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Abstract: The interactions between three or more random variables are often nontrivial, poorly
understood and, yet, are paramount for future advances in fields such as network information
theory, neuroscience and genetics. In this work, we analyze these interactions as different modes
of information sharing. Towards this end, and in contrast to most of the literature that focuses
on analyzing the mutual information, we introduce an axiomatic framework for decomposing
the joint entropy that characterizes the various ways in which random variables can share
information. Our framework distinguishes between interdependencies where the information is
shared redundantly and synergistic interdependencies where the sharing structure exists in the
whole, but not between the parts. The key contribution of our approach is to focus on symmetric
properties of this sharing, which do not depend on a specific point of view for differentiating roles
between its components. We show that our axioms determine unique formulas for all of the terms of
the proposed decomposition for systems of three variables in several cases of interest. Moreover, we
show how these results can be applied to several network information theory problems, providing
a more intuitive understanding of their fundamental limits.

Keywords: Shannon information; multivariate dependencies; mutual information; synergy;
information decomposition; shared information

1. Introduction

Interdependence is a key concept for understanding the rich structures that can be exhibited
by biological, economic and social systems [1,2]. Although this phenomenon lies at the heart of our
modern interconnected world, there is still no solid quantitative framework for analyzing complex
interdependencies, this being crucial for future advances in a number of disciplines. In neuroscience,
researchers desire to identify how various neurons affect an organism’s overall behavior, asking to
what extent the different neurons are providing redundant or synergistic signals [3]. In genetics,
the interactions and roles of multiple genes with respect to phenotypic phenomena are studied,
e.g., by comparing results from single and double knockout experiments [4]. In graph and network
theory, researchers are looking for measures of the information encoded in node interactions in
order to quantify the complexity of the network [5]. In communication theory, sensor networks
usually generate strongly-correlated data [6]; a haphazard design might not account for these
interdependencies and, undesirably, will process and transmit redundant information across the
network, degrading the efficiency of the system.
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The dependencies that can exist between two variables have been extensively studied,
generating a variety of techniques that range from statistical inference [7] to information theory [8].
Most of these approaches require to differentiate the role of the variables, e.g., between a target
and a predictor. However, the extension of these approaches to three or more variables is not
straightforward, as a binary splitting is, in general, not enough to characterize the rich interplay
that can exist between variables. Moreover, the development of more adequate frameworks has
been difficult, as most of our theoretical tools are rooted in sequential reasoning, which is adept at
representing linear flows of influences, but is not as well-suited for describing distributed systems or
complex interdependencies [9].

In this work, our approach is to understand interdependencies between variables as information
sharing. In the case of two variables, the portion of the variability that can be predicted corresponds
to information that a target and a predictor have in common. Following this intuition, we
present a framework that decomposes the total information of a distribution according to how it
is shared among the variables. Our framework is novel in combining the hierarchical decomposition
of higher-order interactions, as developed in [10], with the notion of synergistic information,
as proposed in [11]. In contrast to [10], we study the information that exists in the system itself without
comparing it to other related distributions. In contrast to [11], we analyze the joint entropy instead
of the mutual information, looking for symmetric properties of the system. Note that a different
approach for relating the tools presented in [10] and the idea of synergistic information has been
presented independently in [12].

One important contribution of this paper is to distinguish shared information from predictability.
Predictability is a concept that requires a bipartite system divided into predictors and targets.
As different splittings of the same system often yield different conclusions, we see predictability
as a directed notion that strongly depends on one’s “point of view”. In contrast, we see shared
information as a property of the system itself, which does not require differentiated roles between
its components. Although it is not possible in general to find a unique measure of predictability, we
show that the shared information can be uniquely defined for systems of three variables in a number
of interesting scenarios.

Additionally, our framework provides new insight into various problems of network
information theory. Interestingly, many of the problems of network information theory that have
been solved are related to systems that present a simple structure in terms of shared information and
synergies, while most of the open problems possess a more complex mixture of them.

The rest of this article is structured as follows. First, Section 2 introduces the notions of the
hierarchical decomposition of dependencies and synergistic information, reviewing the state of the
art and providing the necessary background for the unfamiliar reader. Section 3 presents our
axiomatic decomposition for the joint entropy, focusing on the fundamental case of three random
variables. Then, we illustrate the application of our framework for various cases of interest: pairwise
independent variables in Section 4, pairwise maximum entropy distributions and Markov chains in
Section 5 and multivariate Gaussians in 6. After that, Section 7 presents the first application of this
framework in settings of fundamental importance for network information theory. Finally, Section 8
summarizes our conclusions.

2. Preliminaries and the State of the Art

One way of analyzing the interactions between the random variables X = (X1, . . . , XN) is to
study the properties of the correlation matrix RX = E

{
XXt}. However, this approach only captures

linear relationships, and hence, the picture provided by RX is incomplete. Another possibility is to
study the matrix IX = [I(Xi; Xj)]i,j of mutual information terms. This matrix captures the existence
of both linear and nonlinear dependencies [13], but its scope is restricted to pairwise relationships
and, thus, misses all higher-order structure. To see an example of how this can happen, consider
two independent fair coins X1 and X2, and let X3 := X1 XOR X2 be the output of an exclusive-or logic
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gate. The mutual information matrix IX has all its off-diagonal elements equal to zero, making it
indistinguishable from an alternative situation where X3 is just another independent fair coin.

For the case of RX, a possible next step would be to consider higher-order moment matrices,
such as co-skewness and co-kurtosis. We seek their information-theoretic analogs, which complement
the description provided by IX. One method of doing this is by studying the information contained
in marginal distributions of increasingly larger sizes; this approach is presented in Section 2.1.
Other methods try to provide a direct representation of the information that is shared between the
random variables; they are discussed in Sections 2.2–2.4.

2.1. Negentropy and Total Correlation

When the random variables that compose a system are independent, their joint distribution is
given by the product of their marginal distributions. In this case, the marginals contain all that is to
be learned about the statistics of the entire system. For an arbitrary joint probability density function
(pdf), knowing the single variable marginal distributions is not enough to capture all there is to know
about the statistics of the system.

To quantify this idea, let us consider the information stored in N discrete random variables
X = (X1, . . . , XN) with joint pdf pX, where each Xj takes values in a finite set with cardinality Ωj.
Here, we refer to a Bayesian interpretation of the Shannon information as described in [14], which
corresponds to the state of knowledge that an observer has with respect to a system as described by
its probability distribution; in this context, uncertainty in the system corresponds to information that
can be extracted by performing measurements. The maximal amount of information that could be
stored in X is H(0) = ∑j log Ωj, which corresponds to the entropy of the pdf pU := ∏j pXj

, where
pXj

(x) = 1/Ωj is the uniform distribution for each random variable Xj. On the other hand, the joint
entropy H(X) with respect to the true distribution pX measures the actual uncertainty that the system
possesses. Therefore, the difference

N (X) := H(0) − H(X) (1)

corresponds to the decrease of the uncertainty about the system that occurs when one learns its pdf,
i.e., the information about the system that is contained in its statistics. This quantity is known as
negentropy [15] and can also be computed as

N (X) = ∑
j
[log Ωj − H(Xj)] +

(
∑

j
H(Xj)− H(X)

)
(2)

= D

(
∏

j
pXj

∣∣∣∣∣∣ pU

)
+ D

(
pX

∣∣∣∣∣∣ ∏
j

pXj

)
, (3)

where pXj is the marginal of the variable Xj and D(·||·) is the Kullback–Leibler divergence. In this
way, Equation (3) decomposes the negentropy into a term that corresponds to the information given
by simple marginals and a term that involves higher-order marginals. The second term is known
as the total correlation (TC) [16] (also known as multi-information [17]), which is equal to the mutual
information for the case of n = 2. Because of this, the TC has been suggested as an extension of the
notion of mutual information for multiple variables.

An elegant framework for decomposing the TC can be found in [10] (for an equivalent
formulation that does not rely on information geometry, see [18]). Let us call k-marginals the
distributions that are obtained by marginalizing the joint pdf over N − k variables. Note that the
k-marginals provide a more detailed description of the system than the (k− 1)-marginals, as the latter
can be directly computed from the former by marginalizing the corresponding variables. In the case
where only the one-marginals are known, the simplest guess for the joint distribution is p̃ (1)

X = ∏j pXj .
One way of generalizing this for the case where the k-marginals are known is by using the maximum
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entropy principle [14], which suggests choosing the distribution that maximizes the joint entropy while
satisfying the constrains given by the partial (k-marginal) knowledge. Let us denote by p̃ (k)

X the
pdf that achieves the maximum entropy while being consistent with all of the k-marginals, and let
H(k) = H({ p̃ (k)

X }) denote its entropy. Note that H(k) ≥ H(k+1), since the number of constrains that are
involved in the maximization process that generates H(k) increases with k. It can therefore be shown
that the following generalized Pythagorean relationship holds for the total correlation:

TC = H(1) − H(X) =
N

∑
k=2

[
H(k−1) − H(k)

]
=

N

∑
k=2

D
(

p̃ (k)
X || p̃

(k−1)
X

)
:=

N

∑
k=2

∆H(k) . (4)

Above, ∆H(k) ≥ 0 measures the additional information that is provided by the k-marginals that
was not contained in the description of the system given by the (k − 1)-marginals. In general,
the information that is located in terms with higher values of k is due to dependencies between groups
of variables that cannot be reduced to combinations of dependencies between smaller groups.

It has been observed that in many practical scenarios, most of the TC of the measured data is
provided by the lower marginals. It is direct to see that

TC−
k0

∑
k=2

∆H(k) =
N

∑
k=k0+1

∆H(k) = D
(

pX|| p̃(k0)
X

)
. (5)

Therefore, if there exists a k0, such that all ∆H(k) are small for k > k0, then p̃(k0)
X provides an accurate

approximation for pX from the point of view of the Kullback–Leibler divergence. In fact, it has been
shown that pairwise maximum entropy models (i.e., k0 = 2) can provide an accurate description of
the statistics of many biological systems [19–22] and also some social organizations [23,24].

