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Abstract: In this paper, we consider a sequential monitoring procedure for detecting changes in
copula function. We propose a cusum type of monitoring test based on the empirical copula function
and apply it to the detection of the distributional changes in copula function. We investigate the
asymptotic properties of the stopping time and show that under regularity conditions, its limiting
null distribution is the same as the sup of Kiefer process. Moreover, we utilize the bootstrap method
in order to obtain the limiting distribution. A simulation study and a real data analysis are conducted
to evaluate our test.
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1. Introduction

A copula is a multivariate joint distribution function for which the marginal distribution of each
variable is uniform. In classical analysis, the Pearson’s correlation is most frequently used in practice
as a measure of dependence. However, it only works well with elliptical distributions while empirical
data in finance and insurance mostly has skewed distributions, heavy tails and extreme values. Thus,
correlation may not be suitable to model the nonlinear association. The copula function can overcome
this drawback due to the fact that a copula can model various types of dependence structure beyond
the linear dependence independently of the marginal distributions. For this reason, a copula has
become a flexible methodology in applications of financial risk assessment and actuarial analysis
(see Cherubini et al. [1,2], McNeil et al. [3], Hougaard [4] and the papers cited therein). Recently,
dependence modelling with copula function has been widely applied to various areas such as civil
engineering, reliability engineering, climatology, hydrology, biology, etc.

Since all of the information about the dependence is contained in the copula function, estimating
the copula function is a crucial task for providing a correct dependence structure. Conventionally,
the copula function is assumed to remain constant over time. However, there is empirical evidence
suggesting that the dependence structure is likely to change due to some financial adjustments and
critical social events (see, for example, Longin and Solnik [5], Patton [6] and Rodriguez [7]). To cope
with this, Dias and Embrechts [8] and Guegan and Zhang [9] suggested a likelihood ratio test for copula
parameter changes in specific copula families, Harvey [10] and Busetti and Harvey [11] developed a
nonparametric stationarity test for a constant copula based on time-varying quantiles, and Na et al. [12]
studied a cusum test for detecting the copula parameter change.

Recently, the problem of testing constancy of the copula has been studied by Quessy et al. [13],
Bücher and Ruppert [14], and Bücher et al. [15]. All of these approaches are devoted to the change
point detection within data sets of fixed size. However, many researchers are also interested in

Entropy 2016, 18, 457; doi:10.3390/e18120457 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://www.mdpi.com/journal/entropy


Entropy 2016, 18, 457 2 of 16

monitoring change over time when new observations are sequentially observed. Chu et al. [16]
pointed out that repeated application of the retrospective tests each time new data is observed may
result in a high probability of type I error as the number of applications grows. In this study, we
focus on the monitoring procedure for the early detection of a copula function change. During the
past few decades, the monitoring procedure has been studied by many authors. For instance,
Chu et al. [16] and Horváth et al. [17] developed a cusum type monitoring procedure for detecting
structural changes in linear regression models. Berkes et al. [18] applied the monitoring test to
generalized autoregressive conditional heteroscedastic (GARCH) models based on quasi-likelihood
score. Gombay and Serban [19] monitored parameter changes in autoregressive (AR) models using
the cusum type method. Na et al. [20] designed the monitoring test in general time series models.

Recently, Na et al. [21] developed a monitoring procedure to detect a change of the copula
parameter. However, one major drawback of this test is that the test statistic is derived under the
assumption that the copula family does not change. In this regard, we attempt to develop a monitoring
procedure that is more general than their test against alternatives that involve a change in copula
function. For this task, we extend the approach of Lee et al. [22] who sequentially monitored
distributional changes in AR models and proposed the test statistic based on the empirical copula
function. It is shown that, under regularity conditions, the stopping time designed for the detection
of changes behaves asymptotically the same as the Kiefer process. In practice, however, the Kiefer
process depends on the unknown copula and is rather complicated to compute. To overcome this
problem, several authors have suggested bootstrap methods for approximating the Kiefer process.
We refer to Fermanian et al. [23], Rémillard and Scaillet [24], Bücher and Dette [25], Bouzebda [26] and
the references therein for more details. In this study, we also utilize the bootstrap method to deal with
this difficulty.

This paper is organized as follows. We introduce the monitoring procedure based on the empirical
copula process in Section 2 and establish some asymptotic results of the stopping time in Section 3.
In Section 4, we report some simulation results that validate our monitoring procedure, and apply
the test to real data analysis. In Section 5, conclusions with a brief discussion of the advantages and
limitations of our study are provided.

2. Monitoring Procedure

Let {Xt = (X1t, · · · , Xdt); t = 1, 2, · · · } be a sequence of d-dimensional independent random
vectors with joint distribution F and continuous marginal distribution functions Fi for i = 1, · · · , d.
If C is a true copula function of {Xt}, owing to Sklar’s theorem, we can express

F(x1, · · · , xd) = C(F1(x1), · · · , Fd(xd)) for (x1, · · · , xd) ∈ Rd.

