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Abstract: Power quality signal feature selection is an effective method to improve the accuracy and
efficiency of power quality (PQ) disturbance classification. In this paper, an entropy-importance
(EnI)-based random forest (RF) model for PQ feature selection and disturbance classification is
proposed. Firstly, 35 kinds of signal features extracted from S-transform (ST) with random noise
are used as the original input feature vector of RF classifier to recognize 15 kinds of PQ signals
with six kinds of complex disturbance. During the RF training process, the classification ability of
different features is quantified by Enl. Secondly, without considering the features with zero Enl,
the optimal perturbation feature subset is obtained by applying the sequential forward search (SFS)
method which considers the classification accuracy and feature dimension. Then, the reconstructed
RF classifier is applied to identify disturbances. According to the simulation results, the classification
accuracy is higher than that of other classifiers, and the feature selection effect of the new approach
is better than SFS and sequential backward search (SBS) without Enl. With the same feature subset,
the new method can maintain a classification accuracy above 99.7% under the condition of 30 dB or
above, and the accuracy under 20 dB is 96.8%.

Keywords: power quality; power quality disturbances; random forest; S-transform; feature selection;
entropy-importance; sequential forward search

1. Introduction

Power quality (PQ) is the main control target of the smart grid, and PQ signal recognition is the
foundation of PQ problem management [1]. With the wide access of distributed generators (DGs)
to the power system, many renewable power sources with random output characteristics, such as
distributed solar energy and wind power, have a negative impact on the PQ of the power system [2].
Then, it is necessary to carry out in-depth monitoring and analysis of the PQ in all points accessed by
DGs [3]. Therefore, the massive PQ data collected from a large number of monitors represents a higher
real-time requirement for any PQ signal classification system [4].

Features extracted from the time-frequency analysis (TFA) results are always used as the input of
the classifier for PQ disturbances identification. Previous studies have carried out a lot of in-depth
research on TFA of PQ signals, including Hilbert-Huang transform (HHT) [5,6], S-transform (ST) [7-9]
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and discrete wavelet transform (DWT) [10-12]. In the current research results, the environmental
noise is the main factor which affects the PQ classification accuracy, especially in the distribution
network. ST has been proved to have good anti-noise abilities among all the TFA methods [7-9].
Feature extraction of PQ signals using ST and its improved form has been paid more and more
attention. Nevertheless, existing methods extract a large number of features according to the ST results,
but the ability of the features to identify the disturbances lacks effective analysis. The high feature
vector dimension increases the complexity, reduces the classification efficiency and accuracy of PQ
disturbances classifier. Moreover, the feature vectors used in different research are diverse. This will
enhance the difficulties of constructing a unified PQ signal classifier. For the sake of simplifying the
classifier and enhancing the classification efficiency, it is essential to add the feature selection step in
the PQ disturbances recognition process.

In past studies, feature selection was either in accordance with the filter method based on the
features’ statistical characteristics, which made it difficult to analyze the classification ability of
the feature combination [13,14], or used the wrapper method combined with the particle swarm
optimization [15], genetic algorithm [16], rough set theory [17] or other intelligent algorithms, then
according to the classification results chose the optimal or sub-optimal feature subset, but the efficiency
of the search algorithm is unsatisfactory. Meanwhile, existing feature selection methods have to select
different feature subsets under different noise conditions, and this limits the application possibilities of
feature selection methods in practical engineering.

From the perspective of classifier design steps, neural network (NN) [18-20], support vector
machine (SVM) [21-23], fuzzy rule (FR) [24], decision tree (DT) [25-27] and extreme learning machine
(ELM) [28] are commonly applied to the classification of PQ signals, and all achieve good results.
However, the NN and SVM have to set more parameters. This will lead to the difficulty of designing
the classifier and makes it easier to fall into over-fitting. FR and DT have simple structures with
higher classification accuracy and efficiency than NN and SVM [24-27], but it is difficult to choose the
optimization threshold of the classification threshold of FR and DT.

Random forest (RF) is an excellent classifier model with advantages such as good anti-noise
performance, less parameters and less influence of the over-fitting problem. Moreover, RF has better
generalization ability than DT [29]. In the verification of multiple public data sets, the classification
accuracy of RF is the highest among all methods [30]. What’s more, RF is an effective method for the
integration of feature selection. During the training process, classification ability of each feature can
be obtained according to the training results of RF’s every node. Then the optimal feature subset can
be selected out on the basis of this. The analysis process of feature selection method based on RF is
parallel to the filter method. At the same time, RF can adjust the optimum feature subset based on the
classification accuracy on the new testing sets of different feature subsets as the wrapper approach,
but more efficient. The feature selection process of RF takes both the statistical conclusion of the
characteristics and the classification results of the classifier into consideration. It combines the virtues
of the filter method and wrapper method. Therefore, RF has good applicability for feature selection.

For the sake of finding the optimizing feature subset and increasing the classification accuracy
of PQ disturbances, a new method for PQ disturbances feature selection and classification using a
entropy-importance (Enl)-based RF is proposed in this paper. Firstly, 15 kinds of PQ signals including
six kinds of complex disturbance are simulated by a mathematical model. Then, the simulation signals
are processed by ST to extract 35 kinds of commonly used features for PQ classification. Secondly,
a RF classifier used for recognizing PQ signals is constructed with the original feature subset as the
input vector. According to Enl score of features obtained from the RF training process, classification
ability of each feature can be sorted to construct the optimal subset. Features with zero Enl score will
not be selected. On this basis, a sequential forward search (SFS) strategy is adopted to determine the
optimal feature subset and RF based classifier with optimal feature subset is reconstructed. Finally, the
optimized RF classifier is used to recognize PQ signals. Simulation experiment results show that the
new method is valid.
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The remainder of the paper is designed as follows: Section 2 presents the basic theory and
the classification process of RF. In Section 3, it describes the details of the new approach including
the segmentation of non-leaf node, the calculation of Enl of each feature, and the feature selection
strategy based on Enl. Then, the results of different simulation experiments are shown and discussed
in Section 4. Finally, Section 5 presents the conclusions of this paper.