2.2. Internal and External Decompositions

An alternative approach to study the interdependencies between many random variables is to
analyze the ways in which they share information. This can be done by decomposing the joint entropy
of the system. For the case of two variables, the joint entropy can be decomposed as

H(X1, X2) = I(X1; X2) + H(X1|X2) + H(X2|X1) , (6)

suggesting that it can be divided into shared information, I(X1; X2), and into terms that represent
information that is exclusively located in a single variable, i.e., H(X1|X2) for X1 and H(X2|X1) for X2.

In systems with more than two variables, one can compute the total information that is
exclusively located in one variable as H(1) := ∑N

j=1 H(Xj|Xc
j ), where Xc

j denotes all of the system’s
variables, except Xj. The difference between the joint entropy and the sum of all exclusive information
terms, H(1), defines a quantity known [25] as the dual total correlation (DTC):

DTC = H(X)− H(1) , (7)

which measures the portion of the joint entropy that is shared between two or more variables of the
system (the superscripts and subscripts are used to reflect that H(1) ≥ H(X) ≥ H(1)). When N = 2,
then DTC = I(X1; X2), and hence, the DTC has also been suggested in the literature as a measure
for the multivariate mutual information. Note that the DTC is also known as excess entropy in [26],
whose definition differs from its typical use of this term in the context of time series, e.g., [27].

By comparing Equations (4) and (7), it would be appealing to look for a decomposition of the
DTC of the form DTC = ∑N

k=2 ∆H(k), where ∆H(k) ≥ 0 would measure the information that is
shared by exactly k variables [28]. With this, one could define an internal entropy H(j) = H(1) +

∑
j
i=2 ∆H(i) as the information that is shared between at most j variables, in contrast to the external
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entropy H(j) = H(1) − ∑
j
i=2 ∆H(i), which describes the information provided by the j-marginals.

These entropies would form a non-decreasing sequence

H(1) ≤ · · · ≤ H(N−1) ≤ H(X) ≤ H(N−1) ≤ · · · ≤ H(1) . (8)

This layered structure, and its relationship with the TC and the DTC, is graphically represented
in Figure 1.

I(X1; X2)

From this, it is clear that while each transmitter have a exclusive portion of the chan-
nel with capacity Ci, their interaction create synergistically an additional capacity of
CS. This additional resource behaves like a physical property, which has to be shared
linearly, generating a slope of �1 in the graph.

Is interesting that, if one consider the Slepian-Wolf coding for two sources A and
B, there is a direct relationship between H(A|B) and H(B|A) as exclusive information
contents that needs to be transmitted by each source and C1 and C2 as unique channel
capacity for each user, which cannot be shared. On the other hand, the mutual infor-
mation I(A; B) is the information that can be transmitted by either of the variables,
which in this case corresponds to the synergetic capacity CS.

4.3 Degraded wiretap channel

Consider a communication system with a eavesdropper, where the transmitter send
symbols X1, the intended receiver gets X2 and the eavesdropper receives X3. For
simplicity of the exposition, let us consider the case of a degraded channel where
X1 � X2 � X3 form a Markov chain. Under those conditions, it is known that for a
given input distribution pX1 the rate of secure communication that can be achieved on
this channel is upper bound by

Csec = I(X1; X2) � I(X1; X3) = Iun(X1; X2|X3) (19)

where the second equality comes from the Markov condition and the results shown in
Seciton 3.2.1. Note that the eavesdropping capacity is given by

Ceav = I(X1; X3) = I\(X1; X2; X3). (20)

5 Conclusions
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...�H(2) �H(3) �H(N) ...�H(N) �H(2)
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DTC TC

H(X)

negentropy

Figure 1. Layers of internal and external entropies that decompose the dual total correlation (DTC)
and the TC. Each ∆H(j) shows how much information is contained in the j-marginals, while each
∆H(j) measures the information shared between exactly j variables.

One of the main goals of this paper is to find expressions for ∆H(k) for the case of N = 3. It is
interesting to note that even though the TC and DTC coincide for the case of N = 2, these quantities
are in general different for larger system sizes.

2.3. Inclusion-Exclusion Decompositions

Perhaps the most natural approach to decompose the DTC and joint entropy is to apply the
inclusion-exclusion principle, using a simplifying analogy that the entropies and areas have similar
properties. A refined version of this approach can be found also in the I-measures [29] and in the
multi-scale complexity [30]. For the case of three variables, this approach gives

DTCN=3 = I(X1; X2|X3) + I(X2; X3|X1) + I(X3; X1|X2) + I(X1; X2; X3) . (9)

The last term is known as the co-information [31] (being closely related to the interaction
information [32]) and can be defined using the inclusion-exclusion principle as

I(X1; X2; X3) :=H(X1) + H(X2) + H(X3)− H(X1, X2)− H(X2, X3)

− H(X1, X3) + H(X1, X2, X3) (10)

=I(X1; X2)− I(X1; X2|X3) . (11)

As I(X1; X2; X2) = I(X1; X2), the co-information has also been proposed as a candidate for extending
the mutual information to multiple variables. For a summary of the various possible extensions of
the mutual information, see Table 1 and also additional discussion in [33].

Table 1. Summary of the candidates for extending the mutual information.

Name Formula

Total correlation TC = ∑j H(Xj)− H(X)
Dual total correlation DTC = H(X)−∑j H(Xj|Xc

j )

Co-information I(X1; X2; X3) = I(X1; X2)− I(X1; X2|X3)
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It is tempting to coarsen the decomposition provided by Equation (9) and associate the
co-information with ∆H(3) and the remaining terms with ∆H(2), obtaining a decomposition similar
to the one presented in [30]. This idea is equivalent to building a Venn diagram for the information
sharing between three variables as the one shown in Figure 2. However, the resulting decomposition
and diagram (which differ from what is presented in Section 3.4) are not very intuitive, since the
co-information can be negative.

H(1) H(1)0

joint entropy

...�H(2) �H(3) �H(N) ...�H(N) �H(2)

H(0)

DTC TC

H(X)

negentropy

I(X; Y ; Z)

H(X|Y Z) H(Y |XZ)

H(Z|XY )

I(X; Y |Z)

I(X; Z|Y ) I(Y ; Z|X)

joint entropy

H
(X

) H(Y )

H(Z)

H(1)

DTC

Figure 2. An approach based on the inclusion-exclusion principle decomposes the total entropy of
three variables H(X, Y, Z) into seven signed areas.

As part of this temptation, it is appealing to consider the conditional mutual information
I(X1; X2|X3) as the information contained in X1 and X2 that is not contained in X3, just as the
conditional entropy H(X1|X2) is the information that is in X1 and not in X2. However, the latter
interpretation works because conditioning always reduces entropy (i.e., H(X1) ≥ H(X1|X2)), while
this is not true for mutual information; that is, in some cases, the conditional mutual information
I(X1; X2|X3) can be greater than I(X1; X2). This suggests that the conditional mutual information can
capture information that extends beyond X1 and X2, incorporating higher-order effects with respect
to X3. Therefore, a better understanding of the conditional mutual information is required in order to
refine the decomposition suggested by Equation (9).

2.4. Synergistic Information

An extended treatment of the conditional mutual information and its relationship to the mutual
information decomposition can be found in [34,35]. For presenting these ideas, let us consider two
random variables X1 and X2, which are used to predict Y. The predictability of Y, understood as the
benefit of knowing the realization of X1 and X2 for performing inference over Y, is directly related
to I(X1X2; Y) if a natural data processing property is to be satisfied [36] (for simplicity, through
the paper, we use the shorthand notation X1X2 = (X1, X2)). Using the chain rule of the mutual
information, the predictability can be decomposed as

I(X1X2; Y) = I(X1; Y) + I(X2; Y|X1) . (12)

It is natural to think that the predictability provided by X1, which is given by the term I(X1; Y),
can be either unique or redundant with respect of the information provided by X2. On the other
hand, due to Equation (12), it is clear that the unique predictability contributed by X2 must be
contained in I(X2; Y|X1). However, the fact that I(X2; Y|X1) can be larger than I(X2; Y), while the
latter contains both the unique and redundant contributions of X2, suggests that there can be an
additional predictability that is accounted for only by the conditional mutual information.

Following this rationale, we denote as synergistic predictability the part of the conditional mutual
information that corresponds to evidence about the target that is not contained in any single predictor,
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but is only revealed when both are known. Is to be noticed that this notion is based on the
asymmetrical roles played by predictors and the target. As an example of synergistic predictability,
consider again the case in which X1 and X2 are independent random bits and Y = X1 XOR X2. Then, it
can be seen that I(X1; Y) = I(X2; Y) = 0 but I(X1X2; Y) = I(X1; Y|X2) = 1. Hence, neither X1 nor X2

individually provide information about Y, although together, they fully determine it.
Further discussions about the notion of synergistic predictability can be found in [11,12,37–39].

3. A Non-Negative Joint Entropy Decomposition

Following the discussions presented in Sections 2.2 and 2.4, we search for a decomposition of the
joint entropy that reflects the private, common and synergistic modes of information sharing. In this
way, we want the decomposition to distinguish information that is shared only by a few variables
from information that is accessible from the entire system.

Our framework is based on distinguishing the directed notion of predictability from the
undirected one of information. By predictability, we understand “the reduction in optimal prediction
risk in the presence of side information” [36]. The predictability is intrinsically a directed notion,
which is based on a distinction between predictors and the target variable. On the contrary, we
use the term information to exclusively refer to intrinsic statistical properties of the whole system,
which do not rely on such a distinction. Currently, there is an ongoing debate about the best way
of characterizing and computing predictability—although without using the same terminology—in
arbitrary systems (see, for example, [38] and the references therein). Nevertheless, our approach in
this work is to explore how far one can reach based on an axiomatic approach. In this way, our results
are going to be consistent with any choice of formula that is consistent with the discussed axioms.

In the following, Sections 3.1–3.3 discuss the basic features of predictability and information.
After these necessary preliminaries, Section 3.4 finally presents our formal decomposition for the
joint entropy of discrete and continuous variables. Note that the rest of this article is focused on the
case of three variables, leaving possible extensions for future work.