When the marginal distribution functions F1, · · · , Fd are continuous, it is well known that the
function C is uniquely determined such as

C(u1, · · · , ud) = F(F−1 (u1), · · · , F−d (ud)) for (u1, · · · , ud) ∈ [0, 1]d, (1)

where F−i (ui) = in f {x : Fi(x) ≥ ui} for i = 1, · · · , d. According to Sklar’s theorem, one can always
model any multivariate distributions by modelling both marginal distributions and copula functions
separately. For details, we refer to Joe [27] and Nelson [28].

Suppose that we have observed X1, . . . ,Xn, which are called the historical data. For each new
observation, we wish to test the following hypotheses:

H0 : Ct = C for all t > n, vs. H1 : Ct 6= C for some t > n,

where Ct is a copula function at time t and C is a time-invariant copula. The copula function is
assumed to be stable over the historical period of length n, i.e.,
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Ct = C , 1 ≤ t ≤ n.

The historical data is used as a reference for comparison with future observations. The aim of our
monitoring procedure is to check a change of copula function each time a new observation is updated
in the post-historical period.

In this study, we assume that the marginal distributions do not change under both the null
and alternative hypotheses, while the copula function changes under the alternative hypothesis.
This assumption is in line with other precedent studies on testing for structural breaks in copula
(see, e.g., Harvey [10], Busetti and Harvey [11], Bouzebda [26], Bücher and Ruppert [14] and
Na et al. [12,21]). Furthermore, this assumption is very crucial in real practice since one can encounter
the situation that the monitoring test detects a change in copula function although the change actually
occurs in marginal distributions. Empirical evidence of this situation can be found in Na et al. [29].
Therefore, a change point test for marginal distribution must be conducted in advance of implementing
the monitoring test for a copula function change.

The monitoring procedure in a general set-up can be described with the stopping time τ(n)
defined as follows:

τ(n) := inf{k > n : Dk,n ≥ b(k/n)}, (2)

where Dk,n is a test statistic based on X1, . . . ,Xk and b(·) is a boundary function. If τ(n) is finite,
we reject H0 and consider that the change has occurred at τ(n). Otherwise, we continue to observe the
data. Therefore, in order to perform the monitoring procedure, we have to define a test statistic Dk,n
and choose a boundary function b(·) such that

lim
n→∞

P{τ(n) < ∞|H0} = lim
n→∞

P{Dk,n ≥ b(k/n) for some k > n|H0} = α (3)

for a given α ∈ (0, 1), and

lim
n→∞

P{τ(n) < ∞|H1} = 1.

We consider the boundary function b(·) satisfies:

b(s) is continuous on (1, ∞) and inf
1<s<∞

b(s) > 0 (4)

(cf. Chu et al. [16] and Berkes at al. [18]). Here, we focus on the b(·) of a specific form such as

b(s) = csa for some c > 0, a > 0, (5)

proposed by Lee et al. [22]. Practically, the constants c and a must be chosen to satisfy (3) for a given α.
For the specific form of test statistic Dk,n, Chu et al. [16] considered two types of test statistics.

The one is based on the fluctuations of sequential parameter estimates, and the other is based on the
cumulative sum of recursive residuals. Berkes [18] proposed the quasi–maximum likelihood estimator
of the parameters in the GARCH process for test statistics. Lee et al. [22] used a sequential empirical
process of residuals for the detection of distributional changes in AR models.

In this paper, we use a copula function for the test statistic to detect a change in the dependence
structure of multivariate random vectors. The main idea of the procedure is based on the changes in
the dependence structure upon changes in the copula function. In real practice, the copula function
C is usually unknown. Thus, we consider the situation in which the empirical copula estimator is
employed to play a role of the true copula function. The empirical copula function can be obtained by
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replacing the unknown terms in (1) with the joint empirical distribution function and the marginal
empirical distribution function, which are defined, respectively, by

Fn(x1, · · · , xd) =
1
n

n

∑
t=1

I(X1t ≤ x1, · · · , Xdt ≤ xd) for xi ∈ R,

Fin(xi) =
1
n

n

∑
t=1

I(Xit ≤ xi) for i = 1, · · · , d.

Then, the empirical copula estimator is

Cn,n(u1, · · · , ud) = Fn(F−1n(u1), · · · , F−dn(ud)) for ui ∈ [0, 1], (6)

where F−in (ui) = in f {x : Fin(x) ≥ ui} for i = 1, · · · , d. Set Uit = Fi(Xit), for i = 1, · · · d. Then, for
ui ∈ [0, 1], Gn and Gin can be expressed as

Gn(u1, · · · , ud) =
1
n

n

∑
t=1

I(U1t ≤ u1, · · · , Udt ≤ ud)

and

Gin(ui) =
1
n

n

∑
t=1

I(Uit ≤ ui) for i = 1, · · · , d.

Then, we have

Fn(x1, · · · , xd)
d
= Gn(F1(x1), · · · , Fd(xd))

and

(F1n(x1), · · · , Fdn(xd))
d
= (G1n(F1(x1)), · · · , Gdn(F1(xd))).

Thus, using the representation (6), it follows that

Cn,n(u1, · · · , ud)
d
= Gn(G−1n(u1), · · · , G−dn(ud)),

where G−in(ui) = in f {x : Gin(x) ≥ ui} for i = 1, · · · , d. This implies that the law of Cn,n is the same for
all F whose associated copula is C. We will propose the test statistics based on the empirical copula
estimator in the next section.