2. Classification by Random Forest

RF combines DT with ensemble learning to form a new kind of tree classifier:

{f(x,06), k=1, )

where f(x,0;) is a meta classifier, and it is a tree construct classifier that can be formed by several
algorithms; x is the input vector; J; is a random vector, independent with each other but sharing the
same distribution, and it determines the growth of a single decision tree. RF generates a random
feature subset in each non-leaf node of DT, and chooses the feature contained in this subset with the
best classification results to split this node. Finally, RF summarizes the classification results of different
DTs to achieve the optimal classification result. Compared to DT, RF overcomes the weakness of
generalization ability, and improves the classification accuracy without significantly increasing the
amount of computing.

2.1. RF Classification Capability Analysis

Generalization error is an important index to measure the extrapolation ability of the classifier.
The classification ability of RF can be measured by analyzing its generalization error [29]. Given a
classifier set F(x) = {f1(x), fa(x), ..., fxr(x)}, and the training set of each classifier is obtained from the
original data set (X, Y) by random sampling. The margin function is:

marg(X,Y) = ave,IN(fy(X) = Y) ~ max aveIN(fi(X) = @)

here, IN(-) is an indicator function, avei(-) is average value, Y is the correct classification of the vector,
j is the incorrect classification of the vector.

The margin function measures the degree of the average correct classification number of classifiers
exceeds the average number vote for any other class. The larger the margin function, the better the
classification performance. The generalization error is calculated by:

PE* = Pxy(marg(X,Y) <0) 3)

here, the subscript X, Y represent the definition of space.
InRF, fi(X) = f(X, ;). With the growth of tree number of RF, it can be known from the Strong
Law of Large Numbers and the tree structure that:

lim PE* = Pyy(P5(f(X,8) = y) — maxPs(f(X, ) = j) < 0) )

k—o0 j#Y

where Ps(f(X,0) = y) represents the probability of the classification results as the right class and
n;a)?(P(; (f(X,6) = j) represents the maximum probability of the classification results as any other class.
]

Equation (4) denotes that PE* tend to a constant as the tree number increases, so RF is not easy to

produce over-fitting problem. The margin function of RF is given as:

marr(X,Y) = Ps(fi(X,8) = Y) — r};&agpa(f(x, 8) =7 ©)
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Then, the strength of {f(x, J;)} is the mathematical expectation of marr(X,Y):
str = Exymarr(X,Y) 6)
Assuming str > 0, according to Chebychev’s inequality, there is:

var(marr)

PE* <
str?

@)
where var(marr) is the variance of marr(X,Y). In order to make more detailed description about
var(marr), let:

~

J(X,Y) = argmaxPs(f (X, 6) = j) ®)
j#Y

Then: A
) = (X, Y))

marr(X,Y) = Ps(f(X,0) =Y) — Ps(f(X,0) =
= (X, V)]

)

=Es;[IN(f(X,0) =Y)—IN(f(X,9)
The margin function of meta classifier is defined as:
rmarg(,X,Y) = IN(f(X,8) = Y) — IN(f(X,0) = /(X,Y)) (10)

Therefore, marr(X,Y) is the expectation of rmarg(s, X,Y) in regard to 6. No matter what function
h is, there is:
[Esh(6)"] = Eszrh(8)h(&) an

here 6 and ¢’ are independent with each other and share the same distribution, so:
marr(X,Y)* = Es srmarg(8, X, Y )rmarg(6', X,Y) (12)
According to Equation (12), it can be obtained:

var(marr) = Eg g (covy yrmarg(s, X, Y)rmarg(é', X,Y))

= Es(pl6,8)sd(5)sd(5) (13

when J and ¢’ are holding fixed, p(6, 8’) is the correlation between rmarg (s, X, Y) and rmarg(6', X, Y);
sd(6) and sd (') are the standard deviation of rmarg(8, X,Y) and rmarg (8, X, Y) respectively. Then the
conditional functional of var(marr) need to be met are obtained:

var(marr) = p(Egsd(6))?
{ var(marr) < p(Egvar(d)) (14)

where p is the mean correlation value. Then we have the function as follows:

Esvar(6) < E;(Exyrmarg(é, X, Y))? = str? (15)
Esvar(6) < 1—str?
Put (7), (14), and (15) together yields the function as:
p(1 -5
PE* < 2 (16)

When increasing the strength of the individual classifiers or decreasing the correlation between
classifiers, the generalization error tends to a loose upper bound, so RF has good generalization ability.
Meanwhile, with the increase of forest size, so it is not easy for RF to fall into over-fitting.
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2.2. The Classification Process of RF

RF has a simple structure, good generalization ability and anti-noise performance [31]. Compared

to other classifiers, the time complexity of RF is lower, and RF can achieve higher classification
accuracy. Thus, RF can meet the application needs of massive PQ signal classification. The steps for
the classification of RF are described as follows:

1.

The boot-strap resampling technique is used to extract the training set for every tree in RF, and
the size of training set is equal to the original data set. Samples that haven’t been extracted are
composed of out-of-bag data set. K training sets and out-of-bag data sets will be extracted by
repeating the above process k times.

K decision trees are built according to the k training sets to construct a RE.

