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Abstract: This paper studies probability density estimation on the Siegel space. The Siegel space is
a generalization of the hyperbolic space. Its Riemannian metric provides an interesting structure
to the Toeplitz block Toeplitz matrices that appear in the covariance estimation of radar signals.
The main techniques of probability density estimation on Riemannian manifolds are reviewed.
For computational reasons, we chose to focus on the kernel density estimation. The main result of
the paper is the expression of Pelletier’s kernel density estimator. The computation of the kernels
is made possible by the symmetric structure of the Siegel space. The method is applied to density
estimation of reflection coefficients from radar observations.
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1. Introduction

Various techniques can be used to estimate the density of probability measure in the Euclidean
spaces, such as histograms, kernel methods, or orthogonal series. These methods can sometimes
be adapted to densities in Riemannian manifolds. The computational cost of the density estimation
depends on the isometry group of the manifold. In this paper, we study the special case of the Siegel
space. The Siegel space is a generalization of the hyperbolic space. It has a structure of symmetric
Riemannian manifold, which enables the adaptation of different density estimation methods at a
reasonable cost. Convergence rates of the density estimation using kernels and orthogonal series were
gradually generalized to Riemannian manifolds (see [1–3]).

The Siegel space appears in radar processing in the study of Toeplitz block Toeplitz matrices,
whose blocks represent covariance matrices of a radar signal (see [4–6]). The Siegel also appears in
statistical mechanics, see [7] and was recently used in image processing (see [8]). Information geometry
is now a standard framework in radar processing (see [4–6,9–13]). The information geometry on
positive definite Teoplitz block Teoplitz matrices is directly related to the metric on the Siegel space
(see [14]). Indeed, Toeplitz block Toeplitz matrices can be represented by a symmetric positive definite
matrix and a point laying in a product of Siegel disks. The metric considered on Toeplitz block Toeplitz
matrices is induced by the product metric between a metric on the symmetric positive definite matrices
and the Siegel disks metrics (see [4–6,9,14]).
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One already encounters the problem of density estimation in the hyperbolic space for electrical
impedance [15], networks [16] and radar signals [17]. In [18], a generalization of the Gaussian law on
the hyperbolic space was proposed. Apart from [19], where authors propose a generalization of the
Gaussian law, probability density estimation on the Siegel space has not yet been addressed.

The contributions of the paper are the following. We review the main non parametric density
estimation techniques on the Siegel disk. We provide some rather simple explicit expressions of the
kernels defined by Pelletier in [1]. These expressions make the kernel density estimation the most
adapted method. We present visual results of estimated densities in the simple case where the Siegel
disk reduces to the Poincaré disk.

The paper begins with an introduction to the Siegel space in Section 2. Section 3 reviews the main
non-parametric density estimation techniques on the Siegel space. Section 3.3 contains the original
results of the paper. Section 4 presents an application to radar data estimation.

2. The Siegel Space

This section presents facts about the Siegel space. The interested reader can find more details
in [20,21]. The necessary background on Lie groups and symmetric space can be found in [22].

2.1. The Siegel Upper Half Space

The Siegel upper half space is a generalization of the Poincaré upper half space (see [23]) for a
description of the hyperbolic space. Let Sym(n) be the space of real symmetric matrices of size n× n
and Sym+(n) the set of real symmetric positive definite matrices of size n× n. The Siegel upper half
space is defined by

Hn = {Z = X + iY|X ∈ Sym(n), Y ∈ Sym+(n)} .

Hn is equipped with the following metric:

ds = 2tr(Y−1dZY−1dZ).

The set of real symplectic matrices Sp(n,R) is defined by

g ∈ Sp(n,R)⇔ gt Jg = J,

where

J =

(
0 In

−In 0

)
,

and In is the n× n identity matrix. Sp(n,R) is a subgroup of SL2n(R), the set of 2n× 2n invertible

matrices of determinant 1. Let g =

(
A B
C D

)
∈ Sp(n,R). The metric ds is invariant under the

following action of Sp(n,R),
g.Z = (AZ + B)(CZ + D)−1.

