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Abstract: This paper is devoted to studying the existence and uniqueness of weak solutions
for an initial boundary problem of a nonlinear fourth-order parabolic equation with variable
exponent vt + div(|∇4v|p(x)−2∇4v) − |4v|q(x)−24v = g(x, v). By applying Leray-Schauder’s
fixed point theorem, the existence of weak solutions of the elliptic problem is given. Furthermore, the
semi-discrete method yields the existence of weak solutions of the corresponding parabolic problem
by constructing two approximate solutions.
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1. Introduction

We mainly study the following fourth-order parabolic equations with variable exponents:

vt + div(|∇4v|p(x)−2∇4v)− |4v|q(x)−24v = g(x, v), (x, t) ∈ ΩT , (1)

v(x, t) = 4v(x, t) = 0, (x, t) ∈ ΓT , (2)

v(x, 0) = v0(x), x ∈ Ω, (3)

where Ω is an open, bounded domain in RN , ∂Ω ∈ C1. Define ΩT = Ω× (0, T) and ΓT = ∂Ω× (0, T).
If p is a constant (especially p ≡ 2 and q ≡ 2), the Equation (1) has the structure of the classical
Cahn–Hilliard problem, which is often used to describe the evolution of a conserved concentration
field during phase separation in physics. It is also related to the thin-film equation if |∇4v|p(x)−2

becomes vp, which can analyze the motion of a very thin layer of viscous incompressible fluids along
an include plane.

There have been some results related to the existence, uniqueness and properties of solutions to
the fourth-order degenerate parabolic equations (see [1,2]). The paper [3] has studied the existence of
the Cahn–Hilliard equation and the reader may refer to [4] to obtain its physical background. For the
constant exponent case of (1), the paper [5] has given the existence and uniqueness of weak solutions.
For the problems in variable exponent spaces, the papers [6–8] have studied the existence of some
fourth-order parabolic equations with a variable exponent, and [9] has given the Fujita type conditions
for fast diffusion equation.

For the research of the existence and long-time behavior of the fourth-order partial differential
equations, the entropy functional method is often applied in order to obtain the necessary estimates
and to show the entropy dissipation. The large time behavior of solutions of the thin film equation
ut + (unuxxx)x = 0 was addressed in [10,11] by the entropy function method. For 0 < n < 3, [12]
proved the existence of (1) in the distributional sense and obtained the exponentially fast convergence
in L∞-norm via the entropy method of a regularized problem. We apply the idea of the entropy method
to deal with the corresponding problems with variable exponents.

Entropy 2016, 18, 413; doi:10.3390/e18110413 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://www.mdpi.com/journal/entropy


Entropy 2016, 18, 413 2 of 13

In this paper, we apply the Leray-Schauder’s fixed point theorem to prove the existence of weak
solutions of the corresponding elliptic problem of (1)–(3) in order to deal with the nonlinear source.
Furthermore, the semi-discrete method yields the existence of weak solutions of the parabolic problem
by constructing two approximate solutions. We will show the effect of the variable exponents and the
second-order nonlinear diffusion to the degenerate parabolic Equation (1).

1.1. Preliminaries

We introduce some elementary concepts and lemmas related to the variable exponent spaces
in this part.

Let p(x) ≥ 1 be a continuous function in Ω and we define the variable exponent space as follows:

Lp(x)(Ω) =

{
v(x) : v is measureable and Tp(.)(v) =

∫
Ω
|v|p(x)dx < ∞

}
with the norm

‖v‖p(x) = inf
{

γ > 0 : Tp(.)

(
v
γ

)
≤ 1

}
.

It is easy to check that the variable exponent space Lp(x)(Ω) becomes the classical Lebesgue space
Lp(Ω) when p(x) is a positive constant.

