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Abstract: The knowledge of protein-DNA interactions is essential to fully understand the molecular
activities of life. Many research groups have developed various tools which are either structure- or
sequence-based approaches to predict the DNA-binding residues in proteins. The structure-based
methods usually achieve good results, but require the knowledge of the 3D structure of protein;
while sequence-based methods can be applied to high-throughput of proteins, but require good
features. In this study, we present a new information theoretic feature derived from Jensen–Shannon
Divergence (JSD) between amino acid distribution of a site and the background distribution of
non-binding sites. Our new feature indicates the difference of a certain site from a non-binding site,
thus it is informative for detecting binding sites in proteins. We conduct the study with a five-fold
cross validation of 263 proteins utilizing the Random Forest classifier. We evaluate the functionality
of our new features by combining them with other popular existing features such as position-specific
scoring matrix (PSSM), orthogonal binary vector (OBV), and secondary structure (SS). We notice that
by adding our features, we can significantly boost the performance of Random Forest classifier, with
a clear increment of sensitivity and Matthews correlation coefficient (MCC).

Keywords: entropy; Jensen–Shannon divergence; Random Forest; DNA-binding sites

1. Introduction

Interactions between proteins and DNA play essential roles for controlling of several biological
processes such as transcription, translation, DNA replication, and gene regulation [1–3]. An important
step to understand the underlying molecular mechanisms of these interactions is the identification of
DNA-binding residues in proteins. These residues can provide a great insight into the protein function
which leads to gene expression and could also facilitate the generation of new drugs [4,5].

Until now, several groups have published different studies based on either experimental
or computational identification of DNA-binding proteins [1,6–11] as well as residues in these
proteins [12–23]. However, the usage of experimental approaches for the determination of binding
sites is still challenging since they are often demanding, relatively expensive, and time-consuming.
To overcome the difficulty of experimental approaches, it is highly desired to develop fast and
reliable computational methods for the prediction of DNA-binding residues. For this purpose, several
state-of-the-art prediction methods have been developed for the automated identification of those
residues. Such methods can be assigned into two main categories: (i) based on the information
observed from structure and sequence in a collective manner; (ii) based on the features derived directly
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from the amino acid sequence alone (for more detail see reviews [24] and [25]). Although the first
type of approaches provides promising information about DNA-binding residues in proteins, their
application is difficult due to the limited number of experimentally determined protein structures.
In contrast to structure-based approaches, sequence-based methods have been developed by extracting
different sequence information features, like amino acid frequency, position-specific scoring matrix
(PSSM), BLOSUM62 matrix, sequence conservation, etc. [3,4,18,19,26,27]. Using these features, several
machine learning techniques have been applied to construct the classifiers for the prediction of
binding residues in proteins. To this end, a variety of support vector machine (SVM) classifiers have
been developed in recent studies [2,17–19,23,26,28]. For example, Westhof et al. have recently used
an SVM classifier approach in their study, named RBscore (http://ahsoka.u-strasbg.fr/rbscore/),
by using the physicochemical and evolutionary features that are linearly combined with a residue
neighboring network [2]. Further, SVM algorithms were also applied for the models proposed in
BindN [18], DISIS [19], BindN+ [23], DP-Bind [27] using different sequence information features
including the biochemical property of amino acids, sequence conservation, evolutionary information
in terms of PSSM, the side chain pKa value, hydrophobicity index, molecular mass and BLOSUM62
matrix. In addition, other machine learning classifiers such as neural network models [13,15], naive
Bayes classifier [26], Random Forest classifiers (RF) [4,29,30] have been developed based on the
features derived from protein sequences. For example, Wong et al. [29] have recently developed a
successful method using RF classifier with both DNA and protein derived features to predict the
specific residue-nucleotide interactions for different DNA-binding domain families.

Despite the rich literature on the sequence-based methods as mentioned above, to date there
is still a need to find suitable feature extraction approaches that can enhance the characteristics of
DNA-binding residues and thus help to improve the performance of existing methods for identification
of DNA-binding residues in proteins. For this aim, we introduce and evaluate a new information
theory-based method for the prediction of these residues using Jensen–Shannon divergence (JSD).
As a divergence measure based on the Shannon entropy, JSD is a symmetrized and smoothed
version of the Kullback-Leibler divergence and is often used for different problems in the field
of bioinformatics [31–35]. In this study, following the line of Capra et al. [34] we first quantify the
divergence between the observed amino acid distribution of a site in a protein and the background
distribution of non-binding sites by using JSD. After that, in analogy to our previous studies
QCMF [32] and CMF [36], we incorporate biochemical signals of binding residues in the calculation of
JSD that results in the intensification of the DNA-binding residue signals from the non-binding signals.

