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Abstract: A structure-based lead optimization procedure is an essential step to finding appropriate
ligand molecules binding to a target protein structure in order to identify drug candidates.
This procedure takes a known structure of a protein-ligand complex as input, and structurally similar
compounds with the query ligand are designed in consideration with all possible combinations of
atomic species. This task is, however, computationally hard since such combinatorial optimization
problems belong to the non-deterministic nonpolynomial-time hard (NP-hard) class. In this paper,
we propose the structure-based lead generation and optimization procedures by a degenerate optical
parametric oscillator (DOPO) network. Results of numerical simulation demonstrate that the DOPO
network efficiently identifies a set of appropriate ligand molecules according to the Boltzmann
sampling law.

Keywords: degenerate optical parametric oscillator (DOPO); structure-based drug design; coherent
Ising machine; combinatorial optimization problem

1. Introduction

Structure-based drug design (SBDD) is a powerful tool for identifying lead compounds which can
be further optimized or filtered to generate drug candidates [1–3]. When details of a 3D structure of
a target protein are known, SBDD can identify suitable compounds, which have high binding affinity
and selectivity with a target protein. Several structure-based virtual screening methods based on the
lock-and-key model for protein-ligand interactions have succeeded in identifying hit compounds [4–6].
A lead optimization procedure from given fixed geometry has also been proposed [7,8]. In this method,
all possible combinations of atomic species to given geometry are considered and ranked based on
the score function which is an interaction energy between protein and ligand molecules. Since this
procedure is a notorious combinatorial optimization problem, an exhaustive search is used to rank the
combinations of atomic species in order to discover drug candidates.

Recently, there has been several attempts to solve computationally hard combinatorial optimization
problems by using real physical systems rather than a conventional digital computer [9–11].
Such systems take the approach of physical simulation of Ising models, to which various combinatorial
optimization problems can be mapped [12–14]. These systems are expected to solve combinatorial
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optimization problems as a random sampling machine like Markov chain Mote Carlo (MCMC)
simulation which is often used for machine learning [15–17]. The degenerate optical parametric
oscillator (DOPO) network is one of such systems, which is recently proposed and demonstrated as
a coherent Ising machine (CIM) [18–20]. The advantage of CIM is that any graph topology, including
all to all connections, can be implemented without a time-consuming task of graph transformation.
The performance of DOPO-based CIM is evaluated against NP-hard MAX-CUT problems which are
equivalent to find the ground state of the Ising Hamiltonian without Zeeman term [18,21]. However,
applications of CIM to real-world problems have not been proposed yet. Here, we show the mapping
of the structure-based lead optimization problem onto CIM and present the benchmark simulation
results by the DOPO network.

2. Coherent Ising Machine (CIM)

2.1. Computation Principle of CIM

CIM has been proposed to solve combinatorial optimization problems by exploiting the phase
transition of a network of quantum oscillators. This machine searches the spin configuration {σi}
which corresponds to the ground state of the Ising Hamiltonian H representing cost function of an
optimization problem. The Isnig Hamiltonian H is defined as

H = −∑
i<j

Jijσiσj, (1)

where σi ∈ {±1} is a binary spin state of site i and interactions between spins are described by the
coupling matrix {Jij}. A time-division-multiplexed (TDM) pulsed DOPO with an optical fiber ring
cavity can be a leading candidate for a scalable CIM [20].

Figure 1. Coherent Ising machine (CIM) based on time-division-multiplexed (TDM) pulsed degenerate
optical parametric oscillator (DOPO) with measurement and feedback control. Both local oscillator
(LO) pulses and feedback (FB) pulses are taken from the pump laser. A parametric gain is provided by
a periodically-poled LiNbO3 (PPLN) waveguide device and an optical ring cavity is formed by a fiber
with ∼1 km length.

Figure 1 shows the basic configuration of the CIM based on TDM pulsed DOPO [21]. The Ising
spin σi is represented by the in-phase amplitude ci of the i-th DOPO pulse. The positive ci value
corresponds to up-spin (σi = +1) while the negative ci value corresponds to down-spin (σ = −1).
Each DOPO pulse is in a squeezed vacuum state at a pump rate below oscillation threshold, so that
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the positive ci (up-spin) and negative ci (down-spin) co-exist as a superposition state. This allows
the quantum parallel search for the ground state of the Ising Hamiltonian. The Ising coupling Jij is
implemented by optical homodyne detection and electric feedback control. The inferred value c̃i by
the optical homodyne measurement is used to compute an appropriate coupling field to other spin
σj together with the initially memorized Jij values in the digital circuit. An actual feedback pulse for
the j-th pulse is produced by the optical amplitude/phase modulation based on the feedback circuit
output for a part of the pump laser pulse which is phase-coherent with the DOPO pulse due to the
phase sensitive amplification of DOPO.