For convenience, we list some definitions and notations of the generalized Lebesgue–Sobolev
spaceW k,p(x)(Ω):

W k,p(x)(Ω) =:
{

v(x) ∈ Lp(x)(Ω) : Dαv ∈ Lp(x)(Ω), |α| ≤ k
}

,

‖v‖W k,p(x) =: ∑
|α|≤k
|Dαv|p(x),

E1 =: {v ∈ W1,p(x)
0 (Ω) ∩W2,p(x)(Ω) ∩W2,q(x)(Ω)| 4v ∈ W1,p(x)

0 (Ω)},

E2 =: {v ∈ H1
0(Ω) ∩W1,p(x)

0 (Ω) ∩W2,p(x)(Ω) ∩W2,q(x)(Ω)|4v ∈ W1,p(x)
0 (Ω)},

Lp′(x)(Ω) denotes the dual space with
1

p′(x)
+

1
p(x)

= 1.

Moreover,W k,p(x)
0 denotes the closure of C∞

0 (Ω) inW k,p(x)(Ω)−norm,W−1,p′(x)
0 (Ω) denotes the

dual space ofW1,p(x)
0 (Ω). For any positive continuous function θ(x), we define

θ− = inf
x∈Ω

θ(x), θ+ = sup
x∈Ω

θ(x).

Throughout the paper, C and Ci(i = 1, 2, 3, ...) denote the general positive constants independent
of solutions and may change from line to line.

In the following, we list some known results for the variable exponent spaces (see [13,14]).

Lemma 1. Letting f ∈ Lp(x)(Ω), one has

(1) ‖ f ‖p(x) < 1(= 1;> 1)⇐⇒ Tp(.)( f ) < 1(= 1;> 1);

(2) ‖ f ‖p(x) < 1 =⇒ ‖ f ‖p+

p(x) ≤ Tp(.)( f ) ≤ ‖ f ‖p−

p(x);

‖ f ‖p(x) ≥ 1 =⇒ ‖ f ‖p−

p(x) ≤ Tp(.)( f ) ≤ ‖ f ‖p+

p(x);

(3)‖ f ‖p(x) → 0⇐⇒ Tp(.)( f )→ 0; ‖ f ‖p(x) → ∞⇐⇒ Tp(.)( f )→ ∞.

Lemma 2. (Poincaré’s inequality) Letting f ∈ W1,p(x)
0 (Ω), there exists a positive constant C such that

‖ f ‖p(x) ≤ C‖∇ f ‖p(x).
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Lemma 3. (Hölder’s inequality) Letting f ∈ Lp(x)(Ω) and g ∈ Lp′(x)(Ω), one has
∣∣∫

Ω f gdx
∣∣ ≤(

1
p− + 1

p′−

)
‖ f ‖p(x)‖g‖p′(x) ≤ 2‖ f ‖p(x)‖g‖p′(x).

1.2. Results

In (1), we require that p(x) and q(x) are two continuous functions in Ω and p−, q− > 1. Besides,
the nonlinear source term g(x, v) ∈ C1(Ω× R) satisfies the growth condition:

|g(x, v)| ≤ K|v|l(x) + s(x), v ∈ (−∞,+∞), x ∈ Ω, (4)

where K is a positive constant, l(x) is a continuous function in Ω and s(x) ∈ Lp′(x)(Ω). Furthermore,
by letting π(x) =: l(x)p′(x), we require that

π+

p−
< 1, 0 ≤ l(x) ≤ Np(x)

(N − p(x))p′(x)
. (5)

The corresponding steady-state problem of (1)–(3) has the form:

div(|∇4v|p(x)−2∇4v)− |4v|q(x)−24v = g(x, v) in Ω, (6)

v = 4v = 0 on ∂Ω. (7)

The weak solution is defined in the following sense.

Definition 1. A function v ∈ E1 is said to be a weak solution of (6) and (7) provided that

−
∫

Ω
|∇4v|p(x)−2∇4v∇φdx−

∫
Ω
|4v|q(x)−24vφdx =

∫
Ω

g(x, v)φdx (8)

for each φ ∈ W1,p(x)
0 (Ω) ∩ Lq(x)(Ω) and g(x, v(x)) ∈ Lp′(x)(Ω).

The following theorem gives the existence of solutions.

Theorem 1. Let v0 ∈ W
1,p(x)
0 (Ω). There exists at least a weak solution of (6) and (7) satisfying Definition 1.

For the evolution equation case, we define the weak solution of (1)–(3) as following.