Remark 1. Note that the alternative hypothesis H1 actually means that H1 : Ct 6= C for some n < t < T(n),
where T(n) is the predetermined maximal number. Since it is impossible to monitor at an unlimited time
horizon and the test for too large t will be meaningless, the maximal number of observations T(n) is considered.
Here, T(n) is considered as limn→∞

T(n)
n = q < ∞ and limn→∞

T(n)
n = ∞, and this result will be seen in our

simulation study.

3. Main Result

For monitoring the copula function, we employ the test statistic Dn,k based on the empirical
copula functions such as

Dk,n =
√

n sup
u∈[0,1]d

∣∣Ck,n(u)− Cn,n(u)
∣∣ , (7)
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where u = (u1, · · · , ud) and Ck,n(u) = Fk(F−1n(u1), · · · , F−dn(ud)). Suppose that X1, . . . ,Xn are observed
which represent available historical data. By observing new data sequentially, we wish to detect if a
change occurs in copula function C. This procedure compares the estimates of the copula function
obtained based on a growing number of observations, with the estimate obtained based on the historical
observations. Note that Ck,n is the estimator of C based on the observation up to time k, while Cn,n is
the estimator obtained based on the historical data. As mentioned earlier, since we assume that the
marginal distribution functions are stable, the marginal empirical distribution functions Fin are used in
Ck,n instead of Fik.

To show the asymptotic behavior of the test statistic, we need to introduce some Gaussian
processes. The limiting process KC(·) on [0, 1]d × [0, ∞) is a Gaussian process with

E(KC(u, n)) = 0

and

E(KC(u, n)KC(v, m)) = (n ∧m) (C(u∧ v)− C(u)C(v)) ,

for u, v ∈ [0, 1]d and n, m ≥ 0. The process KC(·) on [0, 1]d × [0, ∞) is called the Kiefer process
associated with the copula function C. For details on the Kiefer process, we refer to Adler [30] and
Piterbarg [31].

Here, we impose the following conditions for the main theorem:

(A1) C is twice continuously differentiable on (0, 1)d;
(A2) The second-order partial derivatives of C exist and are continuous on [0, 1]d;

(A3) lim
n→∞

sup
k≥n

1
b(k/n)

(log k)3/2

n1/4d = 0.

Under the above assumptions, we have the following:

Theorem 1. Suppose that H0 is true and conditions (A1) and (A2) hold. In addition, a boundary function b(·)
satisfies (4), (5) and condition (A3). Then, the stopping time τ(n) with a test statistic Dk,n in (7) satisfies

lim
n→∞

P{τ(n) < ∞|H0} = P{ sup
u∈[0,1]d

|KC(u, s)| ≥ b
(

1
1− s

)
for some 0 < s < 1},

where KC(·) is a (d + 1)-dimensional Kiefer process on [0, 1]d × [0, ∞) associated with the copula function C(·).

Proof of Theorem 1. For convenience, we set u = (u1, · · · , ud) and v = (v1, · · · , vd). Then, we
can rewrite

Ck,n(u) = Gk(G−1n(u1), · · · , G−dn(ud)) = Ik(u) + I In,k(u) + I I In(u), (8)

where

Ik(u) = Gk(u)− C(u),

I In,k(u) = Gk(G−1
1n (u1), · · · , G−1

dn (ud))− C(G−1
1n (u1), · · · , G−1

dn (ud))−Gk(u) + C(u),

I I In(u) = C(G−1
1n (u1), · · · , G−1

dn (ud)).

On the other hand, due to (8) and Lemmas 1 and 2 addressed below, we have
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sup
k≥n

∣∣∣∣∣∣
√

n supu∈[0,1]d |Ck,n(u)− Cn,n(u)|
b(k/n)

−

√
n supu∈[0,1]d

∣∣∣ 1
k KC(u, k)− 1

n KC(u, n)
∣∣∣

b(k/n)

∣∣∣∣∣∣
≤ sup

k≥n

√
n

b(k/n)
sup

u∈[0,1]d

∣∣∣∣Ck,n(u)− Cn,n(u)−
1
k

KC(u, k) +
1
n

KC(u, n)
∣∣∣∣

= sup
k≥n

√
n

b(k/n)
sup

u∈[0,1]d

∣∣∣∣Ik(u) + I In,k(u)− In(u)− I In,n(u)−
1
k

KC(u, k) +
1
n

KC(u, n)
∣∣∣∣

≤ sup
k≥n

2
√

n
b(k/n)

sup
u∈[0,1]d

∣∣∣∣Ik(u) + I In,k(u)−
1
k

KC(u, k)
∣∣∣∣

≤ sup
k≥n

2
b(k/n)

 sup
u∈[0,1]d

1√
k
|kIk(u)−KC(u, k)|+ sup

u∈[0,1]d

∣∣∣√kI In,k(u)
∣∣∣


≤ sup
k≥n

2M
b(k/n)

(log k)3/2

n1/4d .