This action is transitive, i.e.,

∀Z ∈ Hn, ∃g ∈ Sp(n,R), g.iI = Z.

The stabilizer K of iI is the set of elements g of Sp(n,R) whose action leaves iI fixed. K is a
subgroup of Sp(n,R) called the isotropy group. We can verify that

K =

{(
A B
−B A

)
, A + iB ∈ SU(n)

}
.
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A symmetric space is a Riemannian manifold, where the reversal of the geodesics is well defined
and is an isometry. Formally, expp(u) 7→ expp(−u) is an isometry for each p on the manifold, where u
is a vector in the tangent space at p, and expp the Riemannian exponential application at p. In other
words, the symmetry around each point is an isometry. Hn is a symmetric space (see [20]). The structure
of a symmetric space can be studied through its isometry group and the Lie algebra of its isometry
group. The present work will make use of the Cartan and Iwasawa decompositions of the Lie algebra
of Sp(n,R) (see [22]). Let sp(n,R) be the Lie algebra of Sp(n,R). Given A, B and C three real n× n

matrices, let denote

(
A B
C −At

)
= (A, B, C). We have

sp(n,R) = {(A, B, C)|B and C symmetric} .

The Cartan decomposition of sp(n,R) is given by

sp(n,R) = t⊕ p,

where
t = {(A, B,−B)|B symmetric and A skew-symmetric} ,

p = {(A, B, B)|A, B, symmetric} . (1)

The Iwasawa decomposition is given by

sp(n,R) = t⊕ a⊕ n,

where
a = {(H, 0, 0)|H diagonal} ,

n = {(A, B, 0)|A upper triangular with 0 on the diagonal , B symmetric} .

It can be shown that
p = ∪k∈K Adk(a), (2)

where Ad is the adjoint representation of Sp(n,R).

2.2. The Siegel Disk

The Siegel disk Dn is the set of complex matrices {Z|I − Z∗Z ≥ 0}, where ≥ stands for
the Loewner order (see [24] for details on the Loewner order). Recall that for A and B two
Hermitian matrices, A ≥ B with respect to the Loewner order means that A− B is positive definite.
The transformation

Z ∈ Hn 7→ (Z− iI)(Z + iI)−1 ∈ Dn

is an isometry between the Siegel upper half space and the Siegel disk. Let C =

(
I −iI
I iI

)
.

The application g ∈ Sp(n,R) 7→ CgC−1 identifies the set of isometries of Hn and of Dn. Thus,

it can be shown that a matrix g =

(
A B
A B

)
∈ Sp(n,C) acts isometrically on Dn by

g.Z = (AZ + B)(AZ + B)−1,
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where A stands for the conjugate of A. The point iI inHn is identified with the null matrix noted 0 in
Dn. Let Z ∈ Dn. There exists P a diagonal matrix with decreasing positive real entries and U a unitary
matrix such that Z = UPUt. Let τ1 ≥ ... ≥ τn be such that

P =

th(τ1)
. . .

th(τn)

 .

Let

A0 =

ch(τ1)
. . .

ch(τn)

 , B0 =

sh(τ1)
. . .

sh(τn)


and

gZ =

(
U 0
0 U

)
.

(
A0 B0

A0 B0

)
.

It can be shown that
gZ ∈ Sp(n,C) and gZ.0 = Z. (3)

We provide now a correspondence between the elements of Dn and the elements of p defined in
Equation (1). Let

HZ =



τ1
. . .

τn

−τ1
. . .
−τn


∈ a, (4)

and

aZ =



eτ1

. . .
eτn

e−τ1

. . .
e−τn


∈ A = exp(a).

It can be shown that there exists k ∈ K such that

Cexp(Adk(HZ))C−1.0 = Z,

or equivalently
CkaZkC−1.0 = Z.

