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Abstract: This paper introduces a new memristor-based hyperchaotic complex Lü system (MHCLS)
and investigates its adaptive complex generalized synchronization (ACGS). Firstly, the complex
system is constructed based on a memristor-based hyperchaotic real Lü system, and its properties
are analyzed theoretically. Secondly, its dynamical behaviors, including hyperchaos, chaos, transient
phenomena, as well as periodic behaviors, are explored numerically by means of bifurcation diagrams,
Lyapunov exponents, phase portraits, and time history diagrams. Thirdly, an adaptive controller and
a parameter estimator are proposed to realize complex generalized synchronization and parameter
identification of two identical MHCLSs with unknown parameters based on Lyapunov stability theory.
Finally, the numerical simulation results of ACGS and its applications to secure communication are
presented to verify the feasibility and effectiveness of the proposed method.
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identification; secure communication
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1. Introduction

Chaos and hyperchaos can occur in many nonlinear dynamical systems, which can be depicted
by time series, phase portraits, Poincare sections, bifurcation diagrams, Lyapunov exponents, fractal
dimension, and entropy. The last three parameters in particular are usually used to describe the
complexity of chaotic or hyperchaotic systems quantitatively [1–3]. Compared to chaotic systems,
hyperchaotic systems have a greater randomness and higher complexity and unpredictability, and
so they are more suitable and effective for secure communication and digital cryptography. Since
Rössler firstly reported hyperchaos in a four-variable oscillator in 1979 [4], hyperchaos has been
intensively studied in nonlinear science and technology fields. Hyperchaos can only appear in a
no less than fourth-order autonomous nonlinear system, which has at least two positive Lyapunov
exponents. Therefore, some hyperchaotic systems were constructed based on three-dimensional
chaotic systems [5–8] by adding a variable and a state feedback item, such as hyperchaotic Lorenz
system [9], hyperchaotic Chen system [10], hyperchaotic Lü system [11], hyperchaotic Liu system [12],
and so on. It is worth noting that several memristor-based hyperchaotic systems were proposed
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in recent years. Memristors are considered as the fourth fundamental circuit element with the
characteristics of nonlinearity, non-volatility, nanoscale, and low power consumption [13–15], and the
study of memristors, memristor-based circuits and neural networks have become a key research
front in mathematics, computer science and engineering. In [16], hyperchaos was found in
a modified canonical Chua’s circuit with a cubic nonlinear memristor by means of numerical
simulation and circuit experiment. In [17], hyperchaos and transient hyperchaos were presented
in a Murali–Lakshmanan–Chua’s circuit with a three-segment piecewise-linear active flux-controlled
memristor. In [18], hyperchaos was investigated in a modified Chua’s circuit with two HP memristors
(made by Hewlett-Packard Company, Palo Alto, CA, USA) in antiparallel. In [19], hyperchaos and
topological horseshoes were studied in a modified Lü system with a smooth flux-controlled memristor.
In [20], a four-wing hyperchaotic attractor was generated from a four-dimensional memristive system
with a cubic nonlinear memductance function.

All of the above-mentioned systems are hyperchaotic real systems. However, complex nonlinear
systems, i.e., nonlinear systems with complex variables, are more complicated than real systems,
and can generate more abundant dynamical behaviors, which can be applied to secure communication
for high transmission efficiency and anti-attack ability. Some complex systems, such as complex
Lorenz systems [21–23], complex Chen systems [24,25], complex Lü systems [26], complex Rössler
systems [27], and other complex systems [28–30], have been constructed and investigated theoretically
and numerically. Among the above literatures, hyperchaotic complex systems were studied
in [22–24,29]. To our best knowledge, a memristor-based chaotic complex system was firstly introduced
in [23], and up to now, there are no reports of memristor-based hyperchaotic complex systems.