Definition 2. A function v is said to be a weak solution of (1)–(3) provided that

(i) v ∈ C([0, T];L2(ΩT)) ∩ Lp−(0, T;W1,p(x)
0 (Ω)) ∩ Lq−(0, T;W2,q(x)(Ω)),

4v ∈ Lp′−(0, T;W1,p(x)
0 (Ω)), ∂v

∂t ∈ L
p′−(0, T;W−1,p(x)(Ω)), v(x, 0) = v0(x) a.e. in Ω;

(ii) For any φ ∈ Lp+(0, T;W1,p(x)
0 (Ω)) ∩ Lq+(0, T;W2,q(x)(Ω)), one has

∫ T

0

〈∂v
∂t

, φ
〉

dt =
∫ T

0

∫
Ω
|∇4v|p(x)−2∇4v∇φdxdt

+
∫ T

0

∫
Ω
|4v|q(x)−24vφdxdt +

∫ T

0

∫
Ω

g(x, v)φdxdt.

The existence of solutions is the following theorem.

Theorem 2. Let p′− > 1, q′− > 1, v0 ∈ H1
0(Ω)∩W1,p(x)

0 (Ω) and4v0 ∈ W
1,p(x)
0 (Ω). There exists at least

a weak solution of (1)–(3).
Moreover, the solution of (1)–(3) is unique when g(x, v) = µ(v(x, t)− b(x)) where µ is a constant and

b(x) ∈ Lp′(x)(Ω).
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This paper is organized as follows. In Section 2, we prove the existence and uniqueness of weak
solution to the steady-state problem by using Leray-Schauder’s fixed point theorem. In Section 3,
we prove the existence of the solution to an evolution equation by applying the semi-discrete method
with necessary uniform estimates.

2. Steady-State Problem

In order to apply the fixed point theorem, we consider a steady-state problem with the source g(x):

div(|∇4v|p(x)−2∇4v)− |4v|q(x)−24v = g(x) in Ω, (9)

v = 4v = 0 on ∂Ω. (10)

By constructing an energy functional and obtaining its minimizer, we have the following existence
of weak solutions.

Lemma 4. Let g ∈ Lp′(x)(Ω). There exists a unique weak solution v ∈ E1 of (9) and (10) satisfying

−
∫

Ω
|∇4v|p(x)−2∇4v∇4φdx−

∫
Ω
|4v|q(x)−24v4φdx

=
∫

Ω
g(x)4φdx (11)

for any φ ∈ E1.

Proof. Introduce a functional

z(v) =
∫

Ω

1
p(x)
|∇4v|p(x)dx +

∫
Ω

1
q(x)
|4v|q(x)dx−

∫
Ω

g4vdx. (12)

For the last term, Hölder’s inequality, the Young inequality, the Sobolev embedding theorem (see [15])
and the Lp-theory of the second-order elliptic equation (see [16]) gives∣∣∣ ∫

Ω
g4vdx

∣∣∣ ≤ ‖g‖p′(x)‖4v‖p(x))

≤ C
(

1
ε

)
max

{
‖g‖p

′−

p′(x), ‖g‖
p
′+

p′(x)

}
+ ε

∫
Ω
|4v|p(x)dx

≤ C max
{
‖g‖p

′−

p′(x), ‖g‖
p
′+

p′(x)

}
+

1
2

∫
Ω

1
p(x)
|∇4v|p(x)dx. (13)

On the other hand, (12) implies

−C ≤ inf
ν∈E1

z(ν) ≤ z(0) = 0.

Hence there exists a sequence {vk}∞
k=1 ∈ E1 such that

z(vk)→ inf
ν∈E1

z(ν)(k→ ∞). (14)

Equations (13) and (14) give

‖∇4vk‖p(x) ≤ C, ‖4vk‖q(x) ≤ C,
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which implies that z(vk) is bounded and thus Lemmas 1–3 yield

‖vk‖2,p(x) ≤ ‖4vk‖p(x) ≤ C‖∇4vk‖p(x)

≤ C1 max

{(∫
Ω
|∇4vk|p(x)

) 1
p−

,
(∫

Ω
|∇4vk|p(x)

) 1
p+
}
≤ C2,

and

‖vk‖2,q(x) ≤ ‖4vk‖q(x)

≤ C3 max

{(∫
Ω
|4vk|q(x)

) 1
q−

,
(∫

Ω
|4vk|q(x)

) 1
q+
}
≤ C4.