By condition (A3), the last term converges to 0 a.s. as n→ ∞.
Therefore, we can express

lim
n→∞

P{τ(n) < ∞|H0}

= lim
n→∞

P{
√

n sup
u∈[0,1]d

|Ck,n(u)− Cn,n(u)| ≥ b(
k
n
) for some k > n|H0}

= P{
√

n sup
u∈[0,1]d

∣∣∣∣ 1k KC(u, k)− 1
n

KC(u, n)
∣∣∣∣ ≥ b(

k
n
) for some k > n}

= P{ sup
u∈[0,1]d

∣∣∣∣KC(u,
k
n
)− k

n
KC(u, 1)

∣∣∣∣ ≥ k
n

b(
k
n
) for some k > n}

= P{ sup
u∈[0,1]d

|KC(u, s)− sKC(u, 1)| ≥ sb(s) for some s > 1}

= P{ sup
u∈[0,1]d

|KC(u, s)| ≥ b(
1

1− s
) for some 0 < s < 1}.

This validates the theorem.

Lemma 1. If the assumptions in Theorem 1 hold, then we have

sup
u∈[0,1]d

|kIk(u)−KC(u, k)| = O
(

k1/2−1/4d(log k)3/2
)

.

Proof. It follows from Theorem B of Bouzebda [26] (see also Csörgő and Horváth [32]).

Lemma 2. If the assumptions in Theorem 1 hold, then we have

sup
u∈[0,1]d

∣∣∣√kI In,k(u)
∣∣∣ = O(n−1/4(log n)1/2(log log n)1/4).

Proof. We follow the lines of the proof of Proposition 4.2 in Segers [33] and the proof of Theorem 4.1
in Tsukahara [34]. For k ≥ n and an ≥ 0, we put

wk(an) = sup{|
√

k(Gk(u)− C(u))−
√

k(Gk(v)− C(v))| : u, v ∈ [0, 1]d, |ui − vi| ≤ an, 1 ≤ i ≤ d}.

By the Smirnov–Chung law of the iterated logarithm for the empirical distribution functions,
we obtain

max
1≤i≤d

sup
0≤ui≤1

|G−1
in (ui)− ui| = O(n−1/2(log log n)1/2).
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Moreover, we take an = n−1/2(log log n)1/2 and λn = 2K−1/2
2 n−1/4(log n)1/2(log log n)1/4 for K2

as in Proposition A.1 of Segers [33]. Using Proposition A.1 of Segers [33], there exist constants K1

such that

∞

∑
n≥2

P{wk(an) ≥ λn} ≤
∞

∑
n≥2

K1

n3/2(log log n)1/2 < ∞.

By the Borel–Cantelli lemma, we obtain

sup
u∈[0,1]d

∣∣∣√kI In,k(u)
∣∣∣ ≤ wk(an) = O(λn), a.s.

In practice, given 0 < α < 1, we reject H0 if

Tk,n =

√
n

b(k/n)
sup

u∈[0,1]d

∣∣Ck,n(u)− Cn,n(u)
∣∣ ≥ Cα, (9)

where Cα is the number such that

P

(
sup

0<s<1

supu∈[0,1]d |KC(u, s)|
b (1/(1− s))

≥ Cα

)
= α. (10)

However, the asymptotic limiting distribution is complicated to compute in practice and depends
on the unknown copula C. For this reason, it is not directly applicable for the monitoring procedure
in practice. To overcome the difficulty that arises due to the computation, we recommend using
a bootstrap method. Some precedent studies have used the bootstrap method to approximate the
limiting distribution. Bücher and Dette [25] compared the finite sample properties of the various
bootstrap methods proposed in the literature and concluded that the procedure proposed by Rémillard
and Scaillet [24] yields the best results in most cases. In this study, we consider the multiplier bootstrap
approach proposed by Rémillard and Scaillet [24].

Let ε1, · · · , εn be an i.i.d sequence of random variables with mean zero, variance one,∫ ∞
0

√
P(|ε1| > x)dx < ∞, and independent of X1, . . . ,Xn. Rémillard and Scaillet [24] defined the

bootstrap process

αn(u) =
1√
n

n

∑
t=1

εt [I(F1n(X1t) ≤ u1, · · · , Fdn(Xdt) ≤ ud)− Cn,n(u)] (11)

=
1√
n

n

∑
t=1

(εt − ε̄)I (F1n(X1t) ≤ u1, · · · , Fdn(Xdt) ≤ ud) ,

where u = (u1, · · · , ud) and ε̄ = ∑n
t=1 εt, and showed that αn(u) approximates a Brownian

bridge process BC with E(BC(u)) = 0, E(BC(u)BC(v)) = C(u ∧ v) − C(u)C(v) for u, v ∈ [0, 1]d.
(cf. Lemma A.1 of Rémillard and Scaillet [24]). Using the fact s−1/2KC(u, s) = BC(u), we can obtain
the approximation of KC and calculate an approximate value for Cα in (10). The detailed procedure is
as follows:

(Step 1) Based on the data X1, . . . ,Xn, obtain the marginal empirical distribution functions Fin and
the empirical copula function Cn,n.