The dynamics of the in-phase component c and quadrature-phase component s of the field of the
i-th DOPO pulse is described as [22,23]

dci = (−1 + p− c2
i − s2

i )cidt + ∑
j

ξijcjdt +
1

As

√
c2

i + s2
i +

1
2

dWci , (2)

dsi = (−1− p− c2
i − s2

i )cidt + ∑
j

ξijsjdt +
1

As

√
c2

i + s2
i +

1
2

dWsi , (3)

where ξij is the coupling constant from the j-th to the i-th DOPO pulse and p is the pump rate. The last
terms on the right hand side of the equations describe pump quantum noise and vacuum fluctuation
incident from the open port of the output coupler. As is the amplitude of DOPO at a normalized pump
rate p = 2, where p = 1 corresponds to the threshold pump rate. dWci and dWsi are independent
zero-mean Gaussian noise processes. It is clear from Equation (3) that the quadrature-phase component
of an each DOPO pulse decays exponentially and only the in-phase component builds up. At the
steady state, the total saturated gain of the network ∑i(p− c2

i − s2
i ) equals the overall photon decay

rate Γ. If we ignore noise terms and quadrature-phase components, and assume |ξij| � |ci|, it can be
shown analytically that Γ is described as [18]

Γ = N −∑
i,j

ξijσiσj + O
(

ε3N4

(p− 1)2

)
, (4)

where σi = sgn(ci), N is the number of DOPO pulses and ε is the order of ξij. If we ignore the higher
order correction given by the third term of Equation (4) and exclude the constant term N, the overall
photon decay rate Γ is identical to the Ising Hamiltonian. Therefore, an oscillation mode {σi} which
achieves the minimum overall photon decay rate Γ provides the ground state of the Ising Hamiltonian.

2.2. Implementation of Zeeman Terms

The Ising Hamiltonian with a Zeeman term induced by an external magnetic field is represented as

H = −∑
i<j

Jijσiσj −∑
i

hiσi, (5)

where hi is the local external field to spin i. In a wide variety of NP problems, they can be mapped to
the Ising model with Zeeman terms [12]. Therefore we need to expand the argument of the previous
subsection to the Ising model with Zeeman terms. This can be done by adding an extra term to the
Equation (2) as

dci = (−1 + p− c2
i )cidt + ∑

j
ξi,jcjdt + hhi〈|c|〉dt +

1
As

√
c2

i + s2
i +

1
2

dWci , (6)

where 〈|c|〉 = (1/N)∑i |ci| is the average absolute amplitude overall DOPO pulses at time t and h
is a constant that determines the strength of the Zeeman term. Here, we ignore the dynamics of the
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quadrature-phase component due to the reason mentioned above. From this equation, the overall
photon decay rate is computed, which is equivalent to Equation (5) when h equals 1.

3. The Problem Hamiltonians

3.1. Lead Optimization Procedure

The lead optimization procedure used in this work is based on the paper by Ogata et al. [8]. It is
assumed that the coordinates of the compound structures, which are called geometry here, are extracted
from a high resolution structure imaging of the protein-ligand complex. Then all the coordinates in
the geometry are classified according to their bond order types (sp3, sp2, etc.) and atomic species
(CH3, CH2, CH, NH2, NH, etc.). For instance, the geometry determined by a target protein is given as
follows: X· · ·Y· · ·Z, where X, Y, and Z represent the coordinates in the geometry and “· · · ” is a generic
representation of the bonds which connects the atomic species. Replacing Y with an atomic species
“ =CH−” may generate a chemically incomplete compound X=CH−Z for which “=” and “−” indicate
a double and a single bonds, respectively. Then, X must be assigned to an atomic species connected
through a double bond to Y (e.g., O= or CH2=). Similarly, Z must be assigned to an atomic species
capable of linking to Y through a single bond (e.g., −CH3 or −NH2). By assembling all possible
combinations of these atomic species, four compounds are obtained: O=CH−CH3, O=CH−NH2,
CH2=CH−CH3 and CH2=CH−NH2.