Recall that Equation (2) gives Adk(H) ∈ p and kak ∈ exp(p). The distance between Z and 0 in Dn

is given by

d(0, Z) =
(

2 ∑ τ2
i

)1/2
(5)

(see p. 292 in [20] ).
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3. Non Parametric Density Estimation on the Siegel Space

Let Ω be a space, endowed with a σ-algebra and a probability measure p. Let X be a random
variable Ω→ Dn. The Riemannian measure of Dn is called vol and the measure on Dn induced by X
is noted µX . We assume that µX has a density, noted f , with respect to vol, and that the support of X is
a compact set noted Supp. Let (x1, ..., xk) ∈ Dk

n be a set of draws of X.
The Dirac measure at a point a ∈ Dn is denoted δa. Let µk = 1

k ∑k
i=1 δxi denotes the empirical

measure of the set of draws. This section presents four non-parametric techniques of estimation
of the density f from the set of draws (x1, ..., xk). The estimated density at x in Dn is noted
f̂k(x) = f̂ (x, x1, ..., xk). The relevance of a density estimation technique depends on several aspects.
When the space allows it, the estimation technique should equally consider each direction and location.
This leads to an isotropy and a homogeneity condition. In the kernel method, for instance, a kernel
density function Kxi is placed at each observation xi. Firstly, in order to treat directions equally,
the function Kxi should be invariant under the isotropy group of xi; Secondly, for another observation
xj, functions Kxi and Kxj should be similar up to the isometries that send xi on xj. These considerations
strongly depend on the geometry of the space: if the space is not homogeneous and the isotropy group
is empty, these indifference principles have no meaning. Since the Siegel space is symmetric, it is
homogeneous and has a non empty isotropy group. Thus, the density estimation technique should be
chosen accordingly.

The convergence of the different estimation techniques is widely studied. Results were first
obtained in the Euclidean case, and are gradually extended to the probability densities on manifold
(see [1,2,15,25]).

The last relevant aspect is computational. Each estimation technique has its own computational
framework that presents pros and cons given the different applications. For instance, the estimation
by orthogonal series needs an initial pre-processing, but provides a fast evaluation of the estimated
density in compact manifolds.

3.1. Histograms

The histogram is the simplest density estimation method. Given a partition of the space
Dn = ∪i Ai, the estimated density is given by

f̂ (x ∈ Ai) =
1

vol(Ai)

k

∑
j=1

1Ai (xj),

where 1Ai stands for the indicator function of Ai. Following the considerations of the previous sections,
the elements of the partition should firstly be as isotropic as possible, and secondly as similar as
possible to each other. Regarding the problem of histograms, the case of the Siegel space is similar to
the case of the hyperbolic space. There exist various uniform polygonal tilings on the Siegel space that
could be used to compute histograms. However, there are ratio λ ∈ R for which there is no homothety.
Thus, it is not always possible to adapt the size of the bins to a given set of draws of the random
variable. Modifying the size of the bins can require a change of the structure of the tiling. This is why
the study of histograms has not been deepened.

3.2. Orthogonal Series

The estimation of the density f can be made out of the estimation of the scalar product between f
and a set of “orthonormal” functions

{
ej
}

. The most standard choice for
{

ej
}

is the eigenfunctions
of the Laplacian. When the variable X takes its values in Rn, this estimation technique becomes the
characteristic function method. When the underlying space is compact, the spectrum of the Laplacian
operator is countable, while when the space is non-compact, the spectrum is uncountable. In the first
case, the estimation of the density f is made through the estimation of a sum, while in the second
case is made through the estimation of an integral. In practice, the second situation presents a larger
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computational complexity. Unfortunately, eigenfunctions of the Laplacian operator are known on Dn

but not on compact sub-domains. This is why the study of this method has not been deepened.

3.3. Kernels

Let K : R+ → R+ be a map which verifies the following properties:

(i)
∫
Rd K(||x||)dx = 1;

(ii)
∫
Rd xK(||x||)dx = 0;

(iii) K(x > 1) = 0;
(iv) sup(K(x)) = K(0).