To demonstrate the performance and functionality of our proposed approach, we apply Random
Forest (RF) classifier using our new JSD based features together with three widely used machine
learning features, namely position-specific scoring matrix (PSSM), secondary structure (SS) information,
and orthogonal binary vector (OBV) information (see review [24]). Our results show that using
JSD based features, RF classifier reaches an improved performance in identifying DNA-binding
residues with a significantly higher Matthews correlation coefficient (MCC) value in comparison
to using previous features alone. Although we only applied RF classifier in this study, both of
our sequence-based features could be used in other classifiers such as SVM, neural networks,
or decision trees.

2. Results

In this study, we introduce new sequence-based features using JSD to improve the performance of
previous machine learning approaches in identification of DNA-binding residues in proteins. For this
purpose, we propose new sequence-based features (fJSD and fJSD-t) using JSD in two different ways.
First, using JSD, we calculate the divergences between observed amino acid distributions in multiple
sequence alignments (MSAs) of proteins under study and the background distribution which is
calculated according to amino acid counts at non-binding residue positions in MSAs. In the second
step, we transform the observed amino acid distributions with a doubly stochastic matrix (DSM) to
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enhance the weak signal of binding sites in proteins which could not be predicted in the first step.
Finally, we calculate for each residue in proteins JSD-based scores and use them for the improvement
of the performance of machine learning approaches.

To evaluate our new features, we use two frequently considered cut-off distances of 3.5 Å and
5 Å and thus define a residue in a protein as DNA-binding if the distance between at least one atom on
its backbone or side chain and the DNA molecule is smaller than the considered cut-off.

The Results section of this study comprises of two parts. First, we investigate the functionality of
our new features combining them in Random Forest (RF) classifier with three previous features. The RF
classifier is constructed from 4298 positive and 44,805 negative instances extracted from 263 proteins.
The performance of the classifier is evaluated using a five-fold cross validation procedure in which we
randomly divided the samples into five parts. The assessment is performed by choosing each of these
parts as a test set and the remaining four parts as a training set for model selection. Second, to illustrate
the usefulness of our new approach for the prediction of DNA-binding residues, we analyzed the
proto-oncogenic transcription factor MYC-MAX (PDB-ID: 1NKP) which is a heterodimer protein
complex of two proteins. It is important to note that this protein complex is not included in the
training dataset.

2.1. Random Forest Classifier

To apply the Random Forest (RF) classifier, we combine our new features (fJSD and fJSD-t) with
the features fPSSM, fOBV, and fSS which are widely used for the prediction of DNA-binding residues.
Our results show that using our features RF classifier reaches an improved performance in identifying
DNA-binding sites with clearly higher statistical values (see Tables 1 and 2). Moreover, we individually
evaluated the combination of our features with existing features. The results suggest that the classifier
with fJSD-t feature has provided better sensitivity and comparable Matthews correlation coefficient
(MCC) values in comparison to fJSD feature. However, its specificity is moderately decreased. A further
comparison reveals that the usage of our both features together with other features does not affect the
performance of the classifier. The details are presented for 3.5 Å in Table 1 and for 5 Å in Table 2 and in
Appendix A with the standard error of each of the performance measures over the values obtained in
the five iterations (see Tables A1 and A2).

Table 1. Prediction performance of Random Forest (RF) classifier on different features using a cut-off
of 3.5 Å. The prediction system was evaluated by five-fold cross validation.

Feature Sensitivity Specificity MCC AUC-ROC AUC-PR

fPSSM 0.292 0.963 0.307 0.777 0.313
fPSSM + fJSD 0.385 0.949 0.349 0.795 0.369
fPSSM + fJSD-t 0.41 0.939 0.35 0.802 0.377
fPSSM + fJSD + fJSD-t 0.414 0.94 0.348 0.800 0.376

fPSSM + fSS 0.339 0.958 0.334 0.794 0.338
fPSSM + fSS + fJSD 0.416 0.95 0.378 0.808 0.390
fPSSM + fSS + fJSD-t 0.441 0.94 0.372 0.817 0.401
fPSSM + fSS + fJSD + fJSD-t 0.439 0.94 0.37 0.814 0.399

fPSSM + fOBV + fSS 0.367 0.968 0.398 0.838 0.413
fPSSM + fOBV + fSS + fJSD 0.422 0.958 0.409 0.837 0.425
fPSSM + fOBV + fSS + fJSD-t 0.447 0.95 0.403 0.841 0.431
fPSSM + fOBV + fSS + fJSD + fJSD-t 0.444 0.947 0.393 0.835 0.423

MCC: Matthews correlation coefficient; AUC-ROC: area under the receiver operating characteristics (ROC)
curve; AUC-PR: area under the precision-recall curve.
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Table 2. Prediction performance of Random Forest (RF) classifier on different features using a cut-off
of 5.0 Å. The prediction system was evaluated by five-fold cross validation.