3.1. Predictability Axioms

Let us consider two variables X1 and X2 that are used to predict a target variable Y := X3.
Intuitively, I(X1; Y) quantifies the predictability of Y that is provided by X1. In the following, we
want to find a function R(X1X2 � Y) that measures the redundant predictability provided by X1 with
respect to the predictability provided by X2, and a function U (X1 � Y|X2) that measures the unique
predictability that is provided by X1, but not by X2. Following [11], we first determine a number of
desired properties that these functions should have.

Definition A predictability decomposition is defined by the real-valued functions R(X1X2 � Y) and
U (X1 �Y|X2) over the distributions of (X1, Y) and (X2, Y), which satisfy the following axioms:

(1) Non-negativity: R(X1X2 �Y), U (X1 �Y|X2) ≥ 0.
(2) I(X1; Y) = R(X1X2 �Y) + U (X1 �Y|X2).
(3) I(X1X2; Y) ≥ R(X1X2 �Y) + U (X1 �Y|X2) + U (X2 �Y|X1).
(4) Weak symmetry I: R(X1X2 �Y) = R(X2X1 �Y).

The requirement thatR(X1X2 �Y) and U (X1 �Y|X2) depend only on the pairwise marginals of
(X1, Y) and (X2, Y), and not on their joint distribution, was first proposed in [39]. Although this
property is not required in some of the existent literature (for example, in [38]), most of the
predictability decompositions proposed so far respect it [11,37,39]. Furthermore, Axiom (3) states that
the sum of the redundant and corresponding unique predictabilities given by each variable cannot
be larger than the total predictability —in fact, the difference between the right and left hand terms
of Axiom (3) gives the synergistic predictability, whose analysis will not be included in this work
to avoid confusing it with the synergistic information, introduced in Section 3.2. Finally, Axiom (4)
states that the redundant predictability is independent of the ordering of the predictors.
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The following lemma determines the bounds for the redundant predictability (the proof is given
in Appendix A).

Lemma 1. The functions R(X1X2 � Y) and U (X1 � Y|X2) = I(X1; Y) −R(X1X2 � Y) satisfy Axioms
(1)–(3) if and only if

min{I(X1; Y), I(X2; Y)} ≥ R(X1X2 �Y) ≥ [I(X1; X2; Y)]+ , (13)

where [a]+ = max{a, 0}.

Corollary 1. For variables X1, X2 and Y following an arbitrary joint pdf pX1,X2,Y, there exists at least one
predictability decomposition that satisfies Axioms (1)–(4) defined by

RMMI(X1X2 �Y) := min{I(X1; Y), I(X2; Y)} . (14)

Proof. Being a symmetric function on X1 and X2, Equation (14) satisfies Axiom (4). Furthermore, as
Equation (14) is equal to the upper bound given in Lemma 1, Axioms (1)–(3) are satisfied due
to Lemma 2.

Above, the subscript MMI corresponds to “minimal mutual information”. Note that RMMI was
introduced in [40] and has also been studied in [12,41].

In principle, the notion of redundant predictability takes the point of view of the target variable
and measures the parts that can be predicted by both X1 and X2 when they are used by themselves,
i.e., without combining them with each other. It is appealing to think that there should exist a unique
function that provides such a measure. Nevertheless, these axioms define only very basic properties
that a measure of redundant predictability should satisfy, and hence, in general, they are not enough
for defining a unique function. In fact, a number of different predictability decompositions have been
proposed in the literature [37–39,41].

From all of the candidates that are compatible with the axioms, the decomposition given
in Corollary 1 gives the largest possible redundant predictability measure. It is clear that in
some cases, this measure gives an over-estimate of the redundant predictability given by X1 and
X2; for an example of this, consider X1 and X2 to be independent variables and Y = (X1, X2).
Nevertheless, Equation (14) has been proposed as a adequate measure for the redundant
predictability of multivariate Gaussians [41] (for a corresponding discussion, see Section 6).

3.2. Shared, Private and Synergistic Information

Let us now introduce an additional axiom, which will form the basis for our proposed
information decomposition.

Definition A symmetrical information decomposition is given by the real valued functions I∩(X1; X2; X3)

and Ipriv(X1; X2|X3) over the marginal distributions of (X1, X2), (X1, X3) and (X2, X3), which satisfy
Axioms (1)–(4) for I∩(X1; X2; X3) := R(X1X2 � X3) and Ipriv(X1; X2|X3) := U (X1 � X2|X3), while
also satisfying the following property:

(5) Weak symmetry II: Ipriv(X1; X2|X3) = Ipriv(X2; X1|X3).

Finally, IS(X1; X2; X3) is defined as IS(X1; X2; X3) := I(X1; X2|X3)− Ipriv(X1; X2|X3).

The role of Axiom (5) can be related to the role of the fifth of Euclid’s postulates, as,
while seeming innocuous, their addition has interesting consequences in the corresponding theory.
The following lemma explains why this decomposition is denoted as symmetrical and also shows
fundamental bounds for these information functions (note that equivalent bounds for predictability
decompositions can also be derived using Lemma 1). The proof is presented in Appendix C.
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Lemma 2. The functions that compose a symmetrical information decomposition satisfy the
following properties:

(a) Strong symmetry: I∩(X1; X2; X3) and IS(X1; X2; X3) are symmetric on their three arguments.
(b) Bounds: these quantities satisfy the following inequalities:

min{I(X1; X2), I(X2; X3), I(X3; X1)} ≥ I∩(X1; X2; X3) ≥ [I(X1; X2; X3)]
+, (15)

min{I(X1; X3), I(X1; X3|X2)} ≥ Ipriv(X1; X3|X2) ≥ 0,

min{I(X1; X2|X3), I(X2; X3|X1), I(X3; X1|X2)} ≥ IS(X1; X2; X3) ≥ [−I(X1; X2; X3)]
+.

The strong symmetry property was first presented in [40], where it was shown that it is not
compatible with the axioms presented in [11]. Regardless of this, strong symmetry is a highly
desirable property when looking for a decomposition of the joint entropy. Discussions about strong
symmetry can also be found in [34,38].

A symmetrical information decomposition can be used to decompose the following mutual
information as

I(X1X2; X3) = I(X1; X3) + I(X2; X3|X1) , (16)

I(X1; X3) = I∩(X1; X2; X3) + Ipriv(X1; X3|X2) , (17)

I(X2; X3|X1) = Ipriv(X2; X3|X1) + IS(X1; X2; X3) . (18)

In contrast to a decomposition based on the predictability, these measures address properties of
the system (X1, X2, X3) as a whole, without being dependent on how it is divided between target
and predictor variables (for a parallelism with respect to the corresponding predictability measures,
see Table 2). Intuitively, I∩(X1; X2; X3) measures the shared information that is common to X1, X2

and X3; Ipriv(X1; X3|X2) quantifies the private information that is shared by X1 and X3, but not X2,
and IS(X1; X2; X3) captures the synergistic information that exist between (X1, X2, X3). The latter is a
non-intuitive mode of information sharing, whose nature we hope to clarify through the analysis of
particular cases presented in Sections 4 and 6.

Table 2. Parallelism between predictability and information measures.

Directed Measures Symmetrical Measures

Redundant predictabilityR(X1X2 �X3) Shared information I∩(X1; X2; X3)
Unique predictability U (X1 �X2|X3) Private information Ipriv(X1; X2|X3)

Synergistic predictability Synergistic information IS(X1; X2; X3)

Note also that the co-information can be expressed as

I(X1; X2; X3) = I∩(X1; X2; X3)− IS(X1; X2; X3) . (19)

Hence, strictly positive (resp. negative) co-information is a sufficient, although not necessary,
condition for the system to have non-zero shared (resp. synergistic) information.

3.3. Further Properties of the Symmetrical Decomposition

At this point, it is important to clarify a fundamental distinction that we make between the
notions of predictability and information. The main difference between the two notions is that,
in principle, the predictability only considers the predictable parts of the target, while the shared
information also considers the joint statistics of the predictors. Although this distinction will be
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further developed when we address the case of Gaussian variables (cf. Section 6.3), let us for now
present a simple example to help develop the intuitions about this issue.

Example Define the following functions:

I∩(X1; X2; X3) = min{I(X1; X2), I(X2; X3), I(X3; X1)} , (20)

Ipriv(X1; X2|X3) = I(X1; X2)− I∩(X1; X2; X3) . (21)

It is straightforward that these functions satisfy Axioms (1)–(5) and therefore constitute a symmetric
information decomposition. In contrast to the decomposition given in Corollary 1, this can be seen to
be strongly symmetric and also dependent on the three marginals (X1, X2), (X2, X3) and (X1, X3).

In the following lemma, we will generalize the previous construction, whose simple proof
is omitted.

Lemma 3. For a given predictability decomposition with functions R(X1X2 � X3) and U (X1 � X2|X3),
the functions

I∩(X1; X2; X3) = min{R(X1X2 �X3),R(X2X3 �X1),R(X3X1 �X2)} (22)

Ipriv(X1; X2|X3) = I(X1; X2)− I∩(X1; X2; X3) (23)

provide a symmetrical information decomposition, which is called the canonical symmetrization of
the predictability.

Corollary 2. For variables X1, X2 and X3 following an arbitrary joint pdf pX1,X2,X3 , there exists at least one
symmetric information decomposition.

Proof. This is a direct consequence of the previous lemma and Corollary 1.

May be the most remarkable property of symmetrized information decompositions is that, in
contrast to directed ones, as defined in Section 3.1, they are uniquely determined by Axioms (1)–(5)
for a number of interesting cases.

Theorem 1. The symmetric information decomposition is unique if the variables form a Markov chain or two
of them are pairwise independent.