It is well known that chaos (hyperchaos) synchronization plays a vital role in nonlinear science
and technology, especially for secure communication, digital encryption, signal and control
processing [25,31–33]. In recent years, some efforts are devoted to achieve various synchronization
for complex chaotic and hyperchaotic systems, such as complete synchronization [26–28],
anti-synchronization [24], lag synchronization [33], projective synchronization [34], phase
synchronization [35], combination synchronization [36], and their extended synchronization [29,37–39].
In general, adaptive control schemes should be adopted to realize synchronization and parameter
identification of complex systems with unknown parameters. In [24], the adaptive synchronization and
anti-synchronization problems of a hyperchaotic complex Chen system with unknown parameters was
investigated based on passive control. In [40], a novel adaptive modified projective synchronization
was introduced for synchronizing two non-identical complex systems with uncertain complex
parameters up to a complex scaling matrix. As far as we know, there are no achievements about
complex generalized synchronization (CGS) of complex nonlinear systems. However, generalized
synchronization (GS), i.e., the response system is synchronized with the drive system with respect to
a given functional relationship, is a very flexible synchronization method, which can degenerate to
functional projective synchronization (FPS), modified projective synchronization (MPS), projective
synchronization (PS), complete synchronization (CS), and anti-synchronization (AS) with different
given functions [41–43]. Hence, it is meaningful and challenging to extend GS from real systems
to complex systems, and to realize ACGS for chaotic and hyperchaotic complex systems with
unknown parameters.

Motivated by the above discussions, we firstly construct a memristor-based hyperchaotic complex
Lü system (MHCLS) based on a four-dimensional hyperchaotic real Lü system proposed in [19],
and investigate its nonlinear properties and dynamical behaviors. Meanwhile, we propose a new
synchronization scheme, ACGS, for two identical MHCLSs with unknown parameters based on
Lyapunov stability theory, and used it to realize secure transmission of signals and information. The
rest of this paper is structured as follows: in Section 2, a novel MHCLS is introduced, and its properties
are analyzed theoretically, symmetry and invariance, dissipation, equilibria and stability included. In
Section 3, the dynamical behaviors of the system are revealed numerically by means of bifurcation
diagram, Lyapunov exponents, time history diagrams, phase portraits. In Section 4, an adaptive
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controller and a parameter estimator are designed to achieve ACGS and parameter identification
for two identical MHCLSs. Furthermore, numerical simulations are presented to demonstrate the
proposed scheme and its applications to secure communication. Finally, some concluding remarks are
given in Section 5.

2. A New MHCLS and Its Properties

2.1. Generation of MHCLS

In [19], a memristive hyperchaotic real Lü system was firstly constructed by adding a
flux-controlled memristor to a traditional Lü system, which can be described by:

$

’

’

’

&

’

’

’

%

.
x1 “ a1px2 ´ x1q

.
x2 “ ´x1x3 ` a2x2 ´ a3Wpx4qx1

.
x3 “ x1x2 ´ a4x3

.
x4 “ x1

(1)

where a1, a2, a3, and a4 are positive parameters, xi P R pi “ 1´ 4q, and Wp¨q denotes the memductance
function of a flux-controlled memristor, which is characterized by a smooth continuous cubic
nonlinearity in [15,19] and in this paper:

Wpx4q “ a` bx2
4 (2)

where a and b are positive constants. When a “ 4, b “ 0.01, a1 “ 36, a2 “ 20, a4 “ 3, a3 P r2.67 3.26q,
system (1) operates in hyperchaotic state [18]. By substituting complex variables for real variables
x1, x2 and keeping the others unchangeable, a complex memristive Lü system is generated as:

$

’

’

’

&

’

’

’

%

.
x1 “ a1px2 ´ x1q

.
x2 “ ´x1x3 ` a2x2 ´ a3pa` 3bx2

4qx1
.
x3 “ px1x2 ` x1x2q{2´ a4x3

.
x4 “ px1 ` x1q{2

(3)

where x1, x2 P C, x3, x4 P R, x1, x2 P C denote the complex conjugate variables of x1, x2. If x1 “

x1,r ` jx1,i, x2 “ x2,r ` jx2,i, j “
?
´1, and the subscripts r and i denote the real and image parts of the

complex variables, vectors and matrices throughout this paper, complex system (3) can be equivalent
to a six real first ordinary differential equations (ODEs):