During the training process, m, features are randomly selected from the original feature space
to construct candidate segmentation feature subset for each non-leaf node. Most studies let
Miry = +/t, where t is the number of original features.

Each feature in the candidate segmentation feature subset is used to split the node, and the feature
with the best segmentation performance is finally chosen as the segmentation feature of the node.
Repeat step 3 and step 4 until all non-leaf nodes segmented, then the training process is over.
When using RF to classify PQ signals, a simple majority voting method is used to output the
optimal classification results according to the classification results of each classifier.

The steps of the classification process are presented in Figure 1.

Use boot-strap resampling technique to extract training set for
every tree in RF

l

Build k decision trees according to the k training sets

}

m,_features are randomly selected from the original feature space
—* to construct candidate segmentation feature subset for each non-
leaf node

I

The feature with the best segmentation performance is finally
chosen to split the node

All the non-leaf
nodes are split ?

A simple majority voting method is used to output the optimal
classification results according to the classification results of each
tree

Figure 1. Flow diagram of the RF based classification.
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3. Construction of RF and Feature Selection of PQ Signals Based on Enl

3.1. Enl Calculation and Node Segmentation

When using a feature to split the non-leaf node of a decision tree, there are two kinds of indicators
to measure the segmentation effect: information gain [32] and Gini index [33]. Information gain
is calculated from entropy like mutual information, which is always used for feature selection [34].
Applying these two indicators to RF, the Enl and Gini-importance (Gil) of each feature can be obtained,
respectively. During the training process, the Enl method can set the importance of features that have
no or little contribution to the classification to zero. Based on this, the Enl method can greatly reduce
the feature selection workload when compared to the existing Gil method. The features with the zero
EnI do not have to be considered. Therefore, Enl based feature selection method is able to meet the
actual needs of mass PQ signal classification.

Entropy is a quantitative measurement method of data carrying information. The more uniform
the data distribution, the greater its entropy value. Assuming the node, which is going to be split, is
composed of a set S, and S contains s samples and n class. The entropy of the node is given as:

H(s1,s2, - ,54) = —2 Plog, (Px) (17)
k=1

where, sy is sample number in class k (k = 1,2, --- ,n); Py = si/s expresses the possibility that a sample
belongs to class i. When S contains only one class, its entropy is zero; when all the classes in S are
distributed evenly, the maximum value of the information entropy is taken.

Assuming when RF uses a feature A to split the node, S can be divided into m subsets S i where
j=1,2,---,m. Then the entropy of A splitting the node is defined as:

m
S1j4 -+ Sy
Egpiig = ), ————Hlstj, -+ ,5y)) (18)
j=1

where, s;; is the number of sample of class 7 in subset S;. According to Equations (17) and (18), the
information gain of A splitting the node can be obtained as:

Gain(A) = H(s1, - ,5n) — Expii (19)

The information gain of each feature in the candidate segmentation feature subset can be calculated
according to Equations (17)-(19). According to the new feature selection method, the feature which
has the highest Gain value is chosen as the segmentation feature of this node, and the information gain
of other features (all features in original feature space except feature A) is set to zero:

Gain(A) feature A has the highest information gain

20
0 else (20)

Gain(A) = {

After the completion of the RF, the Enl of a feature can be obtained by linear superposition of its
all information gain values:

n
Enl(A) = ) Gain(A) (21)
i=1
where n represents the all non-leaf node number in RF.

Finally, the importance of each feature can be analyzed by sorting all features in descending order
according to their Enl. The feature with higher Enl will be used to construct the optimal feature set.
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3.2. Forward Search Strategy of PQ Feature Selection Based on Enl

In this paper, the SFS algorithm [35] based on Enl is proposed for PQ feature selection. Firstly,
according to the descending sort order of the features based on their important degree, the feature is
added to the selected feature subset Q one by one. Subset Q is used as the input vector of RF to retrain
a classifier when a new feature is added, and the classification accuracy need to be recorded. Then, the
process is repeated until all features are added into Q. Finally, the optimal feature subset is determined
by taking both classification accuracy and the dimension of selected feature subset into consideration.
The process of feature selection needs to be performed only one time to train the RF classifier. The flow
diagram of the new method is shown as Figure 2.

Start

Import training setand test set, set Q=zand j=1

Use ST to extract 35features to make up the
original feature space M

Calculate information gain of each candidate
feature

Select the feature with the highest information
gain as segmentation feature

Information gain of unselected featureis set to
Zero

Use linear superposition method to obtain the
Enl values of all features

Sort the features in descending order according
to their Enl values

N

[ Re-save the features to the M in order |
v

ul M=M-M[jl. 0=0+MU |
v

Use Q as the input vector to train a RF dlassifier,
and record the classify accuracy on test set

!
| jo+1

=357

Yes
Select the optimal feature subset according to
dlassification accuracy and feature subset
demension

Figure 2. Flow diagram of the new feature selection method.

4. Experimental Results and Analysis

Through the simulation contrast experiment, the new method is analyzed and validated in aspects
of feature selection methods, classifier performance, and signal processing methods.
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4.1. Feature Extraction of PQ Signals

Referring to [13,15], 15 kinds of PQ signals are generated by simulation, including normal (CO0),
sag (C1), swell (C2), interruption (C3), flicker (C4), transient (C5), harmonic (C6), notch (C7), spike (C8),
harmonic with sag (C9), harmonic with swell (C10), harmonic with flicker (C11), sag with transient
(C12), swell with transient (C13) and flicker with transient (C14). The sampling frequency is 3.2 kHz,
and the fundamental frequency is 50 Hz. For the sake of improving the capability of features extracted
from ST, according to literature [25], the different values of the window width factor are given in
different frequency domain. The original features extracted from ST modular matrix (STMM) are
described as follow [13]:

Feature 1 (F1): the maximum value of the maximum amplitude of each column in STMM (A ).
Feature 2 (F2): the minimum value of the maximum amplitude of each column in STMM (A,,i,,).
Feature 3 (F3): the mean value of the maximum amplitude of each column in STMM (Mean).
Feature 4 (F4): the standard deviation (STD) of the maximum amplitude of each column in STMM
(STD).