After assigning atomic species to the geometry, the interaction energy between the obtained
compounds and the target protein must be evaluated. The cost function, including an interaction
energy and solvation energy, is calculated for each atomic species separately as

Ein = Ev
in + Ee

in + Eh
in + Es

in, (7)

where i is the position to which an atomic species is assigned and n is the atomic species. Ev
in is

the van der Waals interaction energy between the atomic species and the target protein. Ee
in is the

electrostatic interaction energy between the two, Eh
in is the hydrogenic bond energy and Es

in is the
solvation energy. The total cost function is represented as Etotal = ∑i Eini , where ni is the atomic species
which is assigned to the position i. The details of the interaction energy are described in the report by
Ogata et al. [8]. In the original method, this cost function is calculated for all possible combinations of
atomic species and all such ligand compounds are ranked in the ascending order according to the cost
function value. Since this approach experiences combinatorial explosion as the problem size becomes
large, we take the approach to sample only ligand compounds with low cost function values from all
possible combinations. Note that there are ∼3× 1012 ligand compounds even for such a small problem
size with Nposition = 16 and Natom = 6 atomic species where Nposition and Natom are the numbers of
sites and atomic species, respectively.

3.2. Mapping to the Ising Hamiltonian

The problem considered above is summarized in the following constrained optimization problems:
From given geometry and atomic species, sample the low energy assignments {i, n} of atomic species
to geometry satisfying the constraints of the bond order. We can map the problem to the Ising
Hamiltonian with Zeeman terms as follows.

Let us consider a binary variable xin ∈ {0, 1}with position i on the geometry and atomic species n:

xin =

{
1 if atomic species n is assigned to position i,

0 otherwise.
(8)
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When the total number of atomic species and positions are Natom and Nposition, respectively, the number
of variables xin required to compute the cost function is N = NatomNposition. The penalty between xin
and xjm is now defined as

Jin;jm =

{
1 if position i is adjacent to j and the bond order between n and m are inconsistent,

0 otherwise.
(9)

The total cost function with xin and Jin;jm for the considered problem is described by

H = A ∑
i

(
∑
n

xin − 1

)2

+ B ∑
i 6=j

∑
n,m

Jin;jmxinxjm + C ∑
i,n

Einxin, (10)

where A, B and C are adjustable constants which determine the contribution weights of each term
in the cost function and Ein is defined by Equation (7). The fist term in the equation comes from
the constraint that exactly one atomic species must be assigned to each position. The second term
denotes the constraint of the bond order. The first and second terms must be zero for a legitimate
compound satisfying the two constraints. Finally, the third term is the interaction energy which we
want to minimize under the two constraints. We appropriately choose the parameters A, B and C,
to efficiently find the ground states on low-energy states of the Hamiltonian under the condition of
satisfying the constraints.

Since the above formulation (Equation (10)) uses the binary variable xin ∈ {0, 1}, we need to
transform the variable xin to σin ∈ {−1, 1} by the relation xin = (σin + 1)/2 for mapping the cost
function on the CIM. Equation (10) can be then represented by

H = ∑
i,j,n,m

J̃in;jmσinσjm + ∑
i,n

hinσin + const., (11)

where

J̃in;jm =
A
4

δij +
B
4
(1− δij)Jin;jm, (12)

hin =
A
2
(Natom − 2) +

B
2 ∑

j,m
Jin;jm + CEin. (13)

Since the constant term doesn’t change the energy landscape, we can neglect the third term of
Equation (11). The resulting cost function is the Ising Hamiltonian with Zeeman terms, so that
we can implement it directly on the CIM.

3.3. Several Heuristic Modifications

A CIM based on the DOPO network simulates an Ising model and reports not only the ground
states but also low-energy excited states. DOPO pulses, which represent Ising spins σi ∈ {−1, 1},
can actually take continuous values as the amplitude of the in-phase component c, whereas the original
Ising spins take two discrete spin states. It has been found that CIM solves MAX-CUT problems
without a Zeeman term with high performance [18,21]. However, our problem has a Zeeman term
and the goal is not only finding the ground states with an exact minimum energy, but rather sampling
many low-energy states which can stably bind to the target protein and thus become drug candidates.