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

.
x1,r “ a1px2,r ´ x1,rq
.
x1,i “ a1px2,i ´ x1,iq

.
x2,r “ ´x1,rx3 ` a2x2,r ´ a3pa` 3bx2

4qx1,r
.
x2,i “ ´x1,ix3 ` a2x2,i ´ a3pa` 3bx2

4qx1,i
.
x3 “ x1,rx2,r ` x1,ix2,i ´ a4x3

.
x4 “ x1,r

(4)

2.2. Dissipation of MHCLS

According to the definition of divergence, we calculate the divergence of system (4):

∇V “
B

.
x1,r

Bx1,r
`
B

.
x1,i

Bx1,i
`
B

.
x2,r

Bx2,r
`
B

.
x2,i

Bx2,i
`
B

.
x3

Bx3
`
B

.
x4

Bx4
“ ´2a1 ` 2a2 ´ a3 (5)

So, the inequality´2a1`2a2´ a3 ă 0 should be satisfied to guarantee that system (4) is dissipative
and converges exponentially.
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2.3. Symmetry and Invariance of MHCLS

From Equation (4), it is easy to find that the system is invariant under the transformation
from px1,r, x1,i, x2,r, x2,i, x3, x4q to p´x1,r,´x1,i,´x2,r,´x2,i, x3,´x4q, p´x1,r, x1,i,´x2,r, x2,i, x3,´x4q and
px1,r,´x1,i, x2,r,´x2,i, x3, x4q for any choice of the values of system parameters.

2.4. Equilibria and Stability of MHCLS

By setting the left of six first ODEs to be zero in system (4), i.e.,
.
x1,r “ 0,

.
x1,i “ 0,

.
x2,r “ 0,

.
x2,i “ 0,

.
x3 “ 0,

.
x4 “ 0, and solving them, we can obtain the equilibrium points of system (4):

#

E1 “
 

px1,r, x1,i, x2,r, x2,i, x3, x4q
ˇ

ˇx1,r “ x1,i “ x2,r “ x2,i “ x3 “ 0, x4 “ c
(

E2,3 “
 

px1,r, x1,i, x2,r, x2,i, x3, x4q
ˇ

ˇx1,r “ 0, x1,i “ ˘p, x2,r “ 0, x2,i “ ˘p, x3 “ q, x4 “ c
( (6)

where c is an arbitrary real constant, p “
a

a4a2 ´ a4a3pa` 3bc2q, and q “ a2 ´ a3pa` 3bc2q. There
are three line equilibria sets, in which E1 represents the equilibrium points on x4 axis, E2 and E3 are
symmetric, whose stability can be analyzed based on Jacobian matrices and Routh–Hurwitz theorem.
The Jacobian matrix of system (4) at E1 is calculated as:

JE1 “

»

—

—

—

—

—

—

—

–

´a1 0 a1 0 0 0
0 ´a1 0 a1 0 0

´a3pa` 3bc2q 0 a2 0 0 0
0 ´a3pa` 3bc2q 0 a2 0 0
0 0 0 0 ´a4 0
1 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(7)

The characteristic polynomial of Equation (7) is:

λpλ` a4qpλ
2 ` δ1λ` δ2q

2
“ 0 (8)

where δ1 “ a1 ´ a2, δ2 “ a1ra3pa ` 3bc2q ´ a2qs. Since a1, a2, a3, a4, a, b are positive parameters,
Equation (8) has a zero root and a negative root (´a4). If E1 is stable, it is required that the condition
δ1 ą 0, δ2 ą 0, i.e., Equation (9), should be satisfied to guarantee the other eigenvalues with negative
real parts based on Routh–Hurwitz theorem:

#

a1 ´ a2 ą 0
a3pa` 3bc2q ´ a2 ą 0

(9)

Due to the symmetry of E2 and E3, we only need to analyze one of them. The Jacobian matrix of
system (4) at E2 is calculated as:

JE2 “

»