Feature 5 (F5): the amplitude factor (A ) of the maximum amplitude of each column in STMM,

defined as A F= Amax + Amin — 1

intherange 0 < Ay < 1.

Feature 6 (F6): the STD of the maximum amplitude in the high frequency area above 100 Hz.
Feature 7 (F7): the maximum value of the maximum amplitude in the high frequency area above
100 Hz (AxFmax)-

Feature 8 (F8): the minimum value of the maximum amplitude in the high frequency area above
100 Hz (Agemin)-

Feature 9 (F9): AxFmax — AHFmin-

Feature 10 (F10): the Skewness of the high frequency area.

Feature 11 (F11): the kurtosis of the high frequency area.

Feature 12 (F12): the standard deviation of the maximum amplitude of each frequency.

Feature 13 (F13): the mean value of the maximum amplitude of each frequency.

Feature 14 (F14): the mean value of the standard deviation of the amplitude of each frequency.
Feature 15 (F15): the STD of the STD of the amplitude of each frequency.

Feature 16 (F16): the STD of the STD of the amplitude of the low frequency area below 100 Hz.
Feature 17 (F17): the STD of the STD of the amplitude of the high frequency area above 100 Hz.
Feature 18 (F18): the total harmonic distortion (THD).

Feature 19 (F19): the energy drop amplitude of 1/4 cycle of the original signal.

Feature 20 (F20): the energy rising amplitude of 1/4 cycle of the original signal.

Feature 21 (F21): the standard deviation of the amplitude of fundamental frequency.

Feature 22 (F22): the maximum value of the intermediate frequency area.

Feature 23 (F23): energy of the high frequency area from 700 Hz to 1000 Hz.

Feature 24 (F24): energy of the high frequency area after morphological de-noising.

Feature 25 (F25): energy of local matrix.

Feature 26 (F26): the summation of maximum value and minimum value of the amplitude of STMM.
Feature 27 (F27): the summation of the maximum value and minimum value of the maximum
amplitude of each column in STMM.

Feature 28 (F28): the root mean square of the mean value of the amplitude of each column in STMM.
Feature 29 (F29): the summation of the maximum value and minimum value of the standard
deviation of the amplitude of each column in STMM.

Feature 30 (F30): the STD of the STD of the amplitude of each column in STMM.

Feature 31 (F31): the mean value of the minimum value of the amplitude of each line in STMM.
Feature 32 (F32): the STD of the minimum value of the amplitude of each line in STMM.
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Feature 33 (F33): the root mean square of the minimum value of the amplitude of each line
in STMM.

Feature 34 (F34): the STD of the STD of the amplitude of each line in STMM.

Feature 35 (F35): the root mean square of the standard deviation of the amplitude of each line
in STMM.

The amplitude of voltage of a sampling point is x;, where 1 <i < M, and M is the number of all
sampling points. Then the relevant calculation formulas of features are described as follow:

1M
Mean: X = — i
ean: X Mi:§1x1

STD: 0srp = 1 | = 3 (3 — 7)2
-USTD = Mi:l i .
Skewness: 0, = ;% (x; —%)°
- Uskewness = (M— 1)U'STD = i :
Kurtosis: o s = ;% (x; — %)
+ Vkurtosis = (M — 1)0§TD = i .
And the calculation formulas of F19 and F20 are given by:
F19 — mm[Rms(m)]‘
Ro
20 — max[Rms(m)].
Ro

where Rms(m) is the root mean square (RMS) of each 1/4 cycles of the original signal, and R is the
RMS of standard PQ signal with no noise.

Moreover, sampling point in the matrix of ith row and jth column is x;;, where Ny < i < Ny,
M; < j < My, Ny, N;, My and M; are the starting line, the end line, the starting column and the
ending column of the required submatrix for the calculation of relevant energy features respectively.
The calculation formula of energy relevant features is described as follows:

Energy: Genergy = 2, >, }xij|2.

=Ny j=M;

The calculation methods of these features mainly refer to [13,15]. Among them, the calculation
methods of features from F1 to F24 refer to [13], and calculation methods of features from F26 to
F35 refer to [15]. Moreover, there are six kinds of complex disturbances needed to be classified,
and the classification of complex disturbances with transient is easy to be disturbed by noise and
time-frequency energy of starting and ending points of voltage sag. Therefore, F25 is introduced for
identification of transient oscillation components.

The calculation method of F25 is described as follows:

(1)  Using the maximum of the summation of amplitudes of each row in oscillation frequency domain,
and the maximum of the summation of amplitudes of each column in the full time domain, to
locate the possible time-frequency center point of oscillation.

(2)  Thelocal energy of the final 1/4 cycle and the +150 Hz range of this time-frequency center point
is calculated as F25.