Let p ∈ Dn. Generally, given a point p on a Riemannian manifold, expp defines an injective
application only on a neighborhood of 0. On the Siegel space, expp is injective on the whole space.
When the tangent space TpDn is endowed with the local scalar product,

||u|| = d(p, expp(u)),

where ||.|| is the Euclidean distance associated with the local scalar product and d(., .) is the Riemannian
distance. The corresponding Lebesgue measure on TpDn is noted Lebp. Let exp∗p(Lebp) denote the
push-forward measure of Lepp by expp. The function θp defined by:

θp : q 7→ θp(q) =
dvol

dexp∗p(Lebp)
(q) (6)

is the density of the Riemannian measure on Dn with respect to the Lebesgue measure Lebp after the
identification of Dn and TpDn induced by expp (see Figure 1).

Figure 1.M is a Riemannian manifold, and TxM is its tangent space at x. The exponential application
induces a volume change θx between TxM andM.

Given K and a positive radius r, the estimator of f proposed by [1] is defined by:

f̂k =
1
k ∑

i

1
rn

1
θxi (x)

K
(

d(x, xi)

r

)
. (7)

The corrective factor θxi (x)−1 is necessary since the kernel K originally integrates to one with
respect to the Lebesgue measure and not with respect to the Riemannian measure. It can be noticed
that this estimator is the usual kernel estimator in the case of Euclidean space. When the curvature of
the space is negative, which is the case of the Siegel space, the distribution placed over each sample
xi has xi as intrinsic mean. The following theorem provides convergence rate of the estimator. It is a
direct adaptation of Theorem 3.1 of [1].

Theorem 1. Let (M, g) be a Riemannian manifold of dimension n and µ its Riemannian volume measure.
Let X be a random variable taking its values in a compact subset C of (M, g). Let 0 < r ≤ rinj, where rinj is the
infimum of the injectivity radius on C. Assume the law of X has a twice differentiable density f with respect to
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the Riemannian volume measure. Let f̂k be the estimator defined in Equation (7). There exists a constant C f
such that ∫

x∈M
Ex1,...,xk [( f (x)− f̂k(x))2]dµ ≤ C f (

1
krn + r4). (8)

If r ∼ k
−1

n+4 , ∫
x∈M

Ex1,...,xk [( f (x)− f̂k(x))2]dµ = O(k−
4

n+4 ). (9)

Proof. See Appendix A.

It can be checked that on the Siegel space rinj = +∞ and that, for an isometry α, we have:

f̂k(x, x1, ..., xk) = f̂k(α(x), α(x1), ..., α(xk)).

Each location and direction are processed as similarly as possible. This density estimator can be used
for data classification on Riemannian manifolds, see [26].

In order to obtain the explicit expression of the estimator, one must have the explicit expression
of the Riemannian exponential, of its inverse, and of the function θp (see Equations (6) and (7)).
These expressions are difficult and sometimes impossible to obtain for general Riemannian manifolds.
In the case of the Siegel space, the symmetric structure makes the computation possible. Since the
space is homogeneous, the computation can be made at the origin iI ∈ Hn or 0 ∈ Dn and transported
to the whole space. In the present work, the random variable lays in Dn. However, in the literature,
the Cartan and Iwasawa decompositions are usually given for the isometry group ofHn. Thus, our
computation starts inHn before moving to Dn.

The Killing form on the Lie algebra sp(n,R) of the isometry group ofHn induces a scalar product
on p. This scalar product can be transported on exp(p) by left multiplication. This operation gives
exp(p) a Riemannian structure. It can be shown that on this Riemannian manifold, the Riemannian
exponential at the identity coincides with the group exponential. Furthermore,

φ : exp(p) → Hn

g 7→ g.iI
(10)

is a bijective isometry, up to a scaling factor. Since the volume change θp is invariant under rescaling
of the metric, this scaling factor has no impact. Thus,Hn can be identified with exp(p) and expiI∈Hn

with exp|p. The expression of the Riemannian exponential is difficult to obtain in general; however,
it boils down to the group exponential in the case of symmetric spaces. This is the main element of the
computation of θp. The Riemannian volume measure on exp(p) is noted vol′. Let

ψ : K× a → p

(k, H) 7→ Adk(H).