—

—

—

—

—

—

—

–

´a1 0 a1 0 0 0
0 ´a1 0 a1 0 0

´q´ a3pa` 3bc2q 0 a2 0 0 0
0 ´q´ a3pa` 3bc2q 0 a2 ´p ´6a3bpc
0 p 0 p ´a4 0
1 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(10)

The characteristic polynomial of Equation (10) is:

λ2pλ` a1 ´ a2qpλ
3 `ω1λ2 `ω2λ`ω3q “ 0 (11)
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where ω1 “ a1 ` a4 ´ a2, ω2 “ a4ra1 ´ a3pa` 3bc2qs, ω3 “ 2a1a4ra2 ´ a3pa` 3bc2qs. There are two zero
roots and four nonzero roots of Equation (8). According to Routh–Hurwitz theorem, the real parts of
the other nonzero roots of Equation (11) are negative if and only if:

a1 ´ a2 ą 0, ω1 ą 0, ω1ω2 ´ω3 ą 0, ω3pω1ω2 ´ω3q ą 0 (12)

By substituting ω1, ω2, ω3 into Equation (12) and considering positive system parameters
a1, a2, a3, a4, a, b, the stability condition can be rewritten as:

$

’

&

’

%

a1 ´ a2 ą 0
a2 ´ a3pa` 3bc2q ą 0

pa1 ` a4 ´ a2qra1 ´ a3pa` 3bc2qs ´ 2a1ra2 ´ a3pa` 3bc2qs ą 0
(13)

Apparently, the second conditions of Equations (9) and (13) cannot be satisfied at the same time,
so system (4) has unstable equilibrium points with any parameters, which indicates that chaotic and
hyperchaotic attractors may occur possibly. By setting a “ 4, b “ 0.01, a1 “ 36, a2 “ 20, a3 “ 3.2, a4 “ 3,
c “ 0, the eigenvalues of the system are calculated as λE1 “ p0,´25.88, 9.88, 9.88,´25.88,´3q,
λE2 “ λE3 “ p´16,´19.48, 0.24` 8.87j, 0.24´ 8.87j, 0, 0q, which indicate E1, E2 and E3 are all unstable.

3. Dynamical Behaviors of MHCLS

In order to explore the dynamical behaviors of MHCLS with different parameter values, we set
a “ 4, b “ 0.01, a1 “ 36, a3 “ 3.2, a4 “ 3, x0 “ p´1` 2j, 1` j, 2,´1q and vary a2 in range of r20, 32s. As
introduced in [23,44,45], transient phenomena can appear in some memristor-based nonlinear systems,
which need much longer computational time to achieve the steady states of the system. Hence, we use
ode45 solver of Matlab®R2013a to simulate the system for plotting bifurcation diagram and calculating
Lyapunov exponents with computational time interval 0–20,000 s and 0–100,000 s separately. As
shown in Figure 1, the bifurcation diagram and Lyapunov exponent spectrum consistently display the
dynamical evolution process of the system with different parameter values. The dynamical behaviors
of the system are associated with the number of the positive Lyapunov exponents. The system operates
in periodic state when all of the six exponents are not greater than zero and in chaotic state when
one positive Lyapunov exponent exists. In particular, there are two positive Lyapunov exponents for
a2 P r20, 20.8s, as shown in the inserted sub-figure of Figure 1b, which indicate hyperchaos occurs in
such range. Specifically, some conventional numerical methods are utilized to describe the dynamical
behaviors in detail as shown in Figures 2–5.

Figure 1. (a) Bifurcation diagram; (b) Lyapunov exponent spectrum.
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3.1. Hyperchaotic Behavior

When a2 “ 20, there are two positive Lyapunov exponents, and a butterfly-shape hyperchaotic
attractor occurs which is similar to the Lorenz attractor, as shown in Figure 2. It is necessary to note that
two negative Lyapunov exponents (i.e., L5, L6) are omitted in Figures 2–5 which makes no influence
on the analytical results.

Figure 2. Hyperchaotic behavior (a2 “ 20).