Proof. Let us consider the upper and lower bound for I∩ given in Equation (15), denoting them
as c1 := [I(X1; X2; X3)]

+ and c2 := min{I(X1; X2), I(X2; X3), I(X1; X3)}. These bounds restrict the
possible I∩ functions to lay in the interval [c1, c2] of length

|c2 − c1| = min{I(X1; X2), I(X2; X3), I(X1; X3), I(X1; X2|X3), I(X2; X3|X1), I(X3; X1|X2)} . (24)

Therefore, the framework will provide a unique expression for the shared information if (at least)
one of the above six terms is zero. These scenarios correspond either to Markov chains, where one
conditional mutual information term is zero, or pairwise independent variables, where one mutual
information term vanishes.

Pairwise independent variables and Markov chains are analyzed in Sections 4 and 5.1, respectively.

3.4. Decomposition for the Joint Entropy of Three Variables

Now, we use the notions of redundant, private and synergistic information functions for
developing a non-negative decomposition of the joint entropy, which is based on a non-negative



Entropy 2016, 18, 38 11 of 27

decomposition of the DTC. For the case of three discrete variables, by applying Equations (18) and (19)
to Equation (9), one finds that

DTC = Ipriv(X1; X2|X3) + Ipriv(X2; X3|X1) + Ipriv(X3; X1|X2)

+ I∩(X1; X2; X3) + 2IS(X1; X2; X3) . (25)

From Equations (7) and (25), one can propose the following decomposition for the joint entropy:

H(X1, X2, X3) = H(1) + ∆H(2) + ∆H(3) , (26)

where

H(1) = H(X1|X2, X3) + H(X2|X1, X3) + H(X3|X1, X2) , (27)

∆H(2) = Ipriv(X1; X2|X3) + Ipriv(X2; X3|X1) + Ipriv(X3; X1|X2) , (28)

∆H(3) = I∩(X1; X2; X3) + 2IS(X1; X2; X3) . (29)

In contrast to Equation (9), here, each term is non-negative because of Lemma 2.
Therefore, Equation (26) yields a non-negative decomposition of the joint entropy, where each
of the corresponding terms captures the information that is shared by one, two or three variables.
Interestingly, H(1) and ∆H(2) are homogeneous (being the sum of all of the exclusive information
or private information of the system), while ∆H(3) is composed by a mixture of two different
information sharing modes. Interestingly, it can be seen from Equations (18) and (19) that the
co-information is sometimes negative for compensating the triple counting of the synergy due to the
sum of the three conditional mutual information terms.

An analogous decomposition can be developed for the case of continuous random variables.
Nevertheless, as the differential entropy can be negative, not all of the terms of the decomposition
can be non-negative. In effect, following the same rationale that leads to Equation (26), the following
decomposition can be found:

h(X1, X2, X3) = h(1) + ∆H(2) + ∆H(3) . (30)

Above, h(X) denotes the differential entropy of X, ∆H(2) and ∆H(3) are as defined in Equations (28)
and (29), and

h(1) = h(X1|X2X3) + h(X2|X1X3) + h(X3|X1X2) . (31)

Hence, although both the joint entropy h(X1, X2, X3) and h(1) can be negative, the remaining terms
conserve their non-negative condition.

It can be seen that the lowest layer of the decomposition is always trivial to compute, and
hence, the challenge is to find expressions for ∆H(2) and ∆H(3). In the rest of the paper, we will
explore scenarios where these quantities can be characterized. Note that in general, ∆H(k) 6= ∆H(k),
although it is appealing to believe that there should exist a relationship between them. These issues
are explored in the following sections.

4. Pairwise Independent Variables

In this section, we focus on the case where two variables are pairwise independent while being
globally connected by a third variable. The fact that pairwise independent variables can become
correlated when additional information becomes available is known in the statistics literature as
the Bergson’s paradox or selection bias [42] or as the explaining away effect in the context of artificial
intelligence [43]. As an example of this phenomenon, consider X1 and X2 to be two pairwise
independent canonical Gaussians variables and X3 a binary variable that is equal to one if X1 +X2 > 0
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and zero otherwise. Then, knowing that X3 = 1 implies that X2 > −X1, and hence, knowing the value
of X1 effectively reduces the uncertainty about X2.

In our framework, Bergson’s paradox can be understood as synergistic information that is
introduced by the third component of the system. In fact, we will show that in this case, the synergistic
information function is unique and given by

IS(X1; X2; X3) = ∑
x3

pX3(x3)I(X1; X2|X3 = x3) = I(X1; X2|X3) , (32)

which is, in fact, a measure of the dependencies between X1 and X2 that are created by X3. In the
following, Section 4.1 presents the unique symmetrized information decomposition for this case.
Then, Section 4.2 focuses on the particular case where X3 is a function of the other two variables.

4.1. Uniqueness of the Entropy Decomposition

Let us assume that X1 and X2 are pairwise independent, and hence, the joint pdf of X1, X2 and
X3 has the following structure:

pX1X2X3(x1, x2, x3) = pX1(x1)pX2(x2)pX3|X1X2
(x3|x1, x2) . (33)

It is direct to see that in this case pX1X2 = ∑x3
pX1X2X3 = pX1 pX2 , but pX1X2|X3

6= pX1|X3
pX2|X3

.
Therefore, as I(X1; X2) = 0, it is direct from Axioms (1) and (2) that any redundant predictability
function satisfies R(X1X3 � X2) = R(X2X3 � X1) = 0. However, the axioms are not
enough to uniquely determine R(X1X2 � X3), as the only restriction that the bound presented
in Lemma 2 provides is min{I(X1; X3), I(X2; X3)} ≥ R(X1X2 � X3) ≥ 0 (note that in this
case I(X1; X2; X3) = −I(X1; X2|X3) ≤ 0). Nevertheless, the symmetrized decomposition is uniquely
determined, as shown in the next corollary that is a consequence of Theorem 1.

Corollary 3. If X1, X2 and X3 follow a pdf as Equation (33), then the shared, private and synergetic
information functions are unique. They are given by

I∩(X1; X2; X3) = Ipriv(X1; X2|X3) = 0 , (34)

Ipriv(X1; X3|X2) = I(X1; X3) , (35)

Ipriv(X2; X3|X1) = I(X2; X3) , (36)

IS(X1; X2; X3) = I(X1; X2|X3) = −I(X1; X2; X3) . (37)

Proof. The fact that there is no shared information follows directly from the upper bound presented
in Lemma 2. Using this, the expressions for the private information can be found using Axiom (2).
Finally, the synergistic information can be computed as

IS(X1; X2; X3) = I(X1; X2|X3)− Ipriv(X1; X2|X3) = I(X1; X2|X3) . (38)

The second formula for the synergistic information can be found then using the fact that
I(X1; X2) = 0.

With this corollary, the unique decomposition of the DTC = ∆H(2) + ∆H(3) that is compatible
with Equations (28) and (29) can be found to be

∆H(2) = I(X1; X3) + I(X2; X3) , (39)

∆H(3) = 2I(X1; X2|X3) . (40)



Entropy 2016, 18, 38 13 of 27

Note that the terms ∆H(2) and ∆H(3) can be bounded as follows:

∆H(2) ≤ min{H(X1), H(X3)}+ min{H(X2), H(X3)} , (41)

∆H(3) ≤ 2 min{H(X1|X3), H(X2|X3)} . (42)

The bound for ∆H(2) follows from the basic fact that I(X; Y) ≤ min{H(X), H(Y)}. The second bound
follows from

I(X; Y|Z) = ∑
z

pZ(z)I(X; Y|Z = z) (43)

≤∑
z

pZ(z)min {H(X|Z = z), H(Y|Z = z)} (44)

≤ min

{
∑
z

pZ(z)H(X|Z = z), ∑
z

pZ(z)H(Y|Z = z)

}
(45)

= min{H(X|Z), H(Y|Z)} . (46)

4.2. Functions of Independent Arguments

Let us focus in this section on the special case where X3 = F(X1, X2) is a function of two
independent random inputs and study its corresponding entropy decomposition. We will consider X1

and X2 as inputs and F(X1, X2) to be the output. Although this scenario fits nicely in the predictability
framework, it can also be studied from the shared information framework’s perspective. Our goal is
to understand how F affects the information sharing structure.

As H(X3|X1, X2) = 0, we have

H(1) = H(X1|X2X3) + H(X2|X1X3) . (47)

The term H(1) hence measures the information of the inputs that is not reflected by the output.
An extreme case is given by a constant function F(X1, X2) = k, for which ∆H(2) = ∆H(3) = 0.

The term ∆H(2) measures how much of F can be predicted with knowledge that comes from one
of the inputs, but not from the other. If ∆H(2) is large, then F is not “mixing” the inputs too much,
in the sense that each of them is by itself able to provide relevant information that is not given also by
the other. In fact, a maximal value of ∆H(2) for given marginal distributions for X1 and X2 is given by
F(X1, X2) = (X1, X2), where H(1) = ∆H(3) = 0, and the bound provided in Equation (41) is attained.

Finally, due to Equation (34), there is no shared information, and hence, ∆H(3) is just proportional
to the synergy of the system. By considering Equation (42), one finds that F needs to leave
some ambiguity about the exact values of the inputs in order for the system to possess synergy.
For example, consider a 1-1 function F for which for every output F(X1, X2) = x3; one can find the
unique values x1 and x2 that generate it. Under this condition H(X1|X3) = H(X2|X3) = 0, and hence,
because of Equation (42), it is clear that a 1-1 function does not induce synergy. On the other extreme,
we showed already that constant functions have ∆H(3) = 0, and hence, the case where the output
of the system gives no information about the inputs also leads to no synergy. Therefore, synergistic
functions are those whose output values generate a balanced ambiguity about the generating inputs.
To develop this idea further, the next lemma studies the functions that generate a maximum amount
of synergy by generating for each output value different 1-1 mappings between their arguments.