It shows that vk belongs to the spaceW1,p(x)
0

⋂W2,p(x) ⋂W2,q(x) uniformly, and then there exists
a function v ∈ E1 such that

vk ⇀ v weakly inW1,p(x)
0 (Ω) ∩W2,p(x)(Ω) ∩W2,q(x)(Ω),

4vk ⇀ 4v weakly inW1,p(x)
0 (Ω) ∩ Lq(x)(Ω).

Furthermore, since z(v) is weakly lower semi-continuous on E1, we have

inf
ν∈E1

z(ν) ≤ z(v) ≤ lim
k→∞

infz(vk) = inf
ν∈E1

z(ν),

i.e., v is a minimizer of z(·) and z(v) = infν∈E1 z(ν). It guarantees that v is a weak solution
of (9) and (10).

The uniqueness is obvious and we omit the details.

Now, we consider the problem (6) and (7) with the nonlinear source g(x, v).

Lemma 5. Letting v(x) ∈ E1 be a weak solution of (6) and (7), one has ‖v‖E1 ≤ C.

Proof. Multiplying (8) by v gives∫
Ω
|∇4v|p(x)dx +

∫
Ω
|4v|q(x)dx

=−
∫

Ω
g(x, v)4vdx ≤ 2‖g‖p′(x)‖4v‖p(x)

≤C‖g‖p′(x)‖∇4v‖p(x)

≤1
4

∫
Ω
|∇4v|p(x)dx + C max{‖g‖p′−

p′(x), ‖g‖
p′+

p′(x)}. (15)

By Lemmas 2 and 3 and Lp-estimate (see [16]), we conclude that∫
Ω
|g(x, v)|p′(x)dx ≤ C

∫
Ω
(K|v|l(x) + s(x))p′(x)dx

≤ CMp′+
∫

Ω
|v|l(x)p′(x)dx + C

∫
Ω
|s(x)|p′(x)

dx + C

≤ C‖v‖l(x)p′(x)
W1,p(x) + C ≤ C‖4v‖l(x)p′(x)

p(x) + C

≤ C‖∇4v‖l(x)p′(x)
p(x) + C, (16)
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and thus

max{‖g‖p′−

p′(x), ‖g‖
p′+

p′(x)} ≤ C max{‖∇4v‖π+

p(x), ‖∇4v‖π−
p(x)}+ C

≤ 1
4

∫
Ω
|∇4v|p(x)dx + C. (17)

Equations (15)–(17) yield ∫
Ω
|∇4v|p(x)dx +

∫
Ω
|4v|q(x)dx ≤ C. (18)

It completes the proof of Lemma 5.

Proof of Theorem 1. Letting ω ∈ Lp∗(x)(Ω) and δ ∈ [0, 1] where we choose p∗(x) such that
E1 ↪→ Lp∗(x)(Ω) is compact, we consider the auxiliary problem

div(|∇4v|p(x)−2∇4v)− |4v|q(x)−24v = δg(x, ω) in Ω,

v = 4v = 0 on ∂Ω.

Lemma 4 ensures its existence and so we can define the fixed point operator

T : [0, 1]×Lp∗(x)(Ω) −→ Lp∗(x)(Ω),

(δ, ω) 7−→ v

and T(ω, 0) = 0.
If ω ∈ Lp∗(x)(Ω) satisfies T(ω, δ) = ω, we can check that ‖ω‖E1 ≤ C where C > 0 is

independence of ω and δ from the idea of Lemma 5. The compact embedding E1 ↪→ Lp∗(x)(Ω)

can ensure that T is a continuous and compact operator. Leray-Schauder’s fixed point theorem yields
the existence of solutions of (6) and (7).

3. Evolution Equation

In this section, we study the existence solutions of (1)–(3). For this purpose, we establish
a semi-discrete problem at first:

1
h
(vk − vk−1) + div(|∇4vk|p(x)−2∇4vk)− |4vk|q(x)−24vk

=g(x, vk−1), x ∈ Ω, (19)

vk(x, t) = 4vk(x, t) = 0, x ∈ ∂Ω, (20)

where vk = v(x, kh), h = T
n , k = 1, 2, · · · , n and n ∈ N.