3.2. Chaotic Behavior

The system operates chaotically with one positive Lyapunov exponent as shown in Figure 3. It is
interesting to note that the system has chaotic attractors with different shapes. For example, a chaotic
attractor has transitory shape between the Lorenz attractor and Chen attractor for a2 “ 23, while
another chaotic attractor is similar to the Chen attractor for a2 “ 29.

Figure 3. Chaotic behavior. (a) Chaos (a2 “ 23); (b) Chaos (a2 “ 29).
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Figure 4. Periodic behavior. (a) Period-3 (a2 “ 21.92); (b) Period-2 (a2 “ 31.1).

Figure 5. Transient behavior. (a) Transient chaos to Period-5 (a2 “ 21.15); (b) Transient chaos to
Period-3 orbit (a2 “ 30.19).
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3.3. Periodic Behavior

As shown in Figure 4, the system operates in Period-3 orbit for a2 “ 21.92 and Period-2 orbit for
a2 “ 31.1, and all of the corresponding Lyapunov exponents are not greater than zero.

3.4. Transient Behavior

The system goes through transient chaos, and then enters into the state of Period-5 for a2 “ 21.15
and Period-3 for a2 “ 30.19, as shown in Figure 5a,b respectively. The Lyapunov exponent L1 is
positive in the beginning, and then tends to zero asymptotically and slowly. The inserted sub-figures
in red of the time history diagrams and phase portraits belong to transient states.

4. ACGS of Two Identical MHCLSs with Unknown Parameters

4.1. Design of ACGS

Consider the following identical drive and response complex systems:

.
x “ Fpxqθ ` f pxq (14)

.
y “ Fpyqθ̂ ` f pyq ` upx, yq (15)

where x “ rx1, x2, ¨ ¨ ¨ xns
T
P Cn is a state complex vector of the drive system (14), and x “ xr ` jxi.

y “ ry1, y2, ¨ ¨ ¨ yns
T
P Cn is a state complex vector of the response system (15), and y “ yr ` jyi. θ P Rm

is a parameter vector of system (14), θ̂ P Rm is a parameter vector of system (15) which denotes
the estimation of θ. Fp¨q is an nˆm complex matrix whose elements are functions of state complex
variables, and Fp¨q “ Frp¨q ` jFip¨q. f p¨q “ r f1, f2, ¨ ¨ ¨ fns

T
P Cn is a vector of complex functions,

and f p¨q “ frp¨q ` j fip¨q. upx, yq “ ru1, u2, ¨ ¨ ¨ uns
T
P Cn is a control vector of system (15), and

upx, yq“ ur ` jui. Define the synchronization error:

eptq “ y´ φpxq (16)

where eptq “ re1, e2, ¨ ¨ ¨ ens
T
P Cn is an error complex vector between systems (14) and (15), and

eptq “ erptq ` jeiptq. φpxq “ rφ1, φ2, ¨ ¨ ¨ φns
T
P Cn is a nonzero map complex vector whose elements are

continuous map complex functions, and φpxq “ φrpxq ` jφipxq.

Definition 1. The response system (14) is complex generalized synchronized with the drive system (15) with
respect to the complex vector map φ The response system (14) is complex generalized synchronized with the
drive system (15) with respect to the complex vector map φ, if there exist a controller upx, yq P Cn and a given
complex map φ : Cn Ñ Cn such that the following property is satisfied:

lim
tÑ8

||eptq|| “ lim
tÑ8

||y´ φpxq|| “ 0 (17)

By differentiating Equation (16), the synchronization error dynamical system can be obtained:

.
eptq “

.
y´ Jpφq

.
x (18)
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where Jpφq P Cnˆn is the Jacobian matrix of φpxq, and Jpφq “ Jrpφq ` jJipφq. By substituting
Equations (14) and (15) into Equation (18), we can get:

.
eptq “ rFpyq ´ JpφqFpxqsθ̂ ` JpφqFpxqrθ ` f pyq ´ Jpφq f pxq ` upx, yq
“

!

rFrpyq ´ JrpφqFrpxq ` JipφqFipxqsθ̂ ` rJrpφqFrpxq ´ JipφqFipxqsrθ

` frpyq ´ Jrpφq frpxq ` Jipφq fipxq ` urpx, yqu
`j

!

rFipyq ´ JrpφqFipxq ´ JipφqFrpxqsθ̂ ` rJrpφqFipxq ` JipφqFrpxqsrθ

` fipyq ´ Jrpφq fipxq ´ Jipφq frpxq ` uipx, yqu

(19)

where rθ “ θ̂ ´ θ is the error between the estimated value θ̂ and the true value θ.