The above features reflect the disturbance characteristics of different types of PQ disturbances
from four aspects, which are disturbance amplitude, disturbance frequency, energy of high frequency
and mutations of original signal energy. When a disturbance occurs, the values of some features
will have big difference between different types of disturbances. Then the features which reflect the
disturbance index can be used to recognize disturbances. Eleven features can distinguish different
disturbances according to disturbance amplitude, including Fl1to F5, F21 and F26 to F30. Nineteen
features can distinguish different disturbances according to disturbance frequency, including Fé6 to F18,
F22 and F31 to F35. And these features reflect the main frequency components of disturbances and
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the amplitude spectrum differences. Three features can distinguish higher harmonics from transient
oscillations according to the energy in high frequency area, including F23 to F25. Finally, based on
the characteristic that the original signal amplitude of disturbances with sag, interruption and swell
will mutate after a disturbance occurs, two features, F19 and F20, can distinguish these three kinds of
disturbances by calculating the energy of 1/4 cycle of the original signal.

4.2. Feature Selection and Classification Effect Analysis of the New Method

Fifteen types of PQ disturbances with random disturbance parameters and signal-to-noise ratio
(SNR) between 50 dB and 20 dB were simulated in Matlab 7.2. Five hundred samples of each type
are generated to train the RF classifier for feature selection. Moreover, 100 samples of each type, with
random disturbance parameters and the SNR are 50, 40, 30 and 20 dB respectively, are generated
to verify the feature selection effect and classification ability of the new method under different
noise environments.

According to the new method, features with non-zero Enl value will be added to selected feature
subset one after another following the order from big to small of their Enl values. Whenever a feature
is added, RF is used to verify the classification effect of this feature subset. Using information gain and
Gini index as the basis of the node partition respectively, the two different importances of features are
shown in Figure 3a,b. It can be known from Figure 3a that there are 20 features with their Enl value is
0. This means these features have no or very little effect on the node segmentation. Therefore, when
searching the feature space, the new method needs only to iterate 15 times while Gil method needs to
iterate 35 times. The efficiency of the new method in feature selection is better than Gil based method.

Feature label

Gil value

@) (b)
Figure 3. (a) Enl value of features; (b) Gil value of features.
According to Figure 3a, F4, F5, F22 and F25 have the highest Enl value. As explained in Section 4.1,

F4 represents the standard deviation of the maximum amplitude of each column in STMM. Then
the values of the standard deviation of disturbances such as sag, swell and interruption are large.
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The values of the STD of steady-state disturbances such as normal voltage, flicker and spike are small
respectively, so F4 can divide all kinds of disturbances into two categories. F5 represents the amplitude
factor of the maximum amplitude of each column in STMM. Because the values of F5 of swell, sag
and other types of disturbances are in different intervals, F5 can distinguish swell and sag with others.
F22 represents the maximum value of the intermediate frequency area, and it can distinguish harmonic
with other disturbances. F25 represents the energy of local matrix. According to the characteristic that
the disturbance frequency of transient is high, F25 can distinguish transient with other disturbances.

Figure 4a—c illustrates the classification performances of combinations of the first four features
in Figure 3a in the condition of SNR = 0. Figure 4a shows the scatter plot of combination of F5, F22
and F25. It can be seen that C1 and C5, C2 and C4, C7 and C12 and C6 and C15 exist cross sample.
The other types of disturbance are clearly divided. Then F4 and F5 are used for further segmentation
as Figure 4b shows. Although C2 and C4 still exists cross in Figure 4b, the cross number is sharply
reduced. C7, C12, C6 and C15 are completely separated. As shown in Figure 4c, C1 and C5 can be
clearly divided by combination of F4 and F22. Therefore, the four features with the highest Enl value
can distinguish 15 types of PQ signal effectively. The validity of the new method is proved.
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Figure 4. (a) Scatter plot of F5, F22 and F25; (b) Scatter plot of F4 and F5; (c) Scatter plot of F4 and F22.

Figures 5 and 6 present the classification effect and training error of different feature subsets with
different SNR respectively. With the feature number increased one by one, the classification accuracy is
increasing and the training error is decreasing. As shown in Figures 5 and 6 the classification accuracy
and the training error tend to be stable when the feature subset dimension of the new method exceeds
four, while Gil method needs at least ten features to achieve satisfying classification results.



Entropy 2016, 18, 44 12 of 21

When the number of selected feature is 4 or 10, respectively, the details of the classification
accuracy of Enl method and Gil method are listed in Tables 1-4. From these four tables, it can be seen
that Enl method can achieve higher classification accuracy with the same feature subset under the high
noise environment (the SNR of PQ signals is 20 dB).

110 . 110 1
2100 F betne oo e e e e 5123 Jaseezisiihiiiissiinhiithinn
o) ceee SRR 0 (T e e
& --ope--- SNR=40dB g 80 : | - 1
Z 80 ----e~—-- SNR=30dB || Z [ ! === SNR=30dB | |
2 ----¢---- SNR=20dB g !e ! | e SNR=20dB |
c 70t 1 £ 60 ! !
Z 60| I |
= T 40 |
2 50¢ 2 5 |
g s Ny :
© 40 Yo 3

‘ I ‘ ‘ . .
g 5 10 15 %5 10 15 20 25 30
The number of features The number of features
(@) (b)

Figure 5. (a) Classification accuracy of different feature subsets obtained from Enl method; (b)
Classification accuracy of different feature subsets obtained from Gil method.
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Figure 6. (a) Training error of different feature subsets obtained from Enl method; (b) Train error of
different feature subsets obtained from Gil method.

Table 1. Classification of new method (the number of feature is 4, SNR is 20 dB).