Lemma 6. Assume v0 ∈ E2. (19) and (20) admits a unique weak solution vk ∈ E2 satisfying

i

∑
k=1

∫
Ω
|∇vk|2dx + h

i

∑
k=1

∫
Ω
|∇4vk|p(x)dx + h

i

∑
k=1

∫
Ω
|4vk|q(x)dx

≤
i

∑
k=1

∫
Ω
|∇vk−1|2dx +

h
2

i

∑
k=1

∫
Ω
|∇4vk−1|p(x)dx + CT, (21)
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and

∫
Ω
|∇vi|2dx +

h
2

i

∑
k=1

∫
Ω
|∇4vi|p(x)dx +

h
2

∫
Ω
|∇4vi|p(x)dx

+ h
i

∑
k=1

∫
Ω
|4vk|q(x)dx

≤
∫

Ω
|∇v0|2dx +

h
2

∫
Ω
|∇4v0|p(x)dx + CT. (22)

Proof. According to the argument of the Section 2, we conclude that the problem (19) and (20) has a
unique weak solution vk ∈ E2 satisfying

1
h

∫
Ω
∇(vk − vk−1) · ∇φdx +

∫
Ω
|∇4vk|p(x)−2|∇4vk| · ∇4φdx

+
∫

Ω
|4vk|q(x)−24vk4φdx = −

∫
Ω

g(x, vk−1)4φdx (23)

for anyφ ∈ C∞
0 (Ω). Letting φ = vk in (23), we have

1
h

∫
Ω
|∇vk|2dx +

∫
Ω
|∇4vk|p(x)dx +

∫
Ω
|4vk|q(x)dx

=
1
h

∫
Ω
∇vk · ∇vk−1dx−

∫
Ω

g(x, vk−1)4vkdx

≤ 1
2h

∫
Ω
|∇vk−1|2dx +

1
2h

∫
Ω
|∇vk|2dx−

∫
Ω

g(x, vk−1)4vkdx. (24)

Similar to the proof of (16) and (17), we get

−
∫

Ω
g(x, vk−1)4vkdx

≤1
2

∫
Ω
|∇4vk|p(x)dx + C

∫
Ω
|g(x, vk−1)|p

′(x)dx

≤1
2

∫
Ω
|∇4vk|p(x)dx +

1
4

∫
Ω
|∇4vk−1|p(x)dx + C. (25)

By (24) and (25), one has

1
2h

∫
Ω
|∇vk|2dx +

1
2

∫
Ω
|∇4vk|p(x)dx +

∫
Ω
|4vk|q(x)dx

≤ 1
2h

∫
Ω
|∇vk−1|2dx +

1
4

∫
Ω
|∇4vk−1|p(x)dx + C. (26)

Hence, for any 1 ≤ i ≤ n, we obtain

i

∑
k=1

∫
Ω
|∇vk|2dx + h

i

∑
k=1

∫
Ω
|∇4vk|p(x)dx + h

i

∑
k=1

∫
Ω
|4vk|q(x)dx

≤
i

∑
k=1

∫
Ω
|∇vk−1|2dx +

h
2

i

∑
k=1

∫
Ω
|∇4vk−1|p(x)dx + CT. (27)

It completes the proof of (21) and (22) obtained from (21).

Now, we are in the position to define the first approximate solution of (1)–(3)

v(n)(x, t) =
n

∑
k=1

χk(t)vk(t) (28)
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where χk(t) is the characteristic function over the interval ((k − 1)h, kh] for k = 1, 2, ..., n. For this
approximate solution, we have the following uniform estimates.