Theorem 1. For the given map complex vector φpxq, the response system (15) can be synchronized with the
drive system (14) asymptotically, if the complex adaptive controller and update laws of the real parameters are
designed as:

upx, yq “´rFpyq ´ JpφqFpxqsθ̂ ´ f pyq ` Jpφq f pxq ´ Keptq
“
 

´rFrpyq ´ JrpφqFrpxq ` JipφqFipxqsθ̂ ´ frpyq ` Jrpφq frpxq ´ Jipφq fipxq ´ Kerptq
(

`j
 

´rFipyq ´ JrpφqFipxq ´ JipφqFrpxqsθ̂ ´ fipyq ` Jrpφq fipxq ` Jipφq frpxq ´ Keiptq
(

(20)

.
rθ“

.
θ̂ “ ´kθrJpφqFpxqs

Teptq
“ ´Kθ tJrpφqFrpxq ´ JipφqFipxqs

T erptq ` JrpφqFipxq ` JipφqFrpxqsTeiptq
) (21)

where K “ diagpk1, k2, ¨ ¨ ¨ knq is the control gain, and Kθ “ diagpkθ1, kθ2, ¨ ¨ ¨ kθmq is the parameter gain, whose
elements are all real positive constants.

Proof. Choosing the Lyapunov function as:

Vptq “
1
2
peT

r er ` eT
i ei ` k´1

θ
rθT

rθq (22)

The time derivative of Vptq along the trajectories of the error system (19) is:

.
Vptq “

.
eT

r er `
.
eT

i ei ` k´1
θ

rθT
.
rθ

“

!

rFrpyq ´ JrpφqFrpxq ` JipφqFipxqsθ̂ ` rJrpφqFrpxq ´ JipφqFipxqsrθ

` frpyq ´ Jrpφq frpxq ` Jipφq fipxq ` urpx, yquT er

`

!

rFipyq ´ JrpφqFipxq ´ JipφqFrpxqsθ̂ ` rJrpφqFipxq ` JipφqFrpxqsrθ

` fipyq ´ Jrpφq fipxq ´ Jipφq frpxq ` uipx, yquT ei

´k´1
θ

rθTkθ tJrpφqFrpxq ´ JipφqFipxqs
T er ` JrpφqFipxq ` JipφqFrpxqsTei

)

(23)

Substituting Equations (20) and (21) into Equation (23), then:

.
Vptq“

!

rJrpφqFrpxq ´ JipφqFipxqsrθ ´ Ker

)T
er `

!

rJrpφqFipxq ` JipφqFrpxqsrθ ´ Kei

)T
ei

´rθT tJrpφqFrpxq ´ JipφqFipxqs
T er ` JrpφqFipxq ` JipφqFrpxqsTei

)

“ ´eT
r KTer ´ eT

i KTei “ ´eT
r Ker ´ eT

i Kei ă 0

(24)

Since Vptq is a positive Lyapunov function, and its derivative
.