Feature Sensitivity Specificity MCC AUC-ROC AUC-PR

fPSSM 0.286 0.966 0.350 0.778 0.425
fPSSM + fJSD 0.395 0.95 0.407 0.801 0.487
fPSSM + fJSD-t 0.418 0.943 0.411 0.807 0.494
fPSSM + fJSD + fJSD-t 0.426 0.942 0.414 0.807 0.497

fPSSM + fSS 0.334 0.963 0.386 0.796 0.455
fPSSM + fSS + fJSD 0.424 0.951 0.436 0.814 0.513
fPSSM + fSS + fJSD-t 0.448 0.944 0.438 0.820 0.520
fPSSM + fSS + fJSD + fJSD-t 0.445 0.944 0.434 0.819 0.521

fPSSM + fOBV + fSS 0.337 0.975 0.431 0.830 0.517
fPSSM + fOBV + fSS + fJSD 0.419 0.958 0.450 0.832 0.535
fPSSM + fOBV + fSS + fJSD-t 0.439 0.952 0.453 0.836 0.539
fPSSM + fOBV + fSS + fJSD + fJSD-t 0.442 0.949 0.445 0.832 0.535

MCC: Matthews correlation coefficient; AUC-ROC: area under the receiver operating characteristics (ROC)
curve; AUC-PR: area under the precision-recall curve.

To further investigate the performance of JSD-based features proposed in this study, we analyzed
two additional datasets, namely RBscore [2] and PreDNA datasets [37]. Although the RBscore
and PreDNA datasets initially contain 381 and 224 DNA-binding proteins, respectively, we have
eliminated a few proteins since they are either included in our training dataset or ineligible due to
their MSAs. Consequently, we constructed RF classifier using 263 proteins (which were also used
for cross-validation) and randomly selecting 60 proteins from each dataset for testing, respectively.
The results of these analyses consistently suggest that our new features show great complementary
effect to the previous features which often leads to clear improvement of the classification performance
(see Tables 3 and 4). The detailed performance of classifier on different features using different cut-offs
for each dataset can be found in Appendix A (see Tables A3–A6).

Considering the AUC-ROC and AUC-PR as the only evaluation factor, results indicate that the
RF classifier often achieved its best performance based on both cut-off distances if we combine our
new fJSD-t feature together with the existing three features (see Tables 1–3). Interestingly, by analyzing
the PreDNA dataset we observed that RF classifier with fJSD or fJSD-t features for the cut-off of 3.5 Å
showed similar performance. However, regarding to the distance cut-off of 5 Å, the classifier with fJSD
feature reached slightly better performance than those with fJSD-t feature (see Table 4). After looking at
the overall performances, it is inferred that adding our new features can boost the performance of the
RF classifier in terms of AUC-ROC and AUC-PR.

Table 3. Prediction performance of Random Forest (RF) classifier on RBscore dataset using different
distance cut-offs.

Cut-Off Feature Sensitivity Specificity MCC AUC-ROC AUC-PR

3.5 Å

fPSSM + fOBV + fSS 0.517 0.976 0.534 0.896 0.528
fPSSM + fOBV + fSS + fJSD 0.58 0.967 0.54 0.907 0.543
fPSSM + fOBV + fSS + fJSD-t 0.612 0.963 0.546 0.910 0.551
fPSSM + fOBV + fSS + fJSD + fJSD-t 0.601 0.962 0.531 0.909 0.546

5.0 Å

fPSSM + fOBV + fSS 0.499 0.98 0.584 0.895 0.641
fPSSM + fOBV + fSS + fJSD 0.57 0.968 0.595 0.908 0.661
fPSSM + fOBV + fSS + fJSD-t 0.592 0.965 0.60 0.908 0.665
fPSSM + fOBV + fSS + fJSD + fJSD-t 0.594 0.964 0.597 0.907 0.663

MCC: Matthews correlation coefficient; AUC-ROC: area under the receiver operating characteristics (ROC)
curve; AUC-PR: area under the precision-recall curve.
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Table 4. Prediction performance of RF classifier on PreDNA dataset using different distance cut-offs.

Cut-Off Feature Sensitivity Specificity MCC AUC-ROC AUC-PR

3.5 Å

fPSSM + fOBV + fSS 0.428 0.977 0.458 0.867 0.451
fPSSM + fOBV + fSS + fJSD 0.511 0.97 0.488 0.885 0.488
fPSSM + fOBV + fSS + fJSD-t 0.539 0.962 0.475 0.888 0.488
fPSSM + fOBV + fSS + fJSD + fJSD-t 0.539 0.961 0.47 0.886 0.488

5.0 Å

fPSSM + fOBV + fSS 0.395 0.98 0.488 0.858 0.530
fPSSM + fOBV + fSS + fJSD 0.48 0.968 0.511 0.874 0.563
fPSSM + fOBV + fSS + fJSD-t 0.506 0.962 0.51 0.873 0.560
fPSSM + fOBV + fSS + fJSD + fJSD-t 0.499 0.96 0.498 0.871 0.555

MCC: Matthews correlation coefficient; AUC-ROC: area under the receiver operating characteristics (ROC)
curve; AUC-PR: area under the precision-recall curve.