Let a+ be the diagonal matrices with strictly decreasing positive eigenvalues. Let Λ+ be the set of
positive roots of sp(n,R) as described in p. 282 in [20] ,

Λ+ = {ei + ej, i ≤ j} ∪ {ei − ej, i < j},

where ei(H) is the i-th diagonal term of the diagonal matrix H. Let Cc(E) be the set of continuous
compactly supported functions on the space E. In [27], at page 73, it is given that for all t ∈ Cc(p),
there exists c1 > 0 such that∫

p
t(Y)dY = c1

∫
K

∫
a+

t(ψ(k, H)) ∏
λ∈Λ+

λ(H)dkdH, (11)
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where dY is a Lebesgue measure on the coefficients of Y. Let p̃ = ψ(K× a+). λ ∈ Λ+ never vanishes
on a+ and p \ p̃ has a null measure. Thus,∫

p̃
t(Y) ∏

λ∈Λ+

1
λ(HY)

dY = c1

∫
K

,
∫
a+

t(Adk(H))dkdH, (12)

where HY is the point in a+ such that there exists k in K such that ψ(k, HY) = Y. Calculation in p. 73
in [27] also gives that for all t ∈ Cc(p), there exists c2 > 0, such that∫

Sp(n,R)
t(g)dg = c2

∫
K

∫
a+

∫
K

t(k2.exp(Adk1(H)))J(H)dk1dHdk2, (13)

where dg is the Haar measure on Sp(n,R) and

J(H) = ∏
λ∈Λ+

eλ(H) − e−λ(H)

= 2|Λ
+ | ∏

λ∈Λ+

sinh(λ(H)).

Thus, for all t ∈ Cc(Sp(n,R)/K),∫
Sp(n,R)/K

t(x)dx = c2

∫
K

∫
a+

t(exp(Adk(H)))J(H)dkdH, (14)

where dx is the invariant measure on Sp(n,R)/K. After identifying Sp(n,R)/K and exp(p), the
Riemannian measure on exp(p) coincides with the invariant measure on Sp(n,R)/K. Thus, for all
t ∈ Cc(exp(p)), ∫

exp(p)
t(x)dvol′ = c2

∫
K

∫
a+

t(exp(Adk(H)))J(H)dkdH. (15)

Using the notation HY of Equation (12),∫
p̃

t(exp(Y))J(HY) ∏
λ∈Λ+

1
λ(HY)

dY = c1

∫
K

∫
a+

t(exp(Adk(H)))J(H)dkdH. (16)

Combining Equations (15) and (16), we obtain that there exists c3 such that

∫
p̃

t(exp(Y)) ∏
λ∈Λ+

sinh(λ(HY))

λ(HY)
dY = c3

∫
exp(p)

t(x)dvol′. (17)

The term sinh(λ(H))
λ(H)

can be extended by continuity on a; thus,

∫
p

t(exp(Y)) ∏
λ∈Λ+

sinh(λ(HY))

λ(HY)
dY = c3

∫
exp(p)

t(x)dvol′. (18)

Let dY be the Lebesgue measure corresponding to the metric. Then, the exponential application
does not introduce a volume change at 0 ∈ p. Since H0 = 0 and sinh(λ(H))

λ(H)
−→
H→0

1, we have c3 = 1.