Vptq is negative, according to the
Lyapunov stability theorem, the errors, erptq Ñ 0, eiptq Ñ 0 and rθ Ñ 0 as t Ñ 0 . Hence, the ACGS of
systems (14) and (15) is accomplished. ˝
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4.2. ACGS of Two Identical MHCLSs

The system (3) is chosen as the drive system, and the response system is defined as:
$

’

’

’

&

’

’

’

%

.
y1 “ â1py2 ´ y1q ` u1

.
y2 “ ´y1y3 ` â2y2 ´ â3pa` 3by2

4qy1 ` u2
.
y3 “ py1y2 ` y1y2q{2´ â4y3 ` u3

.
y4 “ py1 ` y1q{2` u4

(25)

where y1, y2 P C, y3, y4 P R, y1, y2 P C denote the complex conjugate variables of y1, y2, â1, â2, â3, â4 are
the estimated values of unknown parameters a1, a2, a3, a4, a, b are considered as the known positive
constants, and u1, u2, u3, u4 denote the controllers. The drive system (3) and response system (25) can
be rewritten as the form of systems (14) and (15), where:

Fpxq “

»

—

—

—

–

x2 ´ x1 0 0 0
0 x2 ´pa` 3bx2

4qx1 0
0 0 0 ´x3

0 0 0 0

fi

ffi

ffi

ffi

fl

, f pxq “

»

—

—

—

–

0
´x1x3

px1x2 ` x1x2q{2
px1 ` x1q{2

fi

ffi

ffi

ffi

fl

, θ “

»

—

—

—

–

a1

a2

a3

a4

fi

ffi

ffi

ffi

fl

Fpyq “

»

—

—

—

–

y2, ´ y1 0 0 0
0 y2 ´pa` 3by2

4qy1 0
0 0 0 ´y3

0 0 0 0

fi

ffi

ffi

ffi

fl

, f pyq “

»

—

—

—

–

0
´y1y3

py1y2 ` y1y2q{2
py1 ` y1q{2

fi

ffi

ffi

ffi

fl

, θ̂ “

»

—

—

—

–

â1

â2

â3

â4

fi

ffi

ffi

ffi

fl

, u “

»

—

—

—

–

u1

u2

u3

u4

fi

ffi

ffi

ffi

fl

The map complex vector is given by:

φpxq “ rp1` jqx1, 2x2, x3 ` x4, x2
4s

T
(26)

The Jacobian matrix of the map φpxq is calculated as:

Jpφq “

»

—

—

—

–

1` j 0 0 0
0 2 0 0
0 0 1 1
0 0 0 2x4

fi

ffi

ffi

ffi

fl

(27)

According to Equations (20) and (21), the complex adaptive controller and update laws of the
unknown parameters can be designed as:

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

u1,r “ ´py2,r ´ y1,r ´ x2,r ` x2,i ` x1,r ´ x1,iqâ1 ´ k1e1,r
u1,i “ ´py2,i ´ y1,i ´ x2,i ` x1,i ´ x2,r ` x1,rqâ1 ´ k1e1,i

u2,r “ ´py2,r ´ 2x2,rqâ2 ` rpa` 3by2
4qy1,r ´ 2pa` 3bx2

4qx1,rsâ3 ` y1,ry3 ´ 2x1,rx3 ´ k2e2,r
u2,i “ ´py2,i ´ 2x2,iqâ2 ` rpa` 3by2

4qy1,i ´ 2pa` 3bx2
4qx1,isâ3 ` y1,iy3 ´ 2x1,ix3 ´ k2e2,i

u3 “ py3 ´ x3qâ4 ´ y1,ry2,r ´ y1,iy2,i ` x1,rx2,r ` x1,ix2,i ` x1,r ´ k3e3

u4 “ 2x1,rx4 ´ y1,r ´ k4e4

(28)

$

’

’

’

’

&

’

’

’

’

%

.
â1 “ ´kθ1rpx2,r ´ x1,r ´ x2,i ` x1,iqe1,r ` px2,i ´ x1,i ` x2,r ´ x1,rqe1,is.

â2 “ ´kθ2p2x2,re2,r ` 2x2,ie2,iq.
â3 “ ´kθ3r´2pa` 3bx2

4qx1,re2,r ´ 2pa` 3bx2
4qx1,ie2,is.