Lemma 7. One has

‖v(n)‖L∞(0,T;H1
0(Ω)) + ‖4v(n)‖

Lp− (0,T;W1,p(x)
0 (Ω))

+ ‖|∇4v(n)|p(x)−2∇4v(n)‖Lp′−(ΩT)
+ ‖|4v(n)|q(x)−24v(n)‖Lq′ (ΩT)

+ ‖g(·, v(n))‖Lp′− (ΩT)
≤ C. (29)

Proof. By Lemma 6 and
‖∇v(n)‖2

L2(Ω) = ‖∇vk(x)‖2
L2(Ω) ≤ C, (30)

we have the estimate
‖∇v(n)‖L∞(0,T;L2(Ω)) ≤ C. (31)

On the other hand, we have

‖4v(n)‖
Lp− (0,T;W1,p(x)

0 )
=

(∫ T

0
‖4v(n)‖p−

1,p(x)dx
) 1

p−

=

(
h

n

∑
k=1
‖4vk‖

p−

1,p(x)dx

) 1
p−

≤
(

Ch
n

∑
k=1
‖∇4vk‖

p−

p(x)dx

) 1
p−

≤ C

(
h

n

∑
k=1

(
∫

Ω
|∇4vk|p(x)dx + 1)

) 1
p−

≤ C(C + T)
1

p− . (32)

Letting i = n in (22), we get

∫ T

0

∫
Ω
|∇4v(n)|p(x)dxdt +

∫ T

0

∫
Ω
|4v(n)|q(x)dxdt

=h
n

∑
k=1

∫
Ω
|∇4vk|p(x)dx + h

n

∑
k=1

∫
Ω
|4vk|q(x)dx ≤ C.

Another approximate solution is defined as follows:

v(n)(x, t) =
n

∑
k=1

χk(t)[ϑk(t)vk(x) + (1− ϑk(t))vk−1(x)], (33)

where

ϑk(t) =

{ t
h − (k− 1), if t ∈ ((k− 1)h, kh],

0, otherwise.

We also obtain some uniform estimates for this approximate solution.

Lemma 8. One has ∥∥∥∂v(n)

∂t

∥∥∥
Lp′− (0,T;W−1,p′(x)(Ω))

+
∥∥v(n)

∥∥
L∞(0,T;H1

0(Ω))
≤ C. (34)
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Proof. By (33), we get

∂v(n)

∂t
=

1
h

n

∑
k=1

χk(vk − vk−1) (35)

and then

∫ T

0

∥∥∥∂v(n)

∂t

∥∥∥p′−

W−1,p′(x)(Ω)
dt ≤

∫ T

0

∣∣∣∣〈∂v(n)

∂t
, ψ
〉∣∣∣∣p′−dt

≤C
∫ T

0

∣∣∣∣ n

∑
k=1

χk(t)
∫

Ω
|∇4vk|p(x)−2∇4vk∇ψdx

∣∣∣∣p′−dt

+ C
∫ T

0

∣∣∣∣ n

∑
k=1

χk(t)
∫

Ω
g(x, vk−1)ψdx

∣∣∣∣p′−dt

+ C
∫ T

0

∣∣∣∣ n

∑
k=1

χk(t)
∫

Ω
|4vk|q(x)−24vkψdx

∣∣∣∣p′−dt

≤C‖∇4v(n)‖p′−

Lp′− (ΩT)
+ C‖g(x, vk−1)‖

p′−

Lp′− (ΩT)

≤C,

for any ψ ∈ W1,p(x)
0 (Ω) with ‖ψ‖

W1,p(x)
0 (Ω)

≤ 1. It follows from (22) and (33) that

∥∥v(n)
∥∥m
Lm(0,T;H1

0(Ω))

≤Cm
∫ T

0

( ∫
Ω
|∇v(n)|2dx

)m
2

dt

=Cm
∫ T

0

( ∫
Ω

∣∣∣∣ n

∑
k=1

χk(t)[ϑk(t)∇vk(x) + (1− ϑk(t))∇vk−1(x)]
∣∣∣∣2dx

)m
2

dt

=Cm
n

∑
k=1

∫ (kh)

(k−1)h

( ∫
Ω

∣∣[ϑk(t)∇vk(x) + (1− ϑk(t))∇vk−1(x)]
∣∣2dx

)m
2

dt

≤Cm
n

∑
k=1

h
( ∫

Ω
(|∇vk(x)|2 + |∇vk−1(x)|2)dx

)m
2

≤C
m+ m

2 T

with C > 0 independent of m. Perform the limit m→ ∞ to get∥∥v(n)
∥∥
L∞(0,T;H1

0(Ω))
= lim

m→∞

∥∥v(n)
∥∥
Lm(0,T;H1

0(Ω))
≤ C.