2.2. Position Analysis of the MYC-MAX Protein

The proto-oncobenic transcription factor MYC-MAX (PDB-Entry 1NKP) is a heterodimer protein
complex that is active in cell proliferation and is over-expressed in many different cancer types [38].
MYC-MAX transcription factors bind to Enhancer boxes (a core element of the promoter that consists
of six nucleotides) and activate transcription of the underlying genes [39].

The amino acid chain of MYC protein consists of 88 residues, ten of which are known
DNA-binding sites indicating that their distances to DNA are less than 3.5 Å. Applying RF classifier,
which takes a majority vote among the random tree classifiers, with our first feature (fJSD) combined
with existing features, we predicted in total 17 residue positions to be DNA-binding in MYC protein.
Seven out of these positions (H906, N907, E910, R913, R914, P938, K939) correspond to the true
DNA-binding sites of this protein. While the sites R913, R914, P938, and K939 could also be identified
by RF classifier without using our new JSD-based features, the remaining three binding sites could
only be detected using our features (for details see Table 5 and Figure 1). Interestingly, using fJSD-t
together with fPSSM, fOBV, and fSS, the RF classifier correctly predicted these seven positions again as
binding sites.

The second protein in the proto-oncobenic transcription factor complex is the MAX protein which
consists of 83 residues including nine DNA-binding sites. Using fJSD or fJSD-t together with existing
features individually, we observed 14 and 13 residue positions to be DNA-binding in MAX protein,
respectively. Eight of the predicted positions (H207, N208, E211, R212, R214, R215, S238, R239) found by
using either of our both features are true DNA-binding sites in MAX protein. However, without using
our new features the RF classifier could only identify two (S238, R239) out of nine true DNA-binding
sites in MAX protein (for details see Table 5 and Figure 1). Further, we observed that, the usage of fJSD-t
leads to the reduction of false positive predictions in identifying DNA-binding sites in MAX protein.

Table 5. Prediction performance of RF classifier on different features using a cut-off of 3.5 Å for
MYC-MAX protein complex (Protein Data Bank (PDB)-Entry 1NKP).

Protein Feature Sensitivity Specificity MCC

MYC

fPSSM + fOBV + fSS 0.30 0.941 0.282
fPSSM + fOBV + fSS + fJSD 0.70 0.853 0.448
fPSSM + fOBV + fSS + fJSD-t 0.70 0.853 0.448
fPSSM + fOBV + fSS + fJSD + fJSD-t 0.70 0.868 0.470

MAX

fPSSM + fOBV + fSS 0.222 1.0 0.447
fPSSM + fOBV + fSS + fJSD 0.888 0.906 0.664
fPSSM + fOBV + fSS + fJSD-t 0.888 0.922 0.697
fPSSM + fOBV + fSS + fJSD + fJSD-t 0.889 0.922 0.697

MCC: Matthews correlation coefficient.
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Figure 1. DNA-binding sites in proto-oncobenic transcription factor MYC-MAX protein complex
(PDB-Entry 1NKP). Green spheres denote positions of the DNA-binding sites in both proteins which are
detected by RF classifier either using the existing features (fPSSM, fOBV, and fSS) alone or combining our
new features with these existing features together. Purple spheres show the localization of additional
binding sites which were only found by RF classifier using our new features with existing features.
Moreover, there are further three binding sites in MYC protein and one binding site in MAX protein,
shown with yellow spheres, that could not be identified by the classifier.

Moreover, when statistically evaluating both of our features, we observed that using our
sequence-based features RF classifier reaches a significantly improved performance in identifying
DNA-binding sites of both proteins with significantly higher sensitivity and MCC values whereas
the specificity is moderately decreased. The simultaneous usage of both of our features together
with fPSSM, fOBV, and fSS could result in the decrement of specificity or MCC values. The details are
presented in Table 5.

3. Materials and Methods

In this section, we describe in particular the data we have used and our new residue-wise features
designed to predict DNA-binding sites in proteins.

3.1. Materials

To compile our data needed for training and test, we started with the DBP-374 data set
of representative protein-DNA complexes from the Protein Data Bank (PDB) [40] published by
Wu et al. [5]. Having performed a comparison with the new PDB version, we calculate for every
remaining protein a multiple sequence alignment (MSA) using HHblits and the UniProt20 database
(version from June 2015) [41]. We eliminated all proteins, the MSA of which has less than 125 rows,
so that we finally ended up with a dataset of 263 protein-DNA complexes and associated MSAs.
To obtain our results we perform a five-fold cross validation.