(Step 2) For each j ∈ {1, · · · , B}, generate ε
(j)
1 , . . . , ε

(j)
n that is an i.i.d sequence of random variables

with mean zero, variance one and
∫ ∞

0

√
P(|ε(j)

1 | > x)dx < ∞, and calculate α
(j)
n (u) obtained

through (11) based on these random variables.
(Step 3) For Zn = {0/n, 1/n, · · · , n/n}, calculate
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T(j)
n = sup

0<s<1

√
s maxu∈Zd

n

∣∣∣α(j)
n (u)

∣∣∣
b (1/(1− s)) .

(Step 4) Repeat the above procedure (Step 2) and (Step 3) B times and calculate the 100(1− α)%
percentile of the obtained B number of T(j)

n values.
(Step 5) Starting from time k = n + 1 onward, we reject H0 if Tk,n in (9) is larger than the 100(1− α)%

percentile obtained through (Step 4).

The approximate value for Cα in (10) can be obtained by a bootstrap sample and the approximate
quantile is copula distribution free. The above bootstrap method is easy to implement and gives
satisfactory results, as seen in the next section.

Remark 2. In this study, we focus on the boundary function of the form in (5). In this case, there is no such rule
to choose an optimal a. The test with small a produces large powers compared to that with large a. Unsatisfactory
results are obtained if a is either too small or too large. Thus, the choice of a can be an important issue in
practice. From the simulation study in Lee et al. [22], it is found that no test with specific a outperforms the
others completely in terms of the stability for the test. Here, we recommend using a = 2 and this result will be
seen in our simulation study. Furthermore, one can also employ other boundary functions satisfying (4) and
condition (A3).

4. Empirical Studies

4.1. Simulation

In this section, we evaluate the performance of the monitoring test proposed in Section 3 through
a simulation study. For this task, we use the boundary function in (5) and employ the stopping rule
based on (7). In this study, we consider the bivariate Gaussian copula with copula parameter θ0

as a true copula model. To see an effect from the copula functions with different functional forms
allowing degrees of asymmetry and tail dependence, we also consider the Gumbel copula that is
asymmetric and has upper tail dependency as a true model. The copula parameters of the Gumbel
model are set to be equal to the value of Kendall’s tau τ0 in Gaussian copula models. For each
case, sets of n = 100, 200 and 300 observations are generated from the copula model with marginal
distribution N(0, 1). The empirical sizes and powers are calculated by the number of rejections of the
null hypothesis “H0 : no changes occur in the copula model at t = n + 1, · · · ”, out of 1000 repetitions.
Here, the predetermined maximal number of observations T(n) are considered as T(n) = n log n for
empirical size and T(n) = 2n, 3n, 4n, 5n, n log n for empirical power. In order to examine the power,
we consider the following alternative hypotheses. We take into account two elliptical copulas such as
the Gaussian and the Student t and the Frank copula as alternative hypotheses.

H1(1) A change occurs from the Gaussian copula with τ0 = 0.13 to the Gaussian copula with τ0 = 0.35
and 0.60 at np.

H1(2) A change occurs from the Gaussian copula with τ0 = 0.13 to the Student t copula with τ0 = 0.35
and 0.60 at np.

H1(3) A change occurs from the Gaussian copula with τ0 = 0.13 to the Frank copula with τ0 = 0.35
and 0.60 at np.

For the Gumbel copula, we consider Archimedean copulas family for alternative hypotheses such
as the Gumbel, Clayton and Frank copulas. For this, we consider the following alternative hypotheses.

H′1(1) A change occurs from the Gumbel copula with τ0 = 0.13 to the Gumbel copula with 0.60 at np.
H′1(2) A change occurs from the Gumbel copula with τ0 = 0.13 to the Clayton copula with 0.60 at np.
H′1(3) A change occurs from the Gumbel copula with τ0 = 0.13 to the Frank copula with 0.60 at np.
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In each case, the copula parameters are set to be at the same level in terms of Kendall’s tau in
different copula families. To examine the power, many cases of changes in the dependence structure are
considered, namely changes of the copula parameter and/or changes of the copula family. For H1(1)
and H′1(1), we consider the situation involving a change of the copula parameter within a copula
family. For H1(2), H1(3), H′1(2) and H′1(3), we examined power of the case involving a change of
copula parameter and copula family at the same time.

Throughout our simulation study, we only consider the change of copula function and assume
that the marginal distributions experience no changes. The empirical sizes are calculated at the nominal
levels 0.01, 0.05 and 0.10, and the powers are examined at the nominal level 0.10. The bootstrap method
is used for the calculation of the critical value at the nominal level. We perform the bootstrap method
discussed in Section 3 with B = 500 for n = 100, 200 and 300, and the constant a of the boudary
function in (5) is chosen to be 2.

