise from each source in the underwater environment is received. This results in the
presence of a large amount of nonlinear and nonstationary ambient background broadband noise in
the spectrogram. This noise distorts a ship’s signature, causing them to break, particularly at low
frequency ranges, and may introduce points of high energy at spurious frequencies. Identifying these
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from true signals is particularly hard at low-SNR conditions. As is evident from the spectrogram in
Figure 2, as the SNR decreases, the ship tracks, particularly at low frequencies, are not unrecognizable
in background ambient noise. It is evident from the spectrogram that, when SNR = ´14.4 dB, almost
the entire prominent signature of ship tracks is masked by ambient noise.

Table 1. Resulting SNR for various percentages of ship signals in ocean ambient noise.

Percentage of Ship Signal in Ambient Noise SNR (dB)

100 0.9
90 ´0.4
25 ´5.1
10 ´9.1
3 ´14.4
1 ´19.2
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Figure 2. Spectrogram of ambient noise, the ship signal, and varying SNRs of the ship signal.

Next, we evaluated the normalized Shannon’s entropy HSCM and statistical complexity CSCM
for different varying SNR signals. Figure 3a displays the location of ship, ambient noise, and the
varying SNRs of the ship signal on the C-H plane HSCM ˆ CSCM. It can be noticed that there is a
distinct value of HSCM and CSCM for every changing SNR of the ship signal. As the SNR of the ship
signal diminishes, the dynamics of the weak ship signal approaches the dynamics of ambient noise.
As shown in Figure 3a, on the C-H plane, it can be observed that the ambient noise has higher HSCM
(more stochastic) [37] compared to that of the ship signal. It can be clearly observed in Figure 3b,c
that there is a loss of statistical complexity as the SNR decreases. This loss of statistical complexity
as SNR decreases enables the detection of the weak ship signal in ambient noise. In Figure 3a,b, it
is evident that there is a complexity difference between the ship signal at SNR ´19.2 dB (1% of the
ship signal in ambient noise) and ambient noise. This feature of complexity difference enables the
detection of weak ship noise. However, it can be observed from spectrogram in Figure 2 that, beyond
´14.4 dB, the presence of the ship signal is not recognizable in ambient noise. One study [38] has
shown that SNR has good agreement with SCM. This feature enabled the SCM to describe stochastic
resonance by comparing with the SNR [38]. To ensure that the results presented in Figure 3 are not due
to stochastic fluctuations, we computed HSCM and CSCM for the ship signal at ´19.2 dB and ambient
noise at every 9 s (60 s duration, segregated to form seven signals, each of duration 9 s). In Figure 4,
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the computed values of HSCM and CSCM are plotted on the C-H plane, and it can be observed that a
line of threshold can clearly be drawn on the C-H plane to distinguish the presence of a weak ship
signal (´19.2 dB) from ambient noise. Next, we verify how the complexity on the C-H plane varies for
the ambient noises recorded at the depths of 29 m, 50 m, 75 m, 160 m, and 430 m. In Figure 5, it can be
clearly seen that the dynamics of ambient noises lie in the stochastic region of the C-H plane [37], and
on average they have similar dynamics. This conclusion agrees with another study [4], which showed
the existence of nonlinear stochastic fluctuation in ambient noise.
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After verifying the complexity behavior of different ambient noises on the C-H plane, we then
considered the ship signal recorded at 1 km away and ambient noise recorded at the depth of 75 m to
verify the variation of statistical complexity with respect to varying SNRs of the ship signal. Figure 6a
displays the location of the ship, ambient noise, and varying SNRs of the ship signal on the C-H plane
HSCM ˆ CSCM. In Figure 6a, on the C-H plane, it can be seen that the ship signal considered in this
case is more random and less complex compared to that of the ship signal considered in Figure 3a.
Due to the lower CSCM of the ship signal compared to ambient noise, the location of the ship signal
on the C-H plane is below the ambient noise, which is reciprocal of the case considered in Figure 3a.
As a result, it can be seen in Figure 6b that the CSCM is increasing as SNR increases. From the above
two cases, it is clear that the location of complexity on the C-H plane may vary for different recordings
of ambient noise and ship signal; it depends on the dynamics of the ambient noise and ship signal.
Complexity may increase or decrease with varying SNRs. However, there will be a complexity change
with varying SNRs, which will enable the detection of weak ship signal embedded in ambient noise.