Class C0 C1 c2 €3 C4 C5 C6 C7 C8 (C9 Cio C11 C12 C13 C14
Co 86 0 0 0 1 9 0 0 4 0 0 0 0 0 0
C1 0 87 0 5 0 0 0 0 0 0 0 0 8 0 0
C2 0 0 94 0 0 0 0 0 0 0 0 0 0 6 0
C3 0 5 0 94 0 0 0 0 0 0 0 0 1 0 0
C4 0 0 0 0 86 0 0 0 0 0 0 0 0 0 14
C5 0 0 0 0 0 99 0 1 0 0 0 0 0 0 0
Ceé 0 0 0 0 0 0 96 0 3 0 0 1 0 0 0
C7 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0
C8 1 0 0 0 0 0 0 0 96 0 3 0 0 0 0
C9 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0

C10 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0

C11 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0

C12 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0

C13 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0

C14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100

Comprehensive accuracy: 95.9%
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Table 2. Classification of Gil method (the number of feature is 4, SNR is 20 dB).

C2 C3 C4 C5 Cé6 Cc7 C8 c9 Cio0 Ci11 Ci12 Ci13 Ci14

C1

Class C0

57

37

Co

22

63

C1

82

10

C2

98

C3

15

84

C4

49

51

C5

32

32

33

Cé6

17

80
64

Cc7

28

C8

14
35

86

c9
Cc10
C11
C12
C13
C14

29

30

74

16

15

85

67

33

98

Comprehensive accuracy: 66.3%

Table 3. Classification of new method (the number of feature is 10, SNR is 20 dB).

C1 Cc2 C3 C4 C5 Coé Cc7 Cc8 c9 Cio Ci11 C12 C13 Ci14

Class C0
Co

91

87

c1

94

C2

98

C3

14

86

C4

C5

Cé6

Cc7

C8

C9

C10
C11
C12
C13
C14

100

100

Comprehensive accuracy: 97.1%

Table 4. Classification of Gil method (the number of feature is 10, SNR is 20 dB).

C1 Cc2 C3 C4 C5 Co6 Cc7 (&} cC9 Cio Ci1 Ci2 C13 Ci4

Class CO
Co

90

90

C1

94

Cc2

97

C3

91

C4

100

0
0
0
1

C5

94

C6

Cc7

99

(&}

99

c9

100

C10
C11
C12
C13
C14

98

100

100

100

Comprehensive accuracy: 96.8%
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4.3. Comparison Experiment and Analysis

The feature selection result of the new method is compared with Gil method, SFS algorithm [35]
and sequential backward search (SBS) [36] to testify the validity of the new approach. The number
of selected feature based on Gil method, SFS method and SBS method are 10, 13 and 15 respectively.
The new method considers two cases, including the dimension of the feature subset are 4 and 10
respectively. Moreover, the original feature set is used as a contrast as well.

The selected features after feature selection segment by the new method are {F4,F5,F22,F25} and
{F1,F3,F4,F5,F18,F21,F22 F25 F26, F33}, respectively.

The selected features after feature selection segment by the Gil method are {F5,F9,F10,F11,
F18,F19,F22,F25,F27,F31}.

The selected features after feature selection segment by the SFS method are {F2,F4,F5,F7,F10,
F16,F18,F19,F22,F26,F27,F29,F31}.

The selected features after feature selection segment by the SBS method is {F1,F3,F4,F6,F11,F13,F18,
F22,F23,F25,F27,F28,F29,F31,F33}.

For the sake of verifying the validity of the feature selection results of the new method, four kinds
of classifier, including RF, SVM [14], PNN [13] and DT, are used to classify 15 kinds of PQ signals
under the condition of different noise environments and different feature subsets. The DT classifier is
constructed by rpart software package in R project. The classification results are shown in Table 5.

Table 5. Comparison of feature selection method.

Feature The Classification Accuracy (%)
SNR Selection Number of
Method Features RF SVM NN DT
Enl + SFS 4 99.7 95.5 98.9 98.1
Gil + SFS 4 82.6 74.6 76.1 75.3
Enl + SFS 10 99.9 98.6 99.6 99.0
50 dB Gil + SFS 10 99.9 98.5 99.7 98.9
SFS 13 99.4 98.3 99.5 98.3
SBS 15 99.8 98.7 99.5 99.2
ALL 35 99.9 98.9 97.6 99.5
Enl + SFS 4 99.9 96.1 99.2 99.4
Gil + SFS 4 84.7 72.1 77.2 76.7
Enl + SFS 10 100 96.8 99.8 99.7
40 dB Gil + SFS 10 100 98.4 99.8 99.4
SFS 13 99.6 98.4 99.6 98.7
SBS 15 99.9 98.5 99.7 99.6
ALL 35 100 99.3 98.2 99.9
Enl + SFS 4 99.7 95.8 99.1 98.5
Gil + SFS 4 79.3 70.1 71.9 72.1
Enl + SFS 10 99.7 96.2 99.6 99.0
30dB Gil + SFS 10 99.7 97.9 99.5 99.0
SFS 13 98.8 97.7 99.1 98.0
SBS 15 99.7 97.9 99.5 99.1
ALL 35 99.7 98.2 97.6 99.6
Enl + SFS 4 95.9 94.8 94.2 92.5
Gil + SFS 4 66.3 59.5 63.5 60.9
Enl + SFS 10 97.1 95.9 95.2 93.9
20 dB Gil + SFS 10 96.8 90.3 95.0 85.5
SFS 13 90.3 90.7 88.7 80.5
SBS 15 98.5 88.6 94.8 94.2
ALL 35 97.6 90.9 94.5 95.0