Lemma 4. Let us assume that both X1 and X2 take values over K = {0, . . . , K − 1} and are independent.
Then, the maximal possible amount of information synergy is created by the function

F∗(n, m) = n + m (mod K) (48)

when both input variables are uniformly distributed.
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Proof. Using Equations (37) and (46), it can be shown that if F is an arbitrary function, then

IS(X1; X2; F(X1, X2)) = I(X1; X2|F) (49)

≤ min{H(X1|F), H(X2|F)} (50)

≤ min{H(X1), H(X2)} (51)

≤ log K . (52)

where the last inequality follows from the fact that both inputs are restricted to alphabets of size K.
Now, consider F∗ to be the function given in Equation (48) and assume that X1 and X2 are

uniformly distributed. It can be seen that for each z ∈ K, there exist exactly K ordered pairs of
inputs (x1, x2), such that F∗(x1, x2) = z, which define a bijection from K to K. Therefore,

I(X1; X2|F = z) = H(X1|z)− H(X2|X1, z) = H(X1) = log K (53)

and hence

IS(X1; X2; F∗) = I(X1; X2|F∗) = ∑
z

P{F∗ = z} · I(X1; X2|F∗ = z) = log K , (54)

showing that the upper bound presented in Equation (52) is attained.

Corollary 4. The XOR logic gate generates the largest amount of synergistic information possible for the case
of binary inputs.

The synergistic nature of the addition over finite fields helps to explain the central role it has in
various fields. In cryptography, the one-time-pad [44] is an encryption technique that uses finite-field
additions for creating a synergistic interdependency between a private message, a public signal and
a secret key. This interdependency is completely destroyed when the key is not known, ensuring no
information leakage to unintended receivers [45]. Furthermore, in network coding [46,47], nodes in
the network use linear combinations of their received data packets to create and transmit synergistic
combinations of the corresponding information messages. This technique has been shown to achieve
multicast capacity in wired communication networks [47] and has also been used to increase the
throughput of wireless systems [48].

5. Discrete Pairwise Maximum Entropy Distributions and Markov Chains

This section studies the case where the system’s variables follow a pairwise maximum entropy
(PME) distribution. These distributions are of great importance in the statistical physics and machine
learning communities, where they are studied under the names of Gibbs distributions [49] or Markov
random fields [50].

Concretely, let us consider three pairwise marginal distributions pX1X2 , pX2X3 and pX1X3 for the
discrete variables X1, X2 and X3. Let us denote as Q the set of all of the joint pdfs over (X1, X2, X3)

that have those as their pairwise marginals distributions. Then, the corresponding PME distribution
is given by the joint pdf p̃X(x1, x2, x3) that satisfies

p̃X = argmax
p∈Q

H({p}) . (55)

For the case of binary variables (i.e., Xj ∈ {0, 1}), the PME distribution is given by an Ising
distribution [51]

p̃X(X) =
e−E(X)

Z
, (56)
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where Z is a normalization constant and E(X) an energy function given by E(X) = ∑i JiXi +

∑j ∑k 6=j Jj,kXjXk, being Jj,k the coupling terms. In effect, if Ji,k = 0 for all i and k, then p̃X(X) can
be factorized as the product of the unary-marginal pdfs.

In the context of the framework discussed in Section 2.1, a PME system has TC = ∆H(2) while
∆H(3) = 0. In contrast, Section 5.1 studies these systems under the light of the decomposition of
the DTC presented in Section 3.4. Then, Section 5.2 specifies the analysis for the particular case of
Markov chains.

5.1. Synergy Minimization

It is tempting to associate the synergistic information with that which is only in the joint pdf,
but not in the pairwise marginals, i.e., with ∆H(3). However, the following result states that there can
exist some synergy defined by the pairwise marginals themselves.

Theorem 2. PME distributions have the minimum amount of synergistic information that is allowed by their
pairwise marginals.

Proof. Note that

max
p∈Q

H(X1X2X3) = H(X1X2) + H(X3)−min
p∈Q

I(X1X2; X3) (57)

= H(X1X2) + H(X3)− I(X1; X3)−min
p∈Q

I(X2; X3|X1) (58)

= H(X1X2) + H(X3)− I(X1; X3)− Ipriv(X2; X3|X1)−min
p∈Q

IS(X1; X2; X3) . (59)

Therefore, maximizing the joint entropy for fixed pairwise marginals is equivalent to minimizing
the synergistic information. Note that the last equality follows from the fact that by definition
Ipriv(X2; X3|X1) only depends on the pairwise marginals.

Corollary 5. For an arbitrary system (X1, X2, X3), the synergistic information can be decomposed as

IS(X1; X2; X3) = IPME
S + ∆H(3) , (60)

where ∆H(3) is as defined in Equation (4) and IPME
S = minp∈Q IS(X1; X2; X3) is the synergistic information

of the corresponding PME distribution.

Proof. This can be proven noting that, for an arbitrary pdf pX1X2X3 , it can be seen that

∆H(3) =max
p∈Q

H(X1X2X3)− H({pX1X2X3}) (61)

=IS({pX1X2X3})−min
p∈Q

IS(X1; X2; X3) . (62)

Above, the first equality corresponds to the definition of ∆H(3), and the second equality comes from
using Equation (59) on each joint entropy term and noting that only the synergistic information
depends on more than the pairwise marginals.

The previous corollary shows that ∆H(3) measures only one part of the information synergy
of a system, the part that can be removed without altering the pairwise marginals. Therefore, by
considering Equations (29) and (60), one can find that for systems of three variables

∆H(3) ≥ IS(X1; X2; X3) ≥ ∆H(3) . (63)

Note that PME systems with non-zero synergy, i.e., systems where the above inequality is strict,
are easy to find. For example, consider X1 and X2 to be two independent equiprobable bits, and
X3 = X1 AND X2. It can be shown that for this case, one has ∆H(3) = 0 [18]. On the other side, as the
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inputs are independent, the synergy can be computed using Equation (37), and therefore, a direct
calculation shows that

IS(X1; X2; X3) = I(X1; X2|X3) = H(X1|X3)− H(X1|X2X3) = 0.1887 . (64)

From the previous discussion, one can conclude that only a special class of pairwise distributions
pX1X2 , pX1X3 and pX2X3 is compatible with having null synergistic information. This is a remarkable
result, as the synergistic information is usually considered to be an effect purely related to high-order
marginals. For example, in [39] property (∗∗) is introduced, which states that for given pX1X3 and
pX2X3 there exists a joint pdf that is compatible with them while having zero synergistic predictability.
In contrast, the above discussion has shown that in our framework, a symmetrized extension of (∗∗)
is not true, i.e., it is not always possible to find a joint pdf with zero synergistic information when the
three pairwise marginals are given.

It would be interesting to have an expression for the minimal information synergy that a set of
pairwise distributions requires, or equivalently, a symmetrized information decomposition for PME
distributions. A particular case that allows a unique solution is discussed in the next section.

5.2. Markov Chains

Markov chains maximize the joint entropy subject to constraints on only two of the three
pairwise distributions. In effect, following the same rationale as in the proof of Theorem 2, it can
be shown that

H(X1, X2, X3) = H(X1X2) + H(X3)− I(X2; X3)− I(X1; X3|X2) . (65)

Then, for fixed pairwise distributions pX1X2 and pX2X3 , maximizing the joint entropy is equivalent
to minimizing the conditional mutual information. Moreover, the maximal entropy is attained by
the pdf that makes I(X1; X3|X2) = 0, which is precisely the Markov chain X1 − X2 − X3 with
joint distribution

pX1X2X3 =
pX1X2 pX2X3

pX2

. (66)

For the binary case, it can be shown that a Markov chain corresponds to an Ising distribution, like
Equation (56), where the interaction term J1,3 is equal to zero.

It is direct to see that two of the redundant predictability terms of a Markov chain X1 − X2 − X3

are unique, given by Equation (13) as R(X1X2 � X3) = R(X3X2 � X1) = I(X1; X2; X3) = I(X1; X3).
However, the third redundant predictability term, R(X1X3 � X2), is not uniquely defined, as the
bounds only guarantee

min{I(X1; X2), I(X2; X3)} ≥ R(X1X3 �X2) ≥ I(X1; X3) . (67)

Due to the well-known data processing inequality [8], both I(X1; X2) and I(X2; X3) can be strictly larger
than I(X1; X3), and hence, this bound does not provide in general a unique definition. In contrast,
Theorem 1 showed that the symmetric information decomposition for Markov chains is unique.
We develop this decomposition in the following corollary.

Corollary 6. If X1−X2−X3 is a Markov chain, then their unique shared, private and synergistic information
functions are given by

I∩(X1; X2; X3) = I(X1; X3) , (68)

Ipriv(X1; X2|X3) = I(X1; X2)− I(X1; X3) , (69)

Ipriv(X2; X3|X1) = I(X2; X3)− I(X1; X3) , (70)

IS(X1; X2; X3) = Ipriv(X1; X3|X2) = 0 . (71)
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In particular, Markov chains have no synergistic information.

Proof. For this case, one can show that

min
i,j∈{1,2,3}

i 6=j

{I(Xi; Xj)} = I(X1; X3) = I(X1; X2; X3) , (72)

where the first equality is a consequence of the data process inequality and the second of the fact that
I(X1; X3|X2) = 0. The above equality shows that the bounds for the shared information presented
in Lemma 2 give the unique solution I∩(X1; X2; X3) = I(X1; X3). The other equalities are obtained
directly using this result and the definition of Ipriv and IS.

Using this corollary, the unique decomposition of the DTC = ∆H(2) + ∆H(3) for Markov chains
that is compatible with Equations (28) and (29) is given by

∆H(2) = I(X1; X2) + I(X2; X3)− 2I(X1; X3) , (73)

∆H(3) = I(X1; X3) . (74)

Hence, Corollary 6 states that a sufficient condition for three pairwise marginals to be compatible
with zero information synergy is for them to satisfy the Markov condition pX3|X1

= ∑X2
pX3|X2

pX2|X1
.

The question of finding a necessary condition is an open problem, intrinsically linked with the
problem of finding a good definition for the shared information for arbitrary PME distributions.

To conclude, let us note an interesting duality that exists between Markov chains and the case
where two variables are pairwise independent, which is illustrated in Table 3.

Table 3. Duality between Markov chains and pairwise independent variables.