Entropy 2016, 18, 379 7 of 13

As in [5], an amino acid residue is regarded as a binding site, if it contains at least one atom at
distance of less than or equal to 3.5 Å or 5 Å from any atom of DNA molecule in the DNA-protein
complex. Otherwise it is treated as non-binding site. For the distance cut-off of 3.5 Å, our set contains
4298 binding sites and 44, 805 non-binding sites. For the distance cut-off of 5 Å, however, our data set
contains 7211 binding sites and 41, 892 non-binding sites.

3.2. Methods

Let M be a multiple sequence alignment, where its first row represents the protein under study.
Every residue of that protein is then uniquely determined by its column. In what follows, we identify
the residues of the protein with their columns of the MSA.

Grosse et al. [35] pointed out that the Jensen–Shannon divergence (JSD) is extremely useful when
it comes to discriminate between two (or more) sources. Capra and Singh [34] carefully discussed
several information theoretic measures like Shannon entropy, von Neumann entropy, relative entropy,
and sum-of-pair measures to assess sequence conservation. They were the first using JSD in this
context and stated its superiority. Gültas et al. [32] showed that the Jensen–Shannon divergence in the
context of quantum information theory is of remarkable power. These three articles encouraged us to
use JSD in this study. Our first idea is to design a new feature for the prediction of DNA-binding sites
in proteins which leverages the Jensen–Shannon divergence

JSD (pk ‖pnd ) := H
((

pk + pnd
)
/2

)
− (H (pk) +H (pnd)) /2. (1)

Therein, pk is the empirical amino acid distribution of the k-th column of the query MSA M,
and pnd is the null distribution taken over all non-binding sites of our training data.

More precisely, we represent every column k of every MSA M considered by a 20× 20 counting
matrix C

(
M�k

)
. The matrix C is symmetric and its rows as well as columns are indexed by the 20 amino

acids. For every ordered pair of amino acids
(
a, a′

)
, the matrix coefficient C

(
M�k

)
aa′ is equal to the

number of ordered pairs (i, j) (i 6= j) of row indices of M such that Mik = a and Mjk = a′.
To compute the null distribution pnd, we first set up the 20 × 20 counting matrix Cnd using

our training data. Cnd is the sum over all matrices C
(

M�k
)
, where M ranges over all training MSAs

and k ranges over all non-binding site columns of M. Next, the rows of Cnd are added up. Finally,
the resulting row vector is normalized to obtain pnd.

There is nothing wrong with the idea that a large value JSD (pk ‖pnd ) indicates that k is a
DNA-binding residue. However, no information on binding sites is integrated. Only the non-binding
sites of our training data are used to compute pnd. As we have seen in [32] and [36], transforming
empirical amino acid distributions of MSA columns by a carefully designed doubly stochastic matrix
is an effective way to integrate the binding site signals. To this end, we first set up a counting matrix
Cbind in a way similar to that of calculating the matrix Cnd. The difference is that the variable column
index k now ranges over all binding site columns of the training MSAs. Taking the counting matrix
Cbind as input, the doubly stochastic matrix D is computed by means of the canonical row-column
normalization procedure [42].

Let M be the query MSA having ` columns. Compared with [32] and [36], we enhance the effect
of transforming M’s empirical column distributions by means of the doubly stochastic matrix D just
defined. Let k be a column index of M. First, we compute the matrix product C(t)(M�k

)
:= C

(
M�k

)
· D.

Second, we add up all of C(t)(M�k
)
’s rows. Finally, we normalize the resulting row to obtain the

transformed empirical row distribution p(t)
k .

We define two window scores scoreJSD,M (k) and scoreJSD-t,M (k) of residue k w.r.t. query MSA
M, where the window w(k) surrounding k formally equals {k− 3, k− 2, k− 1, k, k + 1, k + 2, k + 3} ∩
{1, 2, . . . , `}. Clearly, if k ∈ {4, 5, . . . , `− 3}, |w(k)| = 7. Otherwise |w(k)| ∈ {4, 5, 6}. Recapitulate that
for any real x the binomial coefficient (x

2) equals x(x− 1)/2. We define the scores as follows.
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scoreJSD,M (k) :=
∑ι∈w(k)(4− |k− ι|) JSD (pk+ι ‖pnd )

16−
(

8− |w(k)|
2

) (2)

scoreJSD-t,M (k) :=
∑ι∈w(k)(4− |k− ι|) JSD

(
p(t)

k+ι ‖pnd

)
16−

(
8− |w(k)|

2

) (3)

The preceding two score definitions are motivated as follows. Bartlett et al. [43] and
Panchenko et al. [44] pointed out that exploiting conservation properties of spatial neighbors is
useful to predict a residue as functionally important. Since the 3D structures are often unavailable,
Capra and Singh [34] developed a window score for such predictions. The concrete shape of our scores
takes pattern form Janda et al. [45], who in turn refer to Fischer et al. [33]. Our scores are convex
combinations of the Jensen–Shannon terms associated with the residues belonging to the surrounding
window w(k). The weights fall linearly in the distance from k.