Further, we applied the MSE method for evaluating the DCM of simulated signals. The sample
entropy is evaluated for m = 4 and τ = 1 for scale factor 1–20. In Figure 7a, we can observe three
different types of behavior: (1) The entropy measure of the actual ship signal increases on small time
scales [1–5] and decreases on a large time scale [6–20]; (2) the entropy measure for ambient noise
monotonically increases with time scale; (3) when the SNR of the ship signal is above ´5.1 dB, the
entropy curves resemble the ship’s dynamics (i.e., entropy increases at small time scales and decreases
at higher time scales). However, as the SNR of the ship signal decreases beyond ´5.1 dB, the entropy
curve resembles that of ambient noise dynamics (monotonic increase of entropy over the entire range
of the time scale). This similar shifting in dynamics as the SNR of the ship reduces can be observed in
Figure 3a. The MSE method indicates that ship dynamics are more complex; as the SNR of the ship
signal reduces, there is a loss of complexity. This loss of dynamical complexity as the SNR of the ship
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signal reduces can be clearly seen in Figure 7b. This behavior is similar to that shown in Figure 3b,c.
These results exhibit that MSE is capable of detecting the ship signal, even when the ship signal is
distorted with 99% of ambient noise (SNR = ´19.2 dB). As shown in Figure 7b, the high SNR signals
have high dynamical complexity index, which reduces as the SNR decreases. A similar behavior can
be observed in Figure 3b where SCM decreases as SNR reduces.
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Figure 7. (a) MSE analysis of ship signal with varying SNRs evaluated for m = 4 and r = 0.15;
(b) dynamical complexity measure (sum of sample entropy values for scale 1–20, inclusively) vs.
varying SNRs of the ship signal.

Figure 8 represents the normalized complexity of SCM and DCM as a function of the SNR and
the percentage of ship signal in ambient noise. It can be observed that they have similar sensitivity
to the change in SNR. It can be seen that when SNR is below ´5 dB, both SCM and DCM have the
same complexity. As SNR decreases beyond ´5 dB, DCM and SCM deviate, but yet have similar
sensitivities to the change in SNR. It can be observed that, when the SNR is higher than ´5 dB, the
change of complexity is slower, whereas the complexity change is faster for SNRs lower than ´5 dB.
This varying rate of complexity is due to the change in underlying dynamics of the signal based on the
amount of ship signal present. Thus, the complexity measure is sensitive to changes in SNR and can
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efficiently detect the presence of any weak extrinsic artifacts, such as ship noise and marine mammals,
in ocean ambient noise.Entropy 2016, 18, 101 12 of 14 
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5. Conclusions

The ocean acoustic time-series signals measured using underwater sensors remain a largely
untapped source of dynamical information. In this work, we evaluated statistical and dynamical
complexity by employing the C-H plane and MSE, respectively. The results obtained demonstrate
that complexity is sensitive to the change in information in the ambient noise. It is shown that there
is a loss of complexity and change in underlying dynamics as the SNR of a ship signal is reduced.
This feature enables the detection of ship signals distorted by 99% (´19.2 dB) of ambient noise.
Complexity analysis can thus detect properties of ocean acoustic time series that are undetectable
by the traditional spectrogram method. We report, having used DCM and SCM analysis for the first
time to our knowledge, that the complexity of the ocean acoustic time series can be used to detect the
presence of weak ship signatures in background ambient noise. These findings indicate that complexity
measures can be used as a complementary approach, alongside those taken via traditional spectrogram,
for the detection of weak signals in ambient noise. Further work should be taken up to determine the
relationship between the variation of complexity and the varying range of the target.
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