Markov Chains Pairwise Independent Variables

Conditional pairwise independency Pairwise independency
I(X1; X3|X2) = 0 I(X1; X2) = 0

No Ipriv between X1 and X3 No Ipriv between X1 and X2
No synergistic information No shared information

6. Entropy Decomposition for the Gaussian Case

In this section, we study the entropy-decomposition for the case where (X1, X2, X3) follow a
multivariate Gaussian distribution. As the entropy is not affected by translation, we assume, without
loss of generality, that all of the variables have zero mean. The covariance matrix is denoted as

Σ =

 σ2
1 ασ1σ2 βσ1σ3

ασ1σ2 σ2
2 γσ2σ3

βσ1σ3 γσ2σ3 σ2
3

 , (75)

where σ2
i is the variance of Xi, α is the correlation between X1 and X2, β is the correlation between

X1 and X3 and γ is the correlation between X2 and X3. The condition that the matrix Σ should be
positive semi-definite yields the following condition

1 + 2αβγ− α2 − β2 − γ2 ≥ 0 . (76)

Unfortunately, it is not possible to derive directly from Theorem 1 a unique information
decomposition for multivariate Gaussian variables with an arbitrary covariance matrix. However,
it has been recently shown that the predictability decomposition for multivariate Gaussians is
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unique [41]. In the sequel, Sections 6.1 and 6.2 present a discussion on some properties of the shared
and synergistic information of multivariate Gaussians, which lead to an intuitive understanding of
the predictability decomposition introduced in [41]. Based on this measure, Section 6.3 builds a
symmetrical information decomposition and explores some of its consequences.

6.1. Understanding the Synergistic Information Between Gaussians

The simplistic structure of the joint pdf of multivariate Gaussians, which is fully determined
by mere second order statistics, could make one think that these systems do not have synergistic
information sharing. However, it can be shown that a multivariate Gaussian is the maximum entropy
distribution for a given covariance matrix Σ. Hence, the discussion provided in Section 5.1 suggests
that these distributions can indeed have non-zero information synergy, depending on the structure of
the pairwise distributions or, equivalently, on the properties of Σ.

Moreover, it has been reported that synergistic phenomena are rather common among
multivariate Gaussian variables [41]. As a simple example, consider

X1 = A + B , X2 = B , X3 = A , (77)

where A and B are independent Gaussians. Intuitively, it can be seen that although X2 is useless by
itself for predicting X3, it can be used jointly with X1 to remove the noise term B and provide a perfect
prediction. For refining this intuition, let us consider a case where the variables have equal variances
and X2 and X3 are independent (i.e., γ = 0). Then, the optimal predictor of X3 given X1 is X̂X1

3 = αX1;
the optimal predictor given X2 is X̂X2

3 = 0; and the optimal predictor given both X1 and X2 is [52]

X̂X1,X2
3 =

β

1− α2 (X1 − αX2) . (78)

Therefore, although X2 is useless to predict X3 by itself, it can be used for further improving the
prediction given by X1. Hence, all of the information provided by X2 is synergistic, as is useful only
when combined with the information provided by X1. Note that all of these examples fall in the
category of the systems considered in Section 4.

6.2. Understanding the Shared Information

Let us start studying the information shared between two Gaussians. For this, let us consider
a pair of zero-mean variables (X1, X2) with unit variance and correlation α. A suggestive way of
expressing these variables is given by

X1 = W1 ±W12 , X2 = W2 ±W12 , (79)

where W1, W2 and W12 are independent centered Gaussian variables with variances s2
1 = s2

2 = 1− |α|
and s2

12 = |α|, respectively. Note that the signs in Equation (79) can be set in order to achieve any
desired sign for the covariance (as E {X1X2} = ±E

{
W2

12
}
= ±s2

12). The mutual information is given
by (see Appendix D)

I(X1; X2) = −(1/2) log(1− α2) = −(1/2) log(1− s4
12) , (80)

showing that it is directly related to the variance of the common term W12.
For studying the shared information between three Gaussian variables, let us start considering a

case where α = β := ρ and γ = 0. It can be seen that (cf. Appendix D)

I(X1; X2; X3) =
1
2

log
1− 2ρ2

(1− ρ2)2 . (81)
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A direct evaluation shows that Equation (81) is non-positive for all ρ with |ρ| < 1/
√

2 (note
that |ρ| cannot be larger that 1/

√
2 because of Equation (76)). This is consistent with the fact

that X2 and X3 are pairwise independent, and hence, due to Equation (37), one has that
0 ≤ IS(X1; X2; X3) = −I(X1; X2; X3). Therefore, from Equations (19) and (34) is clear that this system
has no shared information for all ρ and has zero synergistic information only for ρ = 0.

In contrast, let us now consider a case where α = β = γ := ρ > 0, for which

I(X1; X2; X3) =
1
2

log
1 + 2ρ3 − 3ρ2

(1− ρ2)3 . (82)

A direct evaluation shows that, in contrast to Equation (81), the co-information in this case is
non-negative, showing that the system is dominated by shared information for all ρ 6= 0.

The previous discussion suggests that the shared information depends on the smallest of the
correlation coefficients. An interesting approach to understand this fact can be found in [41],
where the predictability among Gaussians is discussed. In this work, the author note that from
the point of view of X3, both X1 and X2 are able to decompose the target in a predictable and an
unpredictable portion: X3 = X̂3 + E. In this sense, both predictors achieve the same effect, although
with a different efficiency, which is determined by their correlation coefficient. As a consequence of
this, the predictor that is less correlated with the target does not provide unique predictability, and
hence, its contribution is entirely redundant. This motivates using RMMI(X1X2 � X3), as defined in
Equation (14), as an adequate measure for the redundant predictability among Gaussians. Moreover,
in [41], it is shown thatRMMI(X1X2 �X3) is the only consistent definition of redundant predictability
that only depends on the pairwise distributions of (X1, X3) and (X2, X3).

6.3. Shared, Private and Synergistic Information for Gaussian Variables

Based on the previous discussion, the unique definition of shared information among Gaussians
that corresponds to a canonical symmetrization of a redundant predictability measure (as discussed
in Lemma 3) is given by

I∩(X1; X2; X3) = min{RMMI(X1X2 �X3),RMMI(X2X3 �X1).RMMI(X3X1 �X2)} (83)

= min{I(X1; X2), I(X2; X3), I(X1; X3)} (84)

= −1
2

log(1−min{α2, β2, γ2}) . (85)

In contrast withRMMI(X1X2 �X3), Equation (85) states that there cannot be information shared by the
three components of the system if two of them are pairwise independent. Therefore, the magnitude
of the shared information is governed by the lowest correlation coefficient of the whole system, being
upper-bounded by any of the redundant predictability terms. An intuitive understanding of this
definition can be built over a subclass of multivariate Gaussians using the following lemma (whose
proof is presented in Appendix E).

Lemma 5. Let (X1, X2, X3) follow a multivariate Gaussian distribution with zero mean and covariance matrix
Σ, as given in Equation (75). Let us further assume that α ≥ β ≥ γ ≥ 0 and 1− α− β + γ ≥ 0. Then,

X1

σ1
= s123W123 + s12W12 + s13W13 + s1W1 (86)

X2

σ2
= s123W123 + s12W12 + s2W2 (87)

X3

σ3
= s123W123 + s13W13 + s3W3 (88)
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where W123, W12, W13, W1, W2 and W3 are independent standard Gaussians and s123, s12, s13, s1, s2 and s3 are
given by

s123 =
√

γ, s12 =
√

α− γ, s13 =
√

β− γ,

s1 =
√

1− α− β + γ, s2 =
√

1− α, s3 =
√

1− β. (89)

It is natural to relate s123 to the shared information, s12 and s13 to the private information and s1,
s2 and s3 to the exclusive terms. Moreover, if α ≥ β ≥ γ ≥ 0 do not hold, then s2

123 = min{|α|, |β|, |γ|},
which is consistent with what Equations (79) and (80) state for the case of two variables. Note that the
coefficients determined in Equation (89) are unique, as they correspond to the six degrees of freedom
of the variables (X1, X2, X3). Finally, note also that the decomposition presented in Lemma 5 does not
require a private component between the least correlated variables, i.e., a term W23.

Based on Equation (85), the remaining elements of a symmetric information decomposition for
Gaussians can be found as

Ipriv(X1; X2|X3) = I(X1; X2)− I∩(X1; X2; X3) (90)

=
1
2

log
1−min{α2, β2, γ2}

1− α2 , (91)

IS(X1; X2; X3) = I(X1; X2|X3)− Ipriv(X1; X2|X3) (92)

=
1
2

log
(1− α2)(1− β2)(1− γ2)

(1 + 2αβγ− α2 − β2 − γ2)(1−min{α2, β2, γ2}) . (93)

According to Equation (91), the two less correlated Gaussians share no private information, which is
consistent with the absence of W23 in Lemma 5. Moreover, by comparing Equations (93) and (D5),
it can be seen that if X1 and X2 are the less correlated variables, then the synergistic information
can be expressed as IS(X1; X2; X3) = I(X1; X2|X3), which, for the particular case of α = 0, confirms
Equation (37). This, in turn, also shows that, for the particular case of Gaussians variables, forming
a Markov chain is a necessary and sufficient condition for having zero information synergy (for the
case of α ≥ β ≥ γ, a direct calculation shows that I(X1; X2|X3) = 0 is equivalent to γ = αβ).

To close this section, let us note that Equation (84) corresponds to the upper bound provided by
Equation (15), which means that multivariate Gaussians have a maximal shared information. This is
complementary to the fact that, because of being a maximum entropy distribution, they also have the
smallest amount of synergy that is compatible with the corresponding second order statistics.

7. Applications to Network Information Theory

In this section, we use the framework presented in Section 3 to analyze four fundamental
scenarios in network information theory [53]. Our goal is to illustrate how the framework can
be used to build new intuitions over these well-known optimal information-theoretic strategies.
The application of the framework to scenarios with open problems is left for future work.