In a last step, we transform two window scores according to Equations (2) and (3) with respect to
the query MSA M into final scores using the Equations (4) and (5), respectively. To this end, for every
column index k ∈ {1, 2, . . . , `} of M we define:

fJSD,M (k) :=

∣∣{k′ | 1 ≤ k′ ≤ `, scoreJSD,M (k) ≥ scoreJSD,M (k′)}
∣∣

`
(4)

fJSD-t,M (k) :=

∣∣{k′ | 1 ≤ k′ ≤ `, scoreJSD-t,M (k) ≥ scoreJSD-t,M (k′)}
∣∣

`
. (5)

The Equations (4) and (5) are basically the determination of the percentage of scores below the
current one at index k. This transformation procedure is essential because it converts MSA-dependent
window scores to MSA-independent scores.

To demonstrate the benefit of our new features, we adopt the features fPSSM, fOBV and fSS devised
in [5]. Together with our two new features fJSD and fJSD-t, we plugged them into the Random Forest
(RF) classifier [46] (see Tables 1 and 2 for the combinations we used). For the RF implementation we
used the WEKA data mining software [47].

To deal with the imbalanced data problem, we applied bagging techniques suggested in [48].
Since we make use of five-fold cross validation, we randomly split the dataset into 5 roughly equal-sized
parts. Every training phase performed on 4 parts consists of 11 sub-phases. In each such sub-phase
we randomly draw twice as many non-binding sites as there are binding sites. We then construct a
Random Forest (RF) taking those non-binding sites and all binding sites of the 4 parts as input. Finally,
for each instance of the validation part the majority vote of above 11 RF classifiers was taken.

4. Discussion

Our results show that combining either feature fJSD-t or feature fJSD with the three features fPSSM,
fOBV and fSS we have adopted from [5] clearly boosts the performance of the RF-based classifier in
identifying the DNA-binding sites in proteins, where feature fJSD-t generally reaches a slightly better
performance than feature fJSD.

Although our two new features and PSSMs are derived from MSAs, Tables 1 and 2 clearly
demonstrate that these approaches carry distinct information. Thus they capture different kinds of
evolutionary information. The reason for this essential difference can be explained based on the
underlying algorithms. While the PSSM approach consists of statistic which indicates how likely a
certain amino acids occurs at a certain position, our JSD-based approach measures the divergence of a
certain distribution to a known non-binding site distribution.
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The superiority of feature fJSD-t to feature fJSD deserves an explanation attempt. Feature fJSD
does not integrate any information on DNA-binding sites. Only training non-binding sites are used.
In contrast, feature fJSD-t additionally uses a doubly stochastic matrix gained from the training binding
sites. The effect on empirical amino acid column distributions of the transformation we have devised
using that matrix is the following. The empirical column probabilities of amino acids are merged, if it
is very likely to co-observe them in a binding site column. Since the amino acid content of binding
site columns and non-binding site columns differ, the distance between fJSD-t,M (k) and fJSD-t,M (k′) is
larger and more significant than the distance between fJSD,M (k) and fJSD,M (k′), where k is a binding
site column of MSA M, and k′ is a non-binding site column.

At first glance it is surprising that adding both feature fJSD-t and feature fJSD to the feature
triplet

(
fPSSM, fOBV, fSS

)
is worse than adding feature fJSD-t alone. Taking into account what we have

mentioned in the preceding paragraph, it turns out that if feature fJSD-t is already there, feature fJSD
may increase the noise.

5. Conclusions

In this work, we report a new sequence-based feature extraction method for the identification of
DNA binding sites in proteins. For this purpose, we adopt the ideas from Capra et al. [34] and our
previous studies CMF [36] and QCMF [32]. Our approach is an information theoretic method that
applies the Jensen–Shannon divergence (JSD) for amino acid distributions of each site in a protein in
two different ways. First, the JSD is applied to quantify the differences between observed amino acid
distributions of sites and the background distribution of non-binding sites. Second, we transform the
observed distributions of sites through a doubly stochastic matrix to incorporate biochemical signals of
binding residues in the calculation of JSD that results in the intensification of the DNA-binding residue
signals from the non-binding signals. The results of our study show that the additional usage of our
new features (fJSD-t or feature fJSD) in combination with existing features is significantly boosts the
performance of RF classifier in identifying DNA binding sites in proteins. Our results further indicate
the importance of our second feature (fJSD-t) since taking into account the binding site signals in the
calculation of JSD metric, the characteristics of DNA binding residues are enhanced. As a consequence,
an intensification of the signal caused by DNA binding sites from non-binding sites occurs and thus
the classifier achieves its improved performance.
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Appendix A

The detailed performance of the RF classifier on different features using different cut-offs for
RBscore and PreDNA datasets.
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Appendix A.1. Performance Measures with Standard Error

Table A1. Prediction performance of Random Forest (RF) classifier on different features using a cut-off
of 3.5 Å. The prediction system was evaluated by five-fold cross validation.