The feature selection methods based on Enl and Gil are compared according to Table 5. When RF
is used as the classifier, and the selected feature number of Enl method is 4, the classification accuracy
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is almost close to Gil method with 10 features. When the selected feature number of Enl method is
equal to Gil method, the accuracy of these two methods under the condition that the SNR is higher
than 30 dB are the same, but the accuracy of Enl method under the condition that the SNR is 20 dB
exceeds 0.3% compared to Gil method. It is proved that the new method based on Enl has better effect
than Gil based method with RF based classifier. Meanwhile, when SNR is 20 dB, the SBS method
can achieve the classification accuracy of 98.5%. However, when taking classification accuracy under
all conditions and the efficiency of feature selection and extraction into consideration, Enl method
is still thought to be better than SBS method. It can also be seen that the new method can use the
same feature subset to achieve satisfying classification accuracy under different noise environments.
This overcomes the disadvantage that existing research [15] needs to select different feature subsets
under different noise environments. Meanwhile, when RF is used as classifier and the dimension of the
selected feature subset increases from 4 to 10, the classification accuracy of high SNR environment has
not improved, but the classification accuracy of SNR is 20 dB has improved 1.2%. Therefore, different
feature subsets can be selected according to the demand of classification accuracy and efficiency in
practical work.

The classification ability of different classifiers can also be analyzed using Table 5. As shown in
Table 5, when compared to the other three classifiers, RF performs better on the new test sets. The
best classification accuracy can only be achieved by using RF as the classifier no matter what level of
the noise environment is. When the SNR is 50 dB, and the feature selection methods are Enl + SFS
(the number of selected feature is 10), Gil + SFS (the number of selected feature is 10) and ALL, RF
can achieve the classification accuracy of 99.9%. When the SNR is 40 dB, and the feature selection
methods are Enl + SFS (the number of selected feature is 10) and Gil + SFS (the number of selected
feature is 10), RF can achieve the classification accuracy of 100%. When the SNR is 30 dB, and the
feature selection methods are Enl + SFS (the number of selected feature is 4), Enl + SFS (the number
of selected feature is 10), Gil + SFS (the number of selected feature is 10) and ALL, RF can achieve
the classification accuracy of 99.7%. When the noise environment is high (SNR is 20 dB), and the
feature selection method is SBS, the RF classification accuracy is higher than the SVM of 9.9%, and is
higher than the other two classifiers of 3.7% and 4.3% respectively. All these prove that RF has higher
anti-noise ability, and is more suitable for the application under high noise environment. Moreover,
the RF classification accuracy is higher than the DT under any condition, which proves that RF has
better generalization ability than DT.

Besides classification accuracy, the impact on classification efficiency by feature selection is also
analyzed. In practical application, the original PQ signals have the need for ST process after they
are collected. Then the corresponding features are extracted according to the ST results. Finally, the
extracted features are used as the input of the well trained classifier to output the disturbance type.
Therefore, feature selection can effectively reduce the computing time of features and complexity of
classifier. When the number of selected feature are 4, 10, 13, 15 and 35 respectively, the normalized
time that 50 new test sets of original disturbance signals consumed from ST process to disturbance
type output is shown in Figure 7. The whole time of signals recognized by 35 features were treated as
the standard time (1 pu).

From Figure 7, it can be seen that, the total classificaiton time reduces significantly with the
decrease of feature number. When the number of selected feature decreased from 35 to 4, the total
classificaiton time can reduce by 39.3%. When the number of selected feature decreased from 35 to
10, the total classification time can reduce by 27.3%. It proves that feature selection improves the
classification efficiency of the classifier effectively.
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4.4. The Determination of Tree Number of RF Classifier

The number of the tree determines the scale of RF. With the increasing of tree number, the
generalization error becomes smaller and Enl analysis of features becomes more accurate. Therefore,
the classification performance will be better. The number of trees in RF is set to 300 during the feature
selection process. However, too many trees will affect the efficiency of classification. Then it is necessary
to analyze the influence of the number of the trees on the classification error in order to determine the
optimal RF scale based on the optimized feature subset. Figure 8a,b show the relationship between the
number of trees and classification error by different feature selection method.
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Figure 8. (a) Classification error of different scale of RF of Enl method; (b) Classification error of
different scale of RF of Gil method.

In Figure 8a, when the tree number is over 10, the classification error is tending to be stable, while
Gil method needs at least 100 trees in Figure 8b. The new method has simpler structure than Gil based
RF with same classification accuracy. Meanwhile, with the increase of the tree number, the time spent
on RF classification will be improved. Finally, the number of trees in RF is determined to be 10 during
classification process.
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4.5. Affection of Signal Processing Method on Classification Accuracy

The influence of the signal processing method for PQ signals will also be considered. Different
signal processing methods will affect the classification accuracy of PQ disturbance signals. Therefore,
after the new feature selection method and RF classifier are proved to be effective, the classification
accuracy of discrete wavelet transform (DWT) [37] and wavelet package transform (WPT) [38] are
compared to ST. The new method is chosen as the feature selection and classification method.

In the contrast experiment, the features of DWT based method are extracted refers to literature [37].
The fourth-order Daubechies wavelet (db-4) was chosen as the mother wavelet function. Then a 9-level
multiresolution decomposition process is performed to the original signals. According to the detail
coefficients at each level and the approximate coefficient at the last level, 90 features are extracted.
The feature extraction methods of DWT are shown in Table 6.

Table 6. Feature extraction methods based on DWT [37].

Feature Extraction Methods Based on DWT

1 2
Mean Wi = szNzl Cij Energy E = Z;\le Cij
1
Standard deviation oy = (% Z]Zi L(Cii — ﬂi)2> 2 Shannon entropy SE; = *Z]N:l Cl-zjlog(c,-zj)
SK; =
Skewness LZN Cij — i 3 Log energy entropy LOE; = Z]N:1 log(Cizj)
6N j=1 g
KRT; =
Kurtosis E lz Cij — Hi 4 _3 Norm entropy NE; = Zszl (Cij)Pl <P
24 \ N=I=1 g
1 N 2
RMS rms; = sz‘:l Cij

InTable 6,i=1,2,L, ... ]l represents multi resolution level, and N stands for the number of details
or approximate coefficients at each multi resolution level.