In the following, Section 7.1 uses the general framework to analyze the Slepian–Wolf coding
for three sources, which is a fundamental result in the literature of distributed source compression.
Then, Section 7.2 applies the results of Section 4 to the multiple access channel, which is one of
the fundamental settings in multiuser information theory. Section 7.3 uses the results related to
Markov chains from Section 5 to the wiretap channel, which constitutes one of the main models
of information-theoretic secrecy. Finally, Section 7.4 uses results from Section 6 to study fundamental
limits of public or private broadcast transmissions over Gaussian channels.

7.1. Slepian–Wolf Coding

The Slepian–Wolf coding gives lower bounds for the data rates that are required in order to
transfer the information contained in various data sources. Let us denote as Rk the data rate of the
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k-th source and define R̃k = Rk − H(Xk|Xc
k) as the extra data rate that each source has above its own

exclusive information (cf. Section 2.2). Then, in the case of two sources X1 and X2, the well-known
Slepian–Wolf bounds can be re-written as R̃1 ≥ 0, R̃2 ≥ 0, and R̃1 + R̃2 ≥ I(X1; X2) ([53], Section 10.3).
The last inequality states that I(X1; X2) corresponds to shared information that can be transmitted by
any of the two sources.

Let us consider now the case of three sources, and denote RS = IS(X1; X2; X3). The Slepian–Wolf
bounds provide seven inequalities ([53], Section 10.5), which can be re-written as

R̃i ≥ 0, i ∈ {1, 2, 3} , (94)

R̃i + R̃j ≥ Ipriv(Xi; Xj|Xk) + RS for i, j, k ∈ {1, 2, 3}, i < j , (95)

R̃1 + R̃2 + R̃3 ≥ ∆H(2) + ∆H(3) . (96)

Above, Equation (96) states that the DTC needs to be accounted for by the extra rate of the sources
and Equation (95) that every pair needs to take care of its private information. Interestingly, due
to Equation (29), the shared information needs to be included in only one of the rates, while the
synergistic information needs to be included in at least two. For example, one possible solution
that is consistent with these bounds is R̃1 = I∩(X1; X2; X3) + Ipriv(X1; X2|X3) + Ipriv(X1; X3|X3) +

IS(X1; X2; X3), R̃2 = Ipriv(X2; X3|X1) + IS(X1; X2; X3) and R̃3 = 0. This can be interpreted as
follows: it is sufficient if just one of the three sources provides the information I∩ shared among
all sources and if for each pair of sources, exactly one transfers their private information Ipriv.
Additionally, the constraints on synergistic information require that exactly two of the three sources
transfer it. This brings some light to the factor of two required in Equation (29).

7.2. Multiple Access Channel

Let us consider a multiple access channel, where two pairwise independent transmitters send
X1 and X2 and a receiver gets X3, as shown in Figure 3. It is well known that, for a given distribution
(X1, X2) ∼ p(x1)p(x2), the achievable transmission rates R1 and R2 satisfy the constrains given by
([53], Section 4.5)

R1 ≤ I(X1; X3|X2) , R2 ≤ I(X2; X3|X1) , R1 + R2 ≤ I(X1, X2; X3) . (97)

X1

X2

pX3|X1,X2

transmitters

X3

receiver
R1

R2

Table 1: Duality between Markov chains and PIP

Markov chains Parwise indep. predictors

Conditional pairwise independency Pairwise independency
I(X1; X3|X2) = 0 I(X1; X2) = 0

No synergy No redundancy

4 Applications to Network Information Theory

In this section we will apply the results presented in Section 3 to develop new intuitions
over well-known scenarios of Network Information Theory. First, Section 4.2 uses
the results from Section 3.2.2 to study the Multiple Access (MAC) channel. Then
Section 4.3 uses the results presented in Section 3.2.1 to analyse the Wiretap channel.

4.1 Slepian-Wolf coding

The Slepian-Wolf coding gives lower bounds for the data rates that are required for
various sources to transfer the information they convey. Let us introduce the notation
�Rk = Rk �H(Xk|Xc

k) which correspond to the extra data rate that each source have
above what is needed for their own exclusive information. Then, in the case of two
sources X1 and X2, the well-known Slepian-Wolf bounds can be re-written as R̃1 � 0,
R̃2 � 0, and R̃1 + R̃2 � I(X1; X2). The third says that I(X1; X2) corresponds to the
shared information, which can be transmitted by any of the two sources.

Let us consider now the case of three sources, and denote RS = IS(X1; X2; X3).
Then, beside requiring R̃i � 0, the bounds for this case state that

R̃i + R̃j � Iex(Xi; Xj|Xk) + RS (16)

R̃1 + R̃2 + R̃3 � �H(2) + �H(3) (17)

Above, (17) states that all the shared information needs to be accounted by the extra
rate of the sources, and (16) that every pair needs to to take care of their unique
information and the synergy. Note that, because of (10), the redundancy can be
included only in one of the rates while the synergy has to be included in at least two.

4.2 MAC channel

Let us consider a multiple access channel, where two pairwise independent transmitters
send X1 and X2 and a receiver gets X3. It is well-known that, for a given distribution
(X1, X2) ⇠ p(x1)p(x2), the achievable rates R1 and R2 satisfy the constrains R1 
I(X1; X3|X2), R2  I(X2; X3|X1) and R1 + R2  I(X1, X2; X3).

Using the results from Section 3.2.2, it can be seen that in this case there exist
no redundancy between the three random variables. Because of this I(X1; X3|X2) �
I(X1; X3) holds, and the di↵erence is given by the synergy of the system. Let us intro-
duce shorthand notation for the remaining three components: C1 = Iun(X1; X3|X2) =
I(X1; X3), C2 = Iun(X2; X3|X1) = I(X2; X3) and CS = IS(X1; X2; X3). Then, using
the results presented in Section 3.2.2, one can find that the contrains for the perfor-
mance of the MAC channel can be re-written as

R1  C1 + CS, R2  C2 + CS and R1 + R2  C1 + C2 + CS. (18)
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In this section we will apply the results presented in Section 3 to develop new intuitions
over well-known scenarios of Network Information Theory. First, Section 4.2 uses
the results from Section 3.2.2 to study the Multiple Access (MAC) channel. Then
Section 4.3 uses the results presented in Section 3.2.1 to analyse the Wiretap channel.

4.1 Slepian-Wolf coding

The Slepian-Wolf coding gives lower bounds for the data rates that are required for
various sources to transfer the information they convey. Let us introduce the notation
�Rk = Rk �H(Xk|Xc

k) which correspond to the extra data rate that each source have
above what is needed for their own exclusive information. Then, in the case of two
sources X1 and X2, the well-known Slepian-Wolf bounds can be re-written as R̃1 � 0,
R̃2 � 0, and R̃1 + R̃2 � I(X1; X2). The third says that I(X1; X2) corresponds to the
shared information, which can be transmitted by any of the two sources.

Let us consider now the case of three sources, and denote RS = IS(X1; X2; X3).
Then, beside requiring R̃i � 0, the bounds for this case state that

R̃i + R̃j � Iex(Xi; Xj|Xk) + RS (16)

R̃1 + R̃2 + R̃3 � �H(2) + �H(3) (17)

Above, (17) states that all the shared information needs to be accounted by the extra
rate of the sources, and (16) that every pair needs to to take care of their unique
information and the synergy. Note that, because of (10), the redundancy can be
included only in one of the rates while the synergy has to be included in at least two.

4.2 MAC channel

Let us consider a multiple access channel, where two pairwise independent transmitters
send X1 and X2 and a receiver gets X3. It is well-known that, for a given distribution
(X1, X2) ⇠ p(x1)p(x2), the achievable rates R1 and R2 satisfy the constrains R1 
I(X1; X3|X2), R2  I(X2; X3|X1) and R1 + R2  I(X1, X2; X3).

Using the results from Section 3.2.2, it can be seen that in this case there exist
no redundancy between the three random variables. Because of this I(X1; X3|X2) �
I(X1; X3) holds, and the di↵erence is given by the synergy of the system. Let us intro-
duce shorthand notation for the remaining three components: C1 = Iun(X1; X3|X2) =
I(X1; X3), C2 = Iun(X2; X3|X1) = I(X2; X3) and CS = IS(X1; X2; X3). Then, using
the results presented in Section 3.2.2, one can find that the contrains for the perfor-
mance of the MAC channel can be re-written as

R1  C1 + CS, R2  C2 + CS and R1 + R2  C1 + C2 + CS. (18)

= I(X1; X3)

CS =

C1 =

C2 =

Ipriv(X1; X3|X2)

Ipriv(X2; X3|X1)

Figure 3. Capacity region of the multiple access channel, which represents the possible data rates that
two transmitters can use for transferring information to one receiver.

As the transmitted random variables are pairwise independent, one can apply the results of
Section 4. Therefore, there is no shared information, and IS(X1; X2; X3) = I(X1; X3|X2)− I(X1; X3).
Let us introduce a shorthand notation for the remaining terms: C1 = Ipriv(X1; X3|X2) = I(X1; X3),
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C2 = Ipriv(X2; X3|X1) = I(X2; X3) and CS = IS(X1; X2; X3). Then, one can re-write the bounds for the
transmission rates as

R1 ≤ C1 + CS , R2 ≤ C2 + CS , R1 + R2 ≤ C1 + C2 + CS . (98)

From this, it is clear that while each transmitter has a private portion of the channel with capacity
C1 or C2, their interaction creates synergistically extra capacity CS that corresponds to what can be
actually shared.

7.3. Degraded Wiretap Channel

Consider a communication system with an eavesdropper (shown in Figure 4), where the
transmitter sends X1, the intended receiver gets X2 and the eavesdropper receives X3. For simplicity
of the exposition, let us consider the case where the eavesdropper gets only a degraded copy of the
signal received by the intended receiver, i.e., that X1 − X2 − X3 form a Markov chain. Using the
results of Section 5.2, one can see that in this case, there is no synergistic, but only shared and private
information between X1, X2 and X3.

X1 X2

X3

pX2,X3|X1

eavesdropper

receivertransmitter

I(X1; X2)

From this, it is clear that while each transmitter have a exclusive portion of the chan-
nel with capacity Ci, their interaction create synergistically an additional capacity of
CS. This additional resource behaves like a physical property, which has to be shared
linearly, generating a slope of �1 in the graph.