Feature Sensitivity ± SE(%) Specificity ± SE(%) MCC ± SE(%)

fPSSM 29.2 ± 2.20 96.3 ± 0.46 30.7 ± 0.95
fPSSM + fJSD 38.5 ± 3.04 94.9 ± 0.57 34.9 ± 1.7
fPSSM + fJSD-t 41.0 ± 3.23 93.9 ± 0.57 35.0 ± 1.85
fPSSM + fJSD + fJSD-t 41.4 ± 3.42 94.0 ± 0.51 34.8 ± 2.07

fPSSM + fSS 33.9 ± 2.32 95.8 ± 0.37 33.4 ± 1.36
fPSSM + fSS + fJSD 41.6 ± 3.05 95.0 ± 0.46 37.8 ± 2.19
fPSSM + fSS + fJSD-t 44.1 ± 3.12 94.0 ± 0.43 37.2 ± 2.37
fPSSM + fSS + fJSD + fJSD-t 43.9 ± 3.14 94.0 ± 0.40 37.0 ± 2.25

fPSSM + fOBV + fSS 36.7 ± 2.07 96.8 ± 0.27 39.8 ± 1.58
fPSSM + fOBV + fSS + fJSD 42.2 ± 2.70 95.8 ± 0.42 40.9 ± 1.95
fPSSM + fOBV + fSS + fJSD-t 44.7 ± 3.05 95.0 ± 0.38 40.3 ± 1.98
fPSSM + fOBV + fSS + fJSD + fJSD-t 44.4 ± 3.12 94.7 ± 0.39 39.3 ± 2.02

Table A2. Prediction performance of Random Forest (RF) classifier on different features using a cut-off
of 5.0 Å. The prediction system was evaluated by five-folds cross validation.

Feature Sensitivity ± SE(%) Specificity ± SE(%) MCC ± SE(%)

fPSSM 28.6 ± 2.56 96.6 ± 0.47 35.0 ± 1.43 5
fPSSM + fJSD 39.5 ± 2.89 95.0 ± 0.55 40.7 ± 1.99
fPSSM + fJSD-t 41.8 ± 3.02 94.3 ± 0.62 41.1 ± 2.05
fPSSM + fJSD + fJSD-t 42.6 ± 3.25 94.2 ± 0.54 41.4 ± 2.37

fPSSM + fSS 33.4 ± 2.34 96.3 ± 0.38 38.6 ± 1.90
fPSSM + fSS + fJSD 42.4 ± 2.97 95.1 ± 0.61 43.6 ± 2.43
fPSSM + fSS + fJSD-t 44.8 ± 2.99 94.4 ± 0.56 43.8 ± 2.45
fPSSM + fSS + fJSD + fJSD-t 44.5 ± 3.04 94.4 ± 0.50 43.4 ± 2.35

fPSSM + fOBV + fSS 33.7 ± 2.48 97.5 ± 0.35 43.1 ± 2.05
fPSSM + fOBV + fSS + fJSD 41.9 ± 2.89 95.8 ± 0.55 45.0 ± 2.39
fPSSM + fOBV + fSS + fJSD-t 43.9 ± 2.89 95.2 ± 0.48 45.3 ± 2.32
fPSSM + fOBV + fSS + fJSD + fJSD-t 44.2 ± 2.91 94.9 ± 0.54 44.5 ± 2.24

Appendix A.2. RBscore Dataset Analysis

Table A3. The detailed prediction performance of Random Forest (RF) classifier on different features
using a cut-off of 3.5 Å.

Feature Sensitivity Specificity MCC AUC-ROC AUC-PR

fPSSM 0.458 0.974 0.476 0.866 0.460
fPSSM + fJSD 0.56 0.965 0.514 0.894 0.518
fPSSM + fJSD-t 0.597 0.957 0.511 0.899 0.523
fPSSM + fJSD + fJSD-t 0.591 0.958 0.511 0.90 0.526

fPSSM + fSS 0.512 0.97 0.501 0.878 0.476
fPSSM + fSS + fJSD 0.581 0.96 0.511 0.899 0.520
fPSSM + fSS + fJSD-t 0.611 0.953 0.508 0.903 0.526
fPSSM + fSS + fJSD + fJSD-t 0.613 0.953 0.509 0.902 0.528

fPSSM + fOBV + fSS 0.517 0.976 0.534 0.896 0.528
fPSSM + fOBV + fSS + fJSD 0.58 0.967 0.54 0.907 0.543
fPSSM + fOBV + fSS + fJSD-t 0.612 0.963 0.546 0.910 0.551
fPSSM + fOBV + fSS + fJSD + fJSD-t 0.601 0.962 0.531 0.909 0.546

MCC: Matthews correlation coefficient; AUC-ROC: area under the receiver operating characteristics (ROC)
curve; AUC-PR: area under the precision-recall curve.
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Table A4. The detailed prediction performance of Random Forest (RF) classifier on different features
using a cut-off of 5.0 Å.