â4 “ ´kθ4p´x3e3q

(29)

where e1,r “ y1,r´ x1,r` x1,i, e1,i “ y1,i´ x1,r´ x1,i, e2,r “ y2,r´ 2x2,r, e2,i “ y2,i´ 2x2,i, e3 “ y3´ x3´ x4,
e4 “ y4 ´ x2

4.
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4.3. Numerical Simulations of ACGS

In order to verify the validity and effectiveness of the above-mentioned ACGS scheme, we choose
Equation (26) as the map complex vector, and set the values of parameters and initial conditions
as: a “ 4, b “ 0.01, a1 “ 36, a2 “ 20, a3 “ 3.2, a4 “ 3, â1 “ 20, â2 “ 30, â3 “ 5, â4 “ 1,
x0 “ p´1` 2j, 1` j, 2,´1qT , y0 “ p3´ 4j, 4´ 3j, 6,´2qT , ki “ 20, kθi “ 50pi “ 1´ 4q. The simulation
results are illustrated in Figures 6–8 which consistently indicate that ACGS and parameters
identification of two identical MHCLSs are realized successively. In detail, time history diagrams of
the response system (25) and the map complex functions (26) are plotted in Figure 6, which shows
the response system (25) is synchronized with the drive system (3) with respect to the map complex
vector (26). Figure 7 shows that the complex generalized synchronization errors asymptotically
converge to zero within a second. In Figure 8, the estimated values of unknown parameters converge
to â1 “ 36, â2 “ 20, â3 “ 3.2, â4 “ 3, which indicates the parameter identification of the unknown
parameters of drive system is achieved.

Figure 6. The time histories of the drive system (3) and response system (25).
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Figure 7. ACGS errors between the drive system (3) and response system (25).

Figure 8. The identification process of unknown parameters.

4.4. The Application of ACGS to Secure Communication

In this section, secure communication is investigated based on ACGS of two identical MHCLSs.
The drive system (3) and response system (25) are considered as the transmitter and receiver of
communication, respectively. The original message signal sptq is transformed by means of an invertible
function ϕp¨q, and then added to one of the variables for chaotic encryption, which forms the combined
signal mptq. The transmitter sends its own hyperchaotic signals and the combined signal to the receiver
through communication channels. At the receiver side, the response system can be synchronized
with the drive system with respect to the given complex map vector after a short-time transient
fluctuation. Based on ACGS, the hyperchaotic part of the combined signal can be filtered out, and then
the recovered message signal rptq can be obtained through an inverse transformation ϕ´1p¨q.
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Figure 9. Secure communication based on AGCS.

In order to realize secure communication by numerical simulations, all of the parameters and
initial conditions are set as those in the sub-section 4.3. The original signal is chosen as sptq “ 2sint,
and invertible function as ϕp¨q “ arctanh p¨q, i.e., the hyperbolic arctangent function. The transformed
signal is assumed to be added to the variable x3, and then the combined signal can be described as
mptq “ arctanh psptqq ` x3. The simulation result is shown in Figure 9, wherein the original signal
sptq, the combined signal mptq, the recovered signal rptq, and the error eptq “ rptq ´ sptqare depicted
respectively. It is obvious that the original signal is encrypted and recovered successfully.

5. Conclusions

This paper introduces a new memristor-based hyperchaotic complex Lü system, and analyzes its
properties and dynamical behaviors theoretically and numerically, which indicate that the system has
three line sets of equilibrium points and can generate abundant behaviors, such as periodic operations,
transient phenomena, hyperchaotic and chaotic attractors with different shapes. Furthermore,
generalized synchronization is extend from real systems to complex systems, and an adaptive
complex generalized synchronization controller and a parameter estimator are proposed to synchronize
two identical hyperchaotic complex systems with unknown parameters. The corresponding simulation
results agree well with the proposed scheme, and demonstrate that the response MHCLS is
synchronized with the drive MHCLS with respect to a given complex functional relationship, and
the identification of unknown parameters is achieved successfully. The proposed ACGS method is
not only used for synchronizing identical MHCLSs, but also used for synchronizing any identical
chaotic or hyperchaotic complex systems with unknown parameters, which can be applied to secure
communication for higher secure performance and transmission efficiency due to its complex variables,
unknown parameters and unpredictable map complex vector.
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