In particular, our test is compared with the monitoring test proposed by Na et al. [21]. Recall that
Na et al. [21]’s test can be applied to detect a copula parameter change when the copula family does
not change. Na et al. [21] proposed the detector in (2) based on the difference between estimates of the
copula parameter:

DE
k,n =

√
n
∣∣θ̂k − θ̂n

∣∣ ,

where θ̂k is the estimator of the true copula parameter θ0 based on the observation up to time k, while θ̂n

is the estimator obtained based on the historical data.
Empirical sizes and powers are presented in Tables 1–4. The figures in Tables 1–4 are for Dk,n

while the figures in the parentheses are for DE
k,n. Table 1 shows that the test procedure has some size

distortions when n is small. However, as n increases, the empirical size of the test gets very close to
the nominal levels in most cases. Size distortions of tests for small sample sizes can be reduced if a
smaller a is chosen. For DE

k,n, it can be seen that the test also has some size distortions, but the test
is generally able to keep their nominal level, especially when n = 300. The result is also same for
the other copula models such as t-copula, Frank copula, and Clayton copula, although not reported
here for brevity. Tables 2–4 report the empirical power of H1(1) − H1(3) and H′1(1) − H′1(3) with
p = 1.1 and 1.5. Tables 2–4 show that our monitoring procedure produces good powers in most cases.
It is shown that the powers increase remarkably either as n increases or the more significant change
occurs. Moreover, we can see that when the changes in copula function occur earlier, the powers
increase remarkably. It can be seen that the powers in the case that n is large and p = 1.1 are very
close to 1. As pointed out by Lee et al. [22], our monitoring procedure with boundary function such
as (5) detects early changes more effectively than late changes. Due to the curvature of the component
(k/n)a in the boundary function, the boundary function increases rapidly as the change point moves
further away from the point where the monitoring was initiated. This implies that it is more likely
to capture small changes early in the sample. Consequently, our test has better power properties for
early change points. Similar findings were reported in Na et al. [21] and Lee et al. [22]. This result
indicates that it is desirable to renew the historical data appropriately to escalate the power when the
null hypothesis appears to be true for a certain period time. Note that for alternative hypothesis H1(1)
involving a change of the copula parameter within a copula family, the monitoring procedure based on
DE

k,n appears to have higher powers than our monitoring test. This result can be explained by the fact
that Na et al. [21]’s monitoring test is designed only to detect parameter changes of copula function.
However, even if we consider the alternative hypotheses H1(2) and H1(3) that involve a change of
copula family, Na et al. [21]’s test also shows good performance in terms of power. This means
that Na et al. [21]’s test tends to detect a copula parameter change, even though the change actually
occurs in copula function. From this aspect, we were motivated to develop the monitoring procedure
for detecting a copula function change. In comparing Table 4 against Table 3, the performance of
power appears to be similar. Different functional forms of copula seemed to have no impact on
the performance, hence our monitoring test also has good performance in copula models having
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asymmetry properties or tail dependency. All these results indicate that our test procedure performs
adequately to monitor for stability of copula function.

4.2. Real Data Analysis

In this section, we illustrate an example of a real data analysis. We consider bivariate climate
data consisting of temperature and precipitation over the contiguous United States. There is a lot of
literature studying the association of temperature and precipitation over the United States, and they
reported empirical evidence that there is an obvious relationship between two variables (see Zhao
and Khalil [35] and Huang and van Den Dool [36] and the papers cited therein). Recently, several
authors have used a copula based methodology to model the joint distribution of temperature and
precipitation (see, e.g., Favre et al. [37], Shiau et al. [38], Dupuis [39] and Schölzel and Friederichs [40]).
However, the precedent studies only focus on the problem as to which copula model best fitted the
empirical data. Here, we use the copula functions to model the dependence between temperature
and precipitation and attempt to monitor for stability of dependence. Annual mean temperature and
annual mean precipitation in summer months (June, July, and August) over the contiguous United
States from 1895 to 2015 are used for empirical data. The data can be obtained from NOAA’s National
Centers for Environmental Information (NCEI). Figure 1 shows that precipitation and temperature tend
to be negatively correlated. It is well known that warmer summers usually result in drier conditions
and colder summers are likely to be wetter. For historical data, the data from 1895 to 1975 is used,
which has 81 observations. As discussed earlier, since the monitoring test for copula function can be
influenced by a change in marginal distribution, the change point tests for marginal distributions are
performed in advance of implementing the monitoring test for a copula function change. To this end,
we perform the test of Lee et al. [22] who sequentially monitored marginal distributional changes
based on the following test statistic:

DD
k,n =

√
n sup
−∞≤z≤∞

|Fik(z)− Fin(z)| for i = 1, 2,

where Fik is the empirical distribution based on the observation up to time k, while Fin is the empirical
distribution obtained based on the historical data. By observing new data sequentially, we first
conduct the monitoring test for marginal distributional changes. If there are no changes in marginal
distributions, we can perform the monitoring test for the copula function change. Since both of the
two series detect no evidence of a change in marginal distributions at the nominal level 0.05, we apply
monitoring procedure based on the test statistic in (7) to detect a change of dependence. For this task,
we use the boundary function in (5) with a = 2 and perform the bootstrap method in Section 3 with
B = 500. As a result, it appears that the test detects a change in dependence at nominal levels 0.01,
0.05, and 0.10. The location of the stopping time is summarized in Table 5 and Figure 1 illustrates the
stopping time in dependence: the solid line corresponds to the end of historical data and the dotted
lines identify the detected stopping time.

Table 1. Empirical sizes.