Let log denote the inverse of the exponential application. We have

dlog∗(vol′)
dY

= ∏
λ∈Λ+

sinh(λ(HY))

λ(HY)
.
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Since φ from Equation (10) is an isometry up to a scaling factor, if Y ∈ p and Cφ(exp(Y))C−1 =

exp0(u ∈ T0Dn), then
dlog∗(vol)

dLeb0
(u) =

dlog∗(vol′)
dY

(Y),

where Leb0 refers to the Lebesgue measure on the tangent space T0Dn as in Equation (6). Given Z ∈ Dn,
HZ from Equation (4) verifies Cφ(exp(Adk(HZ)))C−1 = Z for some k in K. Thus,

θ0(Z) =
dlog∗(vol′)

dY
(Adk(HZ)) = ∏

λ∈Λ+

sinh(λ(HZ))

λ(HZ)
.

We have then

θ0(Z) = ∏
i<j

sinh(τi − τj)

τi − τj
∏
i≤j

sinh(τi + τj)

τi + τj
,

where the (τi) are described in Section 2.2. Given Z1, Z2 ∈ Dn,

θZ1(Z2) = θ0(g−1
Z1

.Z2),

where g−1
Z1

is defined in Equation (3). It is thus possible to use the density estimator defined in
Equation (7). Indeed,

1
θZ1(Z2)

K
(

d(Z1, Z2)

r

)
= ∏

i<j

τi − τj

sinh(τi − τj)
∏
i≤j

τi + τj

sinh(τi + τj)
K
(
(2 ∑ τ2

i )
1/2

r

)
, (19)

where the (τi) are the diagonal elements of Hg−1
Z1

.Z2
. Recall that when n = 1, the Siegel disk corresponds

to the Poincaré disk. Thus, we retrieve the expression of the kernel for the hyperbolic space,

1
θZ1(Z2)

K
(

d(Z1, Z2)

r

)
=

2τ

sinh(2τ)
K
(
(2τ2)1/2

r

)
. (20)

4. Application to Radar Processing

4.1. Radar Data

In space time adaptative radar processing (STAP), the signal is formed by a succession of matrices
X representing the realization of a temporal and spatial process. Let B+n,m be the set of positive definite
block Teoplitz matrices composed of n× n blocks of m×m matrices (PD BT). For a stationary signal,
the autocorrelation matrix R is PD BT (see [5,6,14]). Authors of [5,6,14] proposed a generalization of
Verblunsky coefficients and defined a parametrization of PD BT matrices,

B+n,m → Sym+ ×Dm−1
n

R 7→ (P0, Ω1, ..., Ωm−1),
(21)

in which the metric induced by the Kähler potential is the product metric of an affine invariant metric
on Sym+ and m − 1 times the metric of the Siegel disk, up to a scaling factor. When the signal is
not Gaussian, reflection/Verblunsky coefficients in Poincaré or Siegel Disks should be normalized as
described in [28] by a normalized Burg algorithm. Among other references, positive definite block
Teoplitz matrices have been studied in the context of STAP-radar processing in [4–6].

4.2. Marginal Densities of Reflection Coefficients

In this section, we show density estimation results of the marginal parameters Ωk. For the sake of
visualization, only the Siegel disk D1 is considered. Recall that D1 coincides with the Poincaré disk.
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The results are partly extracted from the conference paper [17]. Data used in the experimental tests
are radar observations from THALES X-band Radar, recorded during 2014 field trials campaign at
Toulouse Blagnac Airport for European FP7 UFO study (Ultra-Fast wind sensOrs for wake-vortex
hazards mitigation) (see [29,30]). Data are representative of Turbulent atmosphere monitored by radar.
Figure 2 illustrates the density estimation of six coefficients on the Poincaré unit disk under a rainy
environment. The densities are individually re-scaled for visualization purposes. For each environment,
the dataset is composed of 120 draws. The densities of the coefficients Ωk are representative of the
background. This information on the background is expected to ease the detection of interesting targets.