Feature Sensitivity Specificity MCC AUC-ROC AUC-PR

fPSSM 0.445 0.977 0.528 0.873 0.589
fPSSM + fJSD 0.553 0.968 0.579 0.899 0.643
fPSSM + fJSD-t 0.57 0.962 0.572 0.900 0.642
fPSSM + fJSD + fJSD-t 0.569 0.963 0.574 0.895 0.642

fPSSM + fSS 0.49 0.973 0.547 0.880 0.602
fPSSM + fSS + fJSD 0.578 0.963 0.583 0.902 0.648
fPSSM + fSS + fJSD-t 0.605 0.958 0.587 0.904 0.652
fPSSM + fSS + fJSD + fJSD-t 0.603 0.959 0.587 0.902 0.653

fPSSM + fOBV + fSS 0.499 0.98 0.584 0.895 0.641
fPSSM + fOBV + fSS + fJSD 0.57 0.968 0.595 0.908 0.661
fPSSM + fOBV + fSS + fJSD-t 0.592 0.965 0.60 0.908 0.665
fPSSM + fOBV + fSS + fJSD + fJSD-t 0.594 0.964 0.597 0.907 0.663

MCC: Matthews correlation coefficient; AUC-ROC: area under the receiver operating characteristics (ROC)
curve; AUC-PR: area under the precision-recall curve.

Appendix A.3. PreDNA Dataset Analysis

Table A5. The detailed prediction performance of Random Forest (RF) classifier on different features
using a cut-off of 3.5 Å.

Feature Sensitivity Specificity MCC AUC-ROC AUC-PR

fPSSM 0.378 0.977 0.41 0.840 0.391
fPSSM + fJSD 0.498 0.963 0.448 0.865 0.453
fPSSM + fJSD-t 0.543 0.953 0.445 0.869 0.451
fPSSM + fJSD + fJSD-t 0.538 0.956 0.453 0.869 0.455

fPSSM + fSS 0.393 0.975 0.417 0.847 0.402
fPSSM + fSS + fJSD 0.501 0.966 0.461 0.872 0.463
fPSSM + fSS + fJSD-t 0.545 0.959 0.465 0.876 0.468
fPSSM + fSS + fJSD + fJSD-t 0.523 0.958 0.449 0.875 0.465

fPSSM + fOBV + fSS 0.428 0.977 0.458 0.867 0.451
fPSSM + fOBV + fSS + fJSD 0.511 0.97 0.488 0.885 0.488
fPSSM + fOBV + fSS + fJSD-t 0.539 0.962 0.475 0.888 0.488
fPSSM + fOBV + fSS + fJSD + fJSD-t 0.539 0.961 0.47 0.886 0.488

MCC: Matthews correlation coefficient; AUC-ROC: area under the receiver operating characteristics (ROC)
curve; AUC-PR: area under the precision-recall curve.

Table A6. The detailed prediction performance of Random Forest (RF) classifier on different features
using a cut-off of 5.0 Å.

Feature Sensitivity Specificity MCC AUC-ROC AUC-PR

fPSSM 0.373 0.979 0.463 0.833 0.496
fPSSM + fJSD 0.485 0.962 0.495 0.858 0.540
fPSSM + fJSD-t 0.496 0.953 0.475 0.858 0.534
fPSSM + fJSD + fJSD-t 0.495 0.955 0.479 0.857 0.535

fPSSM + fSS 0.389 0.977 0.47 0.839 0.501
fPSSM + fSS + fJSD 0.49 0.963 0.501 0.863 0.550
fPSSM + fSS + fJSD-t 0.503 0.957 0.492 0.865 0.547
fPSSM + fSS + fJSD + fJSD-t 0.504 0.958 0.497 0.865 0.550

fPSSM + fOBV + fSS 0.395 0.98 0.488 0.858 0.530
fPSSM + fOBV + fSS + fJSD 0.48 0.968 0.511 0.874 0.563
fPSSM + fOBV + fSS + fJSD-t 0.506 0.962 0.51 0.873 0.560
fPSSM + fOBV + fSS + fJSD + fJSD-t 0.499 0.96 0.498 0.871 0.555

MCC: Matthews correlation coefficient; AUC-ROC: area under the receiver operating characteristics (ROC)
curve; AUC-PR: area under the precision-recall curve.
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