The features extracted from WPT refer to literature [38]. The fourth-order Daubechies wavelet
(db-4) was also chosen as the mother wavelet function. Then 16 wavelet coefficients can be obtained
by performing a 4-level decomposition process, and 96 features can be extracted according to these
coefficients. The feature extraction methods of WPT are shown in Table 7.

Table 7. Feature extraction methods based on WPT [38].

Feature Extraction Methods Based on WPT

E(Cjj — pu)?
Mean pi = %Zﬁl Cii Kurtosis KRT; = (ﬂa]“ﬁ)
Uj =
Standard deviati L E M| f?
tandard deviation 1 y N3 nergy EDj =35, )Cﬂ)
le:l (Ci —uj)
E(Cjp — pj)®
Skewness SK; = % Entropy ENT; = M Cfllog(Cﬁ)

j

InTable7,j=1,2,L, ... k represents the number of nodes at the fourth decomposition level, and
M is the number of coefficients in each decomposed data.

After the original feature subsets are obtained, the new feature selection stategy put forward
in this paper is adopted to select useful features as well. The number of features selected from the
original feature subsets of DWT and WPT are 23 and 27, respectively, and the descriptions of these
two optimal feature subsets are shown in Tables 8 and 9 respectively. Finally, the two optimal feature
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subsets are used as the input of the RF to train the classifier. The classification accuracy of the classifier
is shown in Table 10.

Table 8. The selected features extracted from DWT method.

The Numbers and Names of the Selected Features Extracted from DWT Method

7 7th level of mean 37 7th level of kurtosis 65 5th level of Shannon entropy
9 9th level of mean 44 4th level of RMS 67 7th level of Shannon entropy
14 4th level of Std. Deviation 45 5th level of RMS 84 4th level of norm entropy
15 5th level of Std. Deviation 48 8th level of RMS 85 5th level of norm entropy
20 App. level of Std. deviation 54 4th level of energy 86 6th level of norm entropy
27 7th level of Skewness 55 5th level of energy 87 7th level of norm entropy
32 2th level of kurtosis 58 8th level of energy 90 App. level of norm entropy
35 5th level of kurtosis 64 4th level of Shannon entropy

Table 9. The selected features extracted from WPT method.

The Numbers and Names of the Selected Features Extracted from WPT Method

1 Mean of 1st node 49 kurtosis of 1st node 61  kurtosis of 13th node
2 Mean of 2nd node 50 kurtosis of 2nd node 62 kurtosis of 14th node
4 Mean of 4th node 51 kurtosis of 3rd node 64  kurtosis of 16th node
7 Mean of 7th node 52 kurtosis of 4th node 65 energy of 1st node
17 Std. deviation of 1st node 53 kurtosis of 5th node 66 energy of 2ndnode
18 Std. deviation of 2nd node 54 kurtosis of 6th node 68 energy of 4th node
20 Std. deviation of 4th node 55 kurtosis of 7th node 81 entropy of 1st node
33 skewness of 1st node 56 kurtosis of 8th node 82 entropy of 2nd node
34 skewness of 2nd node 58 kurtosis of 10th node 84 entropy of 4th node

Table 10. Effect of different signal processing methods for PQ classification.

. Classification Accuracy with Different Signal Processing Method (%)
SNR Feature Selection

ST DWT WPT

50 di No 99.7 984 955
Yes 99.9 97.5 942

No 100 98.8 96.4

40dB Yes 100 98.9 94.8
No 99.7 97.1 94.0

30dB Yes 99.7 96.7 915
No 97.6 835 82.9

20dB Yes 97.1 85.8 82.6

From Table 10, it can be clearly seen that the method with ST can achieve higher classification
accuracy than the other signal processing methods under any conditions. When SNR is 20 dB and there
is no feature selection process, the classification accuracy of ST based method is higher than DWT and
WPT of 14.1% and 14.7%, respectively. If the feature selection process is performed, the classification
accuracy of ST based method is higher than DWT and WPT of 11.3% and 14.5%, respectively. These
prove that ST has good anti-noise ability. It is reasonable to use ST as the signal processing method in
the new approach.

5. Conclusions

This paper proposes a PQ signal feature selection and classification approach based on an Enl
based RFE. The innovations in this article are listed as follows:

(1)  The Enl based feature selection method used in the new approach calculated the Enl value during
the training process of RF. These values provide the theoretical basis for SFS search strategy and
improve the efficiency of feature search strategy than Gil based method.
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(2) RFis used for disturbance identification. While remains the classification accuracy and efficiency
as DT method, RF also increases the generalization ability of the PQ classifier.

(3)  The new method has good anti-noise ability. It can use the same feature subset and RF structure
to achieve satisfying classification accuracy under different noise environments.
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Abbreviations

The following abbreviations are used in this manuscript:

PQ Power quality

RF Random forest

ST S-transform

Enl Entropy-importance

Gil Gini-importance

SFS Sequential forward search
SBS Sequential backward search
DGs Distributed generators
TFA Time-frequency analysis
HHT Hilbert-Huang transform
WT Wavelet transform

NN Neural network

SVM Support vector machine
FR Fuzzy rule

DT Decision tree

ELM Extreme learning machine
STMM ST modular matrix

STD The standard deviation
THD The total harmonic distortion
RMS The root mean square

SNR Signal-to-noise ratio

DWT Discrete wavelet transform
WPT Wavelet package transform
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