Ω1 Ω2 Ω3

Ω4 Ω5 Ω6

Figure 2. Estimation of the density of six coefficients Ωk under rainy conditions. The expression of the
used kernel is K(x) = 3

π (1− x2)21x<1. Densities are rescaled for visual purposes.
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4.3. Radar Clutter Segmentation

Clutter refers to background Doppler signal related to meteorological conditions (e.g., wind
in wooded areas, currents and breaking waves on water), which hinders detection of small and
slow targets. At each range, a set of reflection coefficients are computed from the Doppler spectrum
(see [31]). This set of coefficients is a point in the Poincaré poly-disk. From this set of points in
the poly-disk, it is possible to estimate the underlying density. Segmenting clutter, i.e., determining
zones of homogeneous Doppler characteristics (see Figure 3), enables the improvement of detection
algorithms on each zone. The mean-shift algorithm enables segmentation of the space according
to the kernel density estimation of a set of points. It was introduced by Fukunaga and Hostetler in
1975 (see [32]). It corresponds to a gradient ascent of the density estimator (see [33]) for a study of
the statistical consistency of the gradient lines estimation. Each data point moves to a local mode of
the density estimator, which yields as many clusters as modes. This algorithm has been generalized
on manifolds in [34], and applied to radar images in [35]. It can thus be used to segment the set of
points in the Poincaré poly-disk. Unfortunately, the mean-shift algorithm requires working with a
kernel depending only on the distance to its barycenter, which is not the case of the kernel defined in
Equation (19). Thus, the computations are performed without the use of the corrective term θp. It is
possible to solve this problem by replacing the corrective term by its average at a given radius, which
leads to a kernel depending only on the distance to its barycenter. Our future work will focus on the
computation of these averages. Let

f̂Kr (x) =
cd
k

k

∑
i=1

1
rnK

(
d(xi, x)2

r2

)
,

where cn is a normalization constant. Let g = −k′.

Figure 3. Mean and width variability of sea clutter Doppler spectrum.
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The mean-shift is defined by

m(x) =
k

∑
i=1

1
rn+2 g

(
d(x,xi)

2

r2

)
∑k

i=1
1

rn+2 g
(

d(x,xi)2

r2

) logx(xi) ∝
∇ fKr

f g
r

,

where m(x) is in the tangent space at x. The algorithm moves from x to expx(m(x)) until convergence
to a local maximum. The points of the space are segmented according to the local maxima to which
they converge.

In order to assess the quality of unsupervised classification, we use the notion of Silhouette,
see [36], which computes for each point a proximity criterion with respect to other points of the same
cluster and other points of different clusters (see Figure 4). Let x be in the cluster A. We respectively
define a(x) = miny∈Ad(x, y) and b(x) = miny 6=Ad(x, y), the minimum distance to points of the same
(resp. other) class(es). The Silhouette of x is

a(x)− b(x)
max{a(x), b(x)} ,

which takes values between −1 and 1, respectively, when the data point is considered “badly” and
“well” clustered. The average of all the silhouettes provides an indication of the relevance of the
classification. One can represent graphically the silhouette profile by plotting for each class horizontal
segments of the length of the silhouette value (see Figure 5).

Figure 4. Intra and inter cluster distances.

Figure 5. Example of silhouette.
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In order to test the Riemannian Mean Shift performance, we generate simple synthetic radar
clutter data. Given 250 range cells, we generate 125 cells of ground clutter (wind) centered at 0 m·s−1,
of spectral width 5 m·s−1, to which we add 125 cells of rain clutter, centered at 5 m·s−1, of spectral
width 10 m·s−1. This clutter is sampled 10 times and the segmentation is performed on each simulation
(see Figures 6–8).

Figure 6. Autoregressive spectra.

Figure 7. Classification results (one color per cluster).
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Figure 8. Silhouettes.

It can be seen that, apart from a few outliers, the two clutters are well classified and that the
algorithm was able to distinguish between two zones of different Doppler characteristics.

We then test our algorithm on real sea clutter data (see Figures 9–11).

Figure 9. Autoregressive spectrum.
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Figure 10. Classification results for varying radii size in the density estimator (10 to 20 closest neighbours).