Proof of Theorem 2. By (29), we can seek a subsequence of v(n) (still denoted by itself) and two
functions ν ∈ Lp′(x)(ΩT), ν′ ∈ Lq′(x)(ΩT) such that

v(n) ⇀ v weakly * in L∞(0, T;H1
0(Ω)),

4v(n) ⇀ 4v weakly in Lp−(0, T;W1,p
0 (Ω)),

|∇4v(n)|p(x)−2∇4v(n) ⇀ ν weakly in Lp′(x)(ΩT),

|4v(n)|q(x)−24v(n) ⇀ ν′ weakly in Lq′(x)(ΩT),
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as n→ ∞.
It is easy to check that there exists a positive integer r such thatW−1,p′(Ω) ↪→ H−r(Ω) and thus

the embeddingH1
0(Ω)

compact
↪→ L2(Ω) ↪→ H−r(Ω), the uniform estimate (34) and the Aubin lemma [17]

yield the existence of a subsequence of v(n) and a function $ such that, as n→ ∞,

∂v(n)

∂t
⇀

∂$

∂t
weakly in Lp′−(0, T;W−1,p(x)(Ω)),

v(n) ⇀ $ weakly ∗ in L∞(0, T;H1
0(Ω)),

v(n) → $ strongly in C([0, T];L2(Ω)),

v(n) → $ a.e. in ΩT .

Moreover, (23) gives, for any φ ∈ C∞
0 (ΩT),∣∣∣∣ ∫ T

0

∫
Ω
(v(n) − v(n))φdxdt

∣∣∣∣
=

∣∣∣∣ ∫ T

0

∫
Ω

n

∑
k=1

χk(t)(1− ϑk(t))(vk − vk−1)φdxdt
∣∣∣∣

=

∣∣∣∣ ∫ T

0
h

n

∑
k=1

χk(1− ϑk)
∫

Ω
(|∇4vk|p(x)−2∇4vk∇φ

+ |4vk|q(x)−24vkφ + g(x, vk−1)φ)dxdt
∣∣∣∣

≤h
∫ T

0

(∣∣∣∣ ∫Ω
|∇4v(n)|p(x)−2∇4v(n)∇φdx

∣∣∣∣+ ∣∣∣∣ ∫Ω
|4v(n)|q(x)−24v(n)φdx

∣∣∣∣
+

∣∣∣∣ ∫Ω
g(x, v(n))φdx

∣∣∣∣+ ∣∣∣∣ ∫Ω
g(x, v0)φdx

∣∣∣∣)dt

≤Ch→ 0,

as n→ ∞.
By the continuity of g and $ = v a.e. in ΩT , we have g(x, v(n))→ g(x, v) a.e. in ΩT . Furthermore,

the estimate (see Lemma 7) ‖g(x, v(n))‖Lp′(x)(ΩT)
< ∞ gives

g(x, v(n)) ⇀ g(x, v) weakly in Lp′(x)(ΩT).

Applying (23) and (35), we obtain, for any test function φ,

∫ T

0

〈∂v(n)

∂t
, φ
〉

dt

=
∫ T

0

∫
Ω
|∇4v(n)|p(x)−2∇4v(n)∇φdxdt

+
∫ T

0

∫
Ω
|4v(n)|q(x)−24v(n)φdxdt

+
∫ T

0

∫
Ω

g(x, v(n))φdxdt + h
∫

Ω
g(x, v0)φ(x, 0)dx

−
∫ T

(n−1)h

∫
Ω

g(x, vn)φdxdt.

By taking n→ ∞, we have
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∫ T

0

〈∂v
∂t

, φ
〉

dt =
∫ T

0

∫
Ω

ν∇φdxdt +
∫ T

0

∫
Ω

ν′φdxdt +
∫ T

0

∫
Ω

g(x, v)φdxdt.