Model n
α

0.01 0.05 0.10

100 0.007 0.037 0.081
(0.023) (0.080) (0.124)

Gaussian 200 0.015 0.044 0.109
τ0 = 0.13 (0.020) (0.056) (0.096)

300 0.019 0.059 0.124
(0.009) (0.043) (0.086)

100 0.008 0.040 0.101
(0.050) (0.109) (0.158)

Gumbel 200 0.011 0.049 0.125
τ0 = 0.13 (0.020) (0.080) (0.131)

300 0.015 0.057 0.133
(0.018) (0.061) (0.125)
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Table 2. Empirical powers.

n k∗ q < ∞ q = ∞

T = 2n T = 3n T = 4n T = 5n T = nlogn

H1(1) : Gaussian with τ0 = 0.13→ Gaussian with τ0 = 0.35

change at k∗ = 1.1n

100 110 0.442 0.594 0.613 0.618 0.617
(0.268) (0.597) (0.721) (0.793) (0.770)

200 220 0.645 0.791 0.807 0.812 0.813
(0.606) (0.917) (0.976) (0.983) (0.984)

300 330 0.824 0.933 0.947 0.947 0.949
(0.836) (0.983) (0.994) (0.997) (0.997)

change at k∗ = 1.5n

100 150 0.291 0.420 0.492 0.501 0.495
(0.077) (0.360) (0.570) (0.678) (0.643)

200 300 0.488 0.601 0.623 0.633 0.640
(0.145) (0.693) (0.897) (0.956) (0.961)

300 450 0.651 0.791 0.857 0.890 0.902
(0.224) (0.883) (0.970) (0.991) (0.992)

H1(2) : Gaussian with τ0 = 0.13→ Student t with τ0 = 0.35

change at k∗ = 1.1n

100 110 0.437 0.558 0.581 0.593 0.593
(0.282) (0.582) (0.694) (0.751) (0.735)

200 220 0.602 0.763 0.789 0.799 0.801
(0.558) (0.884) (0.944) (0.965) (0.969)

300 330 0.811 0.916 0.921 0.925 0.927
(0.774) (0.980) (0.997) (0.998) (1.000)

change at k∗ = 1.5n

100 150 0.215 0.326 0.461 0.475 0.471
(0.091) (0.357) (0.522) (0.615) (0.587)

200 300 0.401 0.531 0.592 0.599 0.602
(0.127) (0.661) (0.872) (0.936) (0.947)

300 450 0.623 0.770 0.831 0.868 0.881
(0.218) (0.843) (0.972) (0.990) (0.996)

H1(3) : Gaussian with τ0 = 0.13→ Frank with τ0 = 0.35

change at k∗ = 1.1n

100 110 0.449 0.601 0.638 0.644 0.639
(0.268) (0.554) (0.682) (0.755) (0.734)

200 220 0.670 0.815 0.836 0.840 0.849
(0.539) (0.884) (0.963) (0.980) (0.981)

300 330 0.833 0.952 0.963 0.976 0.977
(0.772) (0.980) (0.994) (0.999) (0.999)

change at k∗ = 1.5n

100 150 0.301 0.451 0.503 0.521 0.510
(0.064) (0.339) (0.526) (0.634) (0.600)

200 300 0.497 0.631 0.651 0.689 0.689
(0.127) (0.638) (0.859) (0.922) (0.929)

300 450 0.671 0.811 0.883 0.915 0.921
(0.183) (0.836) (0.967) (0.993) (0.996)
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Table 3. Empirical powers.

n k∗ q < ∞ q = ∞

T = 2n T = 3n T = 4n T = 5n T = nlogn

H1(1) : Gaussian with τ0 = 0.13→ Gaussian with τ0 = 0.60

change at k∗ = 1.1n

100 110 0.558 0.708 0.760 0.835 0.815
(0.966) (1.000) (1.000) (1.000) (1.000)

200 220 0.873 0.939 0.964 0.987 0.990
(1.000) (1.000) (1.000) (1.000) (1.000)

300 330 0.963 0.993 1.000 1.000 1.000
(1.000) (1.000) (1.000) (1.000) (1.000)

change at k∗ = 1.5n

100 150 0.370 0.546 0.651 0.779 0.741
(0.333) (0.978) (0.999) (1.000) (1.000)

200 300 0.628 0.829 0.913 0.971 0.979
(0.711) (1.000) (1.000) (1.000) (1.000)

300 450 0.882 0.962 0.985 1.000 1.000
(0.904) (1.000) (1.000) (1.000) (1.000)

H1(2) : Gaussian with τ0 = 0.13→ Student t with τ0 = 0.60

change at k∗ = 1.1n

100 110 0.557 0.697 0.756 0.833 0.813
(0.940) (0.999) (1.000) (1.000) (1.000)

200 220 0.861 0.938 0.958 0.989 0.992
(1.000) (1.000) (1.000) (1.000) (1.000)

300 330 0.960 0.991 0.997 1.000 1.000
(1.000) (1.000) (1.000) (1.000) (1.000)

change at k∗ = 1.5n

100 150 0.370 0.548 0.643 0.763 0.733
(0.312) (0.957) (0.996) (1.000) (1.000)

200 300 0.631 0.832 0.912 0.977 0.981
(0.701) (1.000) (1.000) (1.000) (1.000)

300 450 0.877 0.944 0.983 0.999 1.000
(0.888) (1.000) (1.000) (1.000) (1.000)