Figure 11. Silhouettes.

The results are more difficult to interpret in that case. The Doppler spectra are varying quite a lot
along the range axis. Even though it looks over-segmented, the first classification (kernel size defined
by the distance to the 10th closest neighbor point) displays the highest average silhouette value.
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5. Conclusions

Three non parametric density estimation techniques have been considered. The main advantage
of histograms in the Euclidean context is their simplicity of use. This makes histograms an interesting
tool despite the fact that they do not present optimal convergence rates. On the Siegel space, histograms
lose their simplicity advantage. They were thus not deeply studied. The orthogonal series density
estimation also presents technical disadvantages on the Siegel space. Indeed, the series become
integrals, which make the numerical computation of the estimator more difficult than in the Euclidean
case. On the other hand, the use of the kernel density estimator does not present major differences
with the Euclidean case. The convergence rate obtained in [1] can be extended to compactly supported
random variables on non compact Riemannian manifolds. Furthermore, the corrective term whose
computation is required to use Euclidean kernels on Riemannian manifolds turns out to have a
reasonably simple expression. Our future efforts will concentrate on the use of kernel density
estimation on the Siegel space in radar signal processing. As the experimental section suggests,
we strongly believe that the estimation of the densities of the Ωk will provide an interesting description
of the different backgrounds. This non-parametric method of density estimation should be compared
with parametric ones, as “Maximum Entropy Density” (Gibbs density) on homogenesous manifold
as proposed in [37] based on the works of Jean-Marie Souriau. As proposed in [38], a median-shift
approach might also be investigated.
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Appendix A. Demonstration of Theorem 1

Lemma A1. Let (M, g) be a Riemannian manifold, let C be a compact subset of M and let U be a relatively
compact open subset of M containing C. Then, there is a compact Riemannian manifold (M′, g′) such that U is
an open subset of M′, the inclusion i : U ↪→ M′ is a diffeomorphism onto its image and g′ = g on U.

Proof. We can assume that M is not compact. Let f : M→ R be a smooth function on M which tends
to +∞ at infinity. Since U is compact, f−1(]−∞, a[) contains U for a large enough. By Sard Theorem,
there exists a value a ∈ R such that f−1(a) contains no critical point of f and such that f−1(]−∞, a[)
contains U. It follows that N = f−1(]−∞, a]) is a submanifold with boundary of M. Since f tends to
+∞ at infinity, N is compact as well as its boundary ∂N = f−1({a}).

Call M′ the double of N. It is a compact manifold which contains N such that the inclusion
i : N ↪→ M′ is a diffeomorphism onto its image (see [39], Theorem 5.9 and Definition 5.10 ). Choose
any metric g0 on M′. Consider two open subsets W1 and W2 in M′ and two smooth functions
f1, f2 : M′ → [0, 1] such that

U ⊂W1 ⊂W1 ⊂W2 ⊂W2 ⊂ int N,

the interior of N,
f1(x) = 1

on W1, vanishes outside of W2, and
f2(x) = 1
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outside W1, and vanishes in U. Define g′ on M′ by

g′ = f1g + f2g0

on N and
g′ = f2g0

outside of N. Since f1 + f2 > 0, g′ is positive definite everywhere on M′. Since f1 vanishes outside
of W2, g′ is smooth on M′. Finally, since f1 = 1 and f2 = 0 on U, g′ = g on U.

We can now prove Theorem 1. Let X be a random variable as in Theorem 1. Following the
notations of the theorem and the lemma, let U =

{
x ∈ M, d(x, C) < rinj

}
. U is open, relatively

compact and contains C. Let (M′, g′) be as in the lemma. Let f̂ and f̂ ′ be the kernel density estimators
defined on M and M′, respectively. Theorem 3.1 of [1] provides the desired results for f̂ ′. For r ≤ rinj,
the support and the values on the support of f̂ ′ and f̂ coincide. Thus, the desired result also holds for f̂ .
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