Is interesting that, if one consider the Slepian-Wolf coding for two sources A and
B, there is a direct relationship between H(A|B) and H(B|A) as exclusive information
contents that needs to be transmitted by each source and C1 and C2 as unique channel
capacity for each user, which cannot be shared. On the other hand, the mutual infor-
mation I(A; B) is the information that can be transmitted by either of the variables,
which in this case corresponds to the synergetic capacity CS.

4.3 Degraded wiretap channel

Consider a communication system with a eavesdropper, where the transmitter send
symbols X1, the intended receiver gets X2 and the eavesdropper receives X3. For
simplicity of the exposition, let us consider the case of a degraded channel where
X1 � X2 � X3 form a Markov chain. Under those conditions, it is known that for a
given input distribution pX1 the rate of secure communication that can be achieved on
this channel is upper bound by

Csec = I(X1; X2) � I(X1; X3) = Iun(X1; X2|X3) (19)

where the second equality comes from the Markov condition and the results shown in
Seciton 3.2.1. Note that the eavesdropping capacity is given by

Ceav = I(X1; X3) = I\(X1; X2; X3). (20)

5 Conclusions

(max 8 pages)
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Ipriv(X1; X2|X3)

Figure 4. The rate of secure information transfer, Csec, is the portion of the mutual information that
can be used while providing perfect confidentiality with respect to the eavesdropper.

In this scenario, it is known that for a given input distribution pX1 , the rate of secure
communication that can be achieved is upper bounded by ([44], Section 3.4)

Csec = I(X1; X2)− I(X1; X3) = Ipriv(X1; X2|X3) , (99)

which is precisely the private information sharing between X1 and X2. Furthermore, as intuition
would suggest, the eavesdropping capacity is equal to the shared information between the
three variables:

Ceav = I(X1; X2)− Csec = I(X1; X3) = I∩(X1; X2; X3) . (100)

7.4. Gaussian Broadcast Channel

Let us consider a Gaussian broadcast channel, where a transmitter sends a Gaussian signal X1

that is received as X2 and X3 by two receivers. Assuming that all of these variables are jointly Gaussian
with a zero mean and covariance matrix given by Equation (75), the transmitter can broadcast a public
message, intended for both users, at a maximum rate Cpub given by ([44], Section 5.1)

Cpub = min{I(X1; X2), I(X1; X3)} = RMMI(X2X3 �X1) , (101)

where, following the discussion presented in Section 6.2, the MMI redundant predictability
RMMI(X2X3 � X1) is as defined in Equation (14). On the other hand, if the transmitter wants to
send a private (confidential) message to Receiver 1, the corresponding maximum rate Cpriv that can
be achieved in this case is given by

Cpriv = [I(X1; X2)− I(X1; X3)]
+ = I(X1; X2)−RMMI(X2X3 �X1) = U (X1 �X2|X3) , (102)
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where the last equality follows from Axiom (2).
Interestingly, the predictability measures prove to be better suited to describing the

communication limits in the above scenario than their symmetrical counterparts. In effect, the shared
information, as defined in Section 6.3, underestimates the public capacity. This opens the question
of whether or not directed measures could be better suited for studying certain communication
systems, compared to their symmetrized counterparts. Unfortunately, one cannot explore this issue
in the previous cases, as although the symmetric decomposition is uniquely defined, there is no
unique predictability decomposition to compare. Therefore, a definite answer to this question is not
straightforward at this stage. We hope that future research will provide more evidence and a better
understanding of this issue.

8. Conclusions

In this work, we propose an axiomatic framework for studying the interdependencies that can
exist between multiple random variables as different modes of information sharing. The framework
is based on a symmetric notion of information that refers to properties of the system as a whole.
We showed that, in contrast to predictability-based decompositions, all of the information terms
of the proposed decomposition have unique expressions for Markov chains and for the case where
two variables are pairwise independent. We also analyzed the cases of pairwise maximum entropy
(PME) distributions and multivariate Gaussian variables. Finally, we illustrated the application of the
framework by using it to develop a more intuitive understanding of the optimal information-theoretic
strategies in several fundamental communication scenarios. These results are focused on the case of
three variables, as their generalization to a larger number of variables is not straightforward. One of
the main difficulties for such a generalization is the increasing complexity of the decompositions,
caused by the exponential growth of the number of information-sharing modes [11]).

The key insight that this framework provides is that although there is only one way in which
information can be shared between two random variables, there are two essentially different ways
of sharing between three. One of these ways is a simple extension of the pairwise dependency,
where information is shared redundantly, and hence, any of the variables can be used to predict
any other. The second way leads to the counter-intuitive notion of synergistic information sharing,
where the information is shared in a way that the statistical dependency is destroyed if any of the
variables is removed; hence, the structure exists in the whole, but not in any of the parts.

The synergistic information has been commonly related to statistical structures that exist
only in the joint pdf and not in low-order marginals. Interestingly, although we showed that
indeed, PME distributions posses the minimal information synergy that is allowed by their pairwise
marginals, this minimum can be strictly positive. Therefore, there exists a connection between
pairwise marginals and synergistic information sharing that is still to be further clarified. In fact,
this phenomenon is related to the difference between the TC and the DTC, which is rooted in the
fact that the information sharing modes and the marginal structure of the pdf are, although somehow
related, intrinsically different. This important distinction has been represented in our framework by
the sequence of internal and external entropies. This new unifying picture for the entropy, negentropy,
TC and DTC has shed new light on the understanding of high-order interdependencies, whose
consequences have only begun to be explored.
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Appendix

A. Proof of Lemma 1

Proof. Let us assume thatR(X1X2 �Y) and U (X1 �Y|X2) = I(X1; Y)−R(X1X2 �Y) satisfy Axioms
(1)–(3). Then,

I(X1; Y) ≥ I(X1; Y)−U (X1 �Y|X2) (A1)

= R(X1X2 �Y) (A2)

= I(X2; Y)−U (X2 �Y|X1) ≤ I(X2; Y) , (A3)

where the inequalities are a consequence of the non-negativity of U (X1 �Y|X2) and the third equality
is due to the weak symmetry of the redundant predictability. To verify the lower bound, first notice
that Axiom (3) can be re-written as

I(X1X2; Y) ≥ I(X1; Y) + I(X2; Y)−R(X1X2 �Y). (A4)

The lower bound follows considering the non-negativity of R(X1X2 � Y) and by noting that
I(X1; Y) + I(X2; Y)− I(X1X2; Y) = I(X1; X2; Y).

The proof of the converse is direct and left as an exercise to the reader.

B. Proof of the Consistency of Axiom (3)

Let us show that min{I(X1; X2), I(X1; X2)} ≥ I(X1; X2; X3), showing that the bounds defined
by Axiom (3) always can be satisfied. For this, let us assume that the variables are ordered in a
way such that I(X1; X2) = min{I(X1; X2), I(X2; X3), I(X3; X1)} holds. Then, as one can express
I(X1; X2; X3) = I(X1, X2)− I(X1, X2|X3), it is direct to show that

min{I(X1; X2), I(X1; X2)} − I(X1; X2; X3) ≥ I(X1; X2)− I(X1; X2; X3) (B1)

= I(X1; X2|X3) (B2)

≥ 0 , (B3)

from where the desired result follows.

C. Proof of Lemma 2

Proof. The symmetry of I∩(X1; X2; X3) with respect to X1 and X2 can be directly verified from its
definition and Axiom (4). The symmetry with respect to X1 and X3 is proved using Axiom (2) and
the weak symmetry of Ipriv(X1; X3|X2) as follows:

I∩(X1; X2; X3) = I(X1; X3)− Ipriv(X1; X3|X2) (C1)

= I(X3; X1)− Ipriv(X3; X1|X2) (C2)

= I∩(X3; X2; X1) . (C3)

The strong symmetry of IS(X1; X2; X3) is proved directly using (19) and the strong symmetry of the
shared information and the co-information.

The bounds for I∩(X1; X2; X3), Ipriv(X1; X2; X3) and IS(X1; X2; X3) follow directly from the
definition of these quantities and Axiom (3).
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D. Useful Facts about Gaussians

Here, we list some useful expressions for Gaussian variables:

I(X1; X2) =
1
2

log
1

1− α2 (D1)

=
1
2

log
σ2

|Σ12|
, (D2)

I(X1; X2, X3) =
1
2

log
1− γ2

1 + 2αβγ− α2 − β2 − γ2 (D3)

=
1
2

log
|Σ23|
|Σ| , (D4)

I(X1; X2|X3) =
1
2

log
(1− β2)(1− γ2)

1 + 2αβγ− α2 − β2 − γ2 (D5)

=
1
2

log
|Σ13Σ23|
|Σ| , (D6)

I(X1; X2; X3) =
1
2

log
1 + 2αβγ− α2 − β2 − γ2

(1− α2)(1− β2)(1− γ2)
(D7)

=
1
2

log
|Σ|

|Σ12Σ13Σ23|
, (D8)

where |∆| is a matrix determinant, and

Σ12 =

(
σ2 ασ2

ασ2 σ2

)
Σ13 =

(
σ2 βσ2

βσ2 σ2

)
Σ23 =

(
σ2 γσ2

γσ2 σ2

)
. (D9)

E. Proof of Lemma 5

Proof. Consider the following random variables:

Y1 = σ1(s123W123 + s12W12 + s13W13 + s1W1) , (E1)

Y2 = σ2(s123W123 + s12W12 + s2W2) , (E2)

Y3 = σ3(s123W123 + s13W13 + s3W3) , (E3)

where W123, W12, W13, W1, W2 and W3 are independent standard Gaussians and the parameters
s123, s12, s13, s1, s2 and s3 as defined in (89). Then, it is direct to check that Y = (Y1, Y2, Y3)

is a multivariate Gaussian variable with zero mean and covariance matrix ΣY equal to (75).
Therefore, (Y1, Y2, Y3) and (X1, X2, X3) have the same statistics, which proves the desired result.
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