It remains to prove ν = |∇4v|p(x)−2∇4v and ν′ = |4v|q(x)−24v. By using v as a test function
in (23) and integrating by part, we get

1
2

∫
Ω
|∇v(x, T)|2dx− 1

2

∫
Ω
|∇v0|2dx +

∫ T

0

∫
Ω

ν∇4vdxdt +
∫ T

0

∫
Ω

ν′4vdxdt

=−
∫ T

0

∫
Ω

g(x, v)4vdxdt. (36)

On the other hand, (23) implies

1
2

∫
Ω
|∇v(n)(x, T)|2dx− 1

2

∫
Ω
|∇v0|2dx

+
∫ T

0

∫
Ω
|∇4v(n)|p(x)dxdt +

∫ T

0

∫
Ω
|4v(n)|q(x)dxdt

≤−
∫ T

0

∫
Ω

g(x, v(n))4v(n)dxdt− h
∫

Ω
g(x, v0)v0dx

+
∫ T

(n−1)h

∫
Ω

g(x, vn)vndxdt. (37)

For any test functions φ, φ1 and constant ε > 0, we have

∫ T

0

∫
Ω
(|ρ(n)|p(x)−2ρ(n) − |ηε|p(x)−2ηε)(ρ

(n) − ηε)dxdt ≥ 0, (38)

and ∫ T

0

∫
Ω
(|ρ(n)1 |

q(x)−2ρ
(n)
1 − |ηε|q(x)−2η1ε)(ρ

(n)
1 − η1ε)dxdt ≥ 0, (39)

where ρ(n) = ∇4v(n), ηε = ∇4(v− εφ)) and ρ
(n)
1 = 4v(n), η1ε = 4(v− εφ1).

By (37)–(39), we arrive at

1
2

∫
Ω
|∇v(x, T)|2dx− 1

2

∫
Ω
|∇v0|2dx−

∫ T

0

∫
Ω
|∇4(v− εφ)|p(x)dxdt

+
∫ T

0

∫
Ω
|∇4(v− εφ)|p(x)−2∇4(v− εφ)∇4vdxdt

+
∫ T

0

∫
Ω

ν∇4(v− εφ)dxdt−
∫ T

0

∫
Ω
|4(v− εφ1)|q(x)dxdt

+
∫ T

0

∫
Ω
|4(v− εφ1)|q(x)−24(v− εφ1)4vdxdt

+
∫ T

0

∫
Ω

ν′4(v− εφ1)dxdt ≤ −
∫ T

0

∫
Ω

g(x, v)4vdxdt.

Moreover, (36) gives

∫ T

0

∫
Ω
[|∇4(v− εφ)|p(x)−2]∇4(v− εφ)− ν]∇4φdxdt

+
∫ T

0

∫
Ω
[|4(v− εφ1)|q(x)−2]4(v− εφ)− ν′]4φdxdt ≤ 0.
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By letting ε→ 0, we obtain

∫ T

0

∫
Ω
[|∇4v|p(x)−2]∇4v− ν]∇4φdxdt +

∫ T

0

∫
Ω
[|4v|q(x)−24v− ν′]4φ1dxdt

≤ 0.

By letting φ1 = 0, we have

∫ T

0

∫
Ω
[|∇4v|p(x)−2]∇4v− ν]∇4φdxdt ≤ 0.

The arbitrariness of φ yields |∇4v|p(x)−2∇4v = ν, a.e. in ΩT . Similarly, we can obtain
|4v|q(x)−24v = ν′, a.e. in ΩT .

Proof of Uniqueness. Let v1(x) and v2(x) be two weak solutions to (1)–(3) and φ = v1− v2. By taking
4φ as the test function, we get

1
2

∫ t

0

∫
Ω

d
dt
|∇φ|2dxdt

+
∫ t

0

∫
Ω
[|∇4v1|p(x)−2]∇4v1 − |∇4v2|p(x)−2]∇4v2]∇4φdxdt

+
∫ t

0

∫
Ω
[|4v1|q(x)−24v1 − |4v2|q(x)−24v2]4φdxdt = µ

∫ t

0

∫
Ω
|∇φ|2dxdt.

It implies

∫
Ω
|∇φ|2dx ≤ 2µ

∫ t

0

∫
Ω
|∇φ|2dxdt,

where we have used the fact (|x|m−2x − |y|m−2y)(x − y) ≥ 0 for m > 1 and x, y ∈ R (or RN).
By Gronwall’s inequality, we obtain v1(x, t) = v2(x, t) a.e. in ΩT .
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