H1(3) : Gaussian with τ0 = 0.13→ Frank with τ0 = 0.60

change at k∗ = 1.1n

100 110 0.661 0.791 0.858 0.918 0.901
(0.912) (0.995) (1.000) (1.000) (1.000)

200 220 0.922 0.977 0.990 0.999 1.000
(1.000) (1.000) (1.000) (1.000) (1.000)

300 330 0.986 1.000 1.000 1.000 1.000
(1.000) (1.000) (1.000) (1.000) (1.000)

change at k∗ = 1.5n

100 150 0.443 0.638 0.721 0.820 0.802
(0.277) (0.930) (0.996) (1.000) (1.000)

200 300 0.709 0.905 0.955 0.995 1.000
(0.595) (1.000) (1.000) (1.000) (1.000)

300 450 0.912 0.983 1.000 1.000 1.000
(0.835) (1.000) (1.000) (1.000) (1.000)
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Table 4. Empirical powers.

n k∗ q < ∞ q = ∞

T = 2n T = 3n T = 4n T = 5n T = nlogn

H′1(1) : Gumbel with τ0 = 0.13→ Gumbel with τ0 = 0.60

change at k∗ = 1.1n

100 110 0.516 0.641 0.706 0.794 0.750
(0.616) (1.000) (1.000) (1.000) (1.000)

200 220 0.806 0.907 0.935 0.969 0.976
(1.000) (1.000) (1.000) (1.000) (1.000)

300 330 0.942 0.980 0.986 1.000 1.000
(1.000) (1.000) (1.000) (1.000) (1.000)

change at k∗ = 1.5n

100 150 0.334 0.487 0.588 0.717 0.656
(0.244) (0.925) (0.994) (0.999) (0.999)

200 300 0.568 0.764 0.845 0.956 0.970
(0.787) (1.000) (1.000) (1.000) (1.000)

300 450 0.720 0.906 0.954 0.992 1.000
(0.905) (1.000) (1.000) (1.000) (1.000)

H′1(2) : Gumbel with τ0 = 0.13→ Clayton with τ0 = 0.60

change at k∗ = 1.1n

100 110 0.651 0.680 0.751 0.845 0.799
(0.702) (0.968) (0.993) (1.000) (1.000)

200 220 0.861 0.943 0.971 0.994 1.000
(0.984) (1.000) (1.000) (1.000) (1.000)

300 330 0.959 1.000 1.000 1.000 1.000
(1.000) (1.000) (1.000) (1.000) (1.000)

change at k∗ = 1.5n
100 150 0.434 0.579 0.627 0.785 0.698

(0.358) (0.901) (0.954) (1.000) (1.000)
200 300 0.606 0.808 0.887 0.977 0.993

(0.602) (0.988) (0.999) (1.000) (1.000)
300 450 0.820 0.956 0.993 1.000 1.000

(0.893) (1.000) (1.000) (1.000) (1.000)

H′1(3) : Gumbel with τ0 = 0.13→ Frank with τ0 = 0.60

change at k∗ = 1.1n

100 110 0.545 0.675 0.729 0.823 0.770
(0.731) (0.958) (0.991) (0.993) (0.993)

200 220 0.870 0.943 0.975 0.994 0.998
(0.977) (0.999) (1.000) (1.000) (1.000)

300 330 0.953 1.000 1.000 1.000 1.000
(0.997) (1.000) (1.000) (1.000) (1.000)

change at k∗ = 1.5n

100 150 0.348 0.521 0.607 0.751 0.689
(0.381) (0.930) (0.996) (1.000) (1.000)

200 300 0.618 0.82 0.975 0.994 0.998
(0.581) (0.988) (0.999) (1.000) (1.000)

300 450 0.912 0.983 1.000 1.000 1.000
(0.881) (1.000) (1.000) (1.000) (1.000)
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Figure 1. Annual mean temperature and annual mean precipitation in summer months over the
contiguous United States from 1895 to 2015. (a) Annual mean temperature in summer; (b) Annual
mean precipitation in summer.

Table 5. The stopping time.

α τ̂(n) Year

0.01 114 2008
0.05 109 2003
0.10 107 2001

5. Conclusions

In this study, we designed the monitoring test for a change of copula function on the basis of the
empirical copula functions. The test is shown to have its limiting distribution as the supremum of
the Kiefer process under certain regularity conditions. The simulation results reported in Section 4
confirms that our test performs adequately. Our method to monitor the change of copula function has
several advantages. The procedure is copula model free and we use a bootstrap method to overcome
the difficulty that the asymptotic limiting distribution depends on the unknown copula function.
For this reason, it is directly applicable in practice even when we do not know the true copula function.
Furthermore, finite sample properties are expected to be well behaved since we use a bootstrap method.
Our monitoring test has been established under the assumption that each series of random vector
is independent and identically distributed. However, this assumption is often violated in practice
and one might be able to consider even a broader class of stochastic processes such as autoregressive
moving average (ARMA), ARCH and GARCH processes. Recently, Doukhan et al. [41] and Bücher
and Volgushev [42] considered the weak convergence of the empirical copula process under serial
dependence. These studies form the basis for our new monitoring test for copula function under weak
dependence. We leave the task of extending our test to future study.
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