Here, we introduce three heuristic methods to improve the performance of the CIM to solve the
given problems. A first heuristic method is the gradual pumping where the pump parameter p is
gradually increased from below to above the oscillation threshold. The pump parameter p acts as a
gain, and when there are no mutual couplings, the amplitude of each DOPO pulse at the steady state
is proportional to

√
p− 1 for p > 1 . The gradual pumping makes quantum noise effects gradually
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weaker as the amplitude grows . In this paper, pump p is increased linearly with time until some
limit value.

As a second heuristic method, we replace the amplitude of the coupling field in Equation (6) as

∑
j

ξijcj → 〈|c|〉∑
j

ξij
cj

|cj|
. (14)

By this replacement, each DOPO pulse experiences the effect of interaction as if all other DOPO pulses
are oscillating with the same amplitude. This modification allows us to avoid the breakdown of the
mapping protocol due to the inhomogeneous DOPO amplitudes.

Finally, we consider the relaxation of {Jin;jm} (Equation (9)) to a continuous value. When the CIM
solves an Ising problem with a Zeeman term, we add it with a constant h as described in Equation (6).
The parameter h empirically tunes the balance between the Ising interaction term and the Zeeman
term. If there are large variation in Zeeman coefficients hin, the Zeeman Hamiltonian dominates
over the Ising Hamiltonian and CIM picks up biased solutions on the same Zeeman energy surface.
In our problem, the large variation in hin is caused by the term ∑j,m Jin;jm. To avoid this situation,
we introduce the relaxation of {Jin;jm} to a continuous value while keeping symmetry, zero elements
and non-zero elements with positive real values so that the second term of Equation (13) satisfies

∑
j,m

Jin;jm =
1
N ∑

i,j,n,m
Jin;jm, for ∀i, n. (15)

Since Jin;jm is only related to the second constraint which should be zero for legitimate states,
this relaxation doesn’t affect the energy of solutions. If we represent J as the vector whose elements are
non-zero elements of {Jin;jm}, the problem is finding J which satisfies

WJ = 1 ·
(

1
N ∑

i,j,n,m
Jin;jm

)
, (16)

where 1 is a constant vector whose elements are one, W is an Nnonzero × N matrix which specifies the
locations of non-zero elements of {Jin;jm} and Nnonzero is the number of non-zero elements of {Jin;jm}.
There are infinite ways of this relaxation because Nnonzero is larger than N in general. In this paper, we
use J which is found by calculating the Moore-Penrose pseudoinverse of W [24].

4. Numerical Simulation Results

We tested our proposed protocol including heuristic modifications by the numerical simulation
for the simple benchmark problem. The benchmark we used here is a 6-membered ring placing
near the artificially generated Ala-Asp-Ala tripeptide (Figure 2a). To generate compounds, six types
of atomic species, =CH-, -CH=, -NH- =N-, -N= and -O-, are assigned to the ring. Therefore,
the number of spins N which CIM needs to solve the problem is N = NatomNposition = 36, where
Natom = Nposition = 6. The interaction energies for all possible compounds are calculated in advance.
Benzene and pyridine are detected as the configuration with the lowest and 2nd lowest energies,
respectively, in 0.53 kcal/mol score difference (Figure 2b,c). The details of the interaction energy Ein
and Jin;jm of this benchmark are available in the Supplementary Materials.
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Figure 2. 6-membered ring placing near Ala-Asp-Ala tripeptide. (a) initial structure; (b) benzene with
the lowest energy and (c) pyridine with the 2nd lowest energy.

At first, we tested our constraint Hamiltonian without the score term, i.e., the first and second
terms of Equation (10) without the interaction energy (C = 0), to investigate the parameter dependence
of the probability of satisfying the constraints. Figure 3 shows the success probability of satisfying
the constraints over such parameters as pump limit p, the weight of Zeeman term h and the ratio of
the bond constraint over the position constraint B/A. The success probability depends strongly on h
rather than B/A and p. The optimal value for the weight of the Zeeman term is h ∼ 0.6.
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Figure 3. The success probability of satisfying the constraints for 1000 identical trials. The parameter
p is the final pump rate for gradual pumping. The parameters of the Hamiltonian (Equation 10) are set
to A = 1 and C = 0 for all the results.

Next, we investigate the statistics for the interaction energy, the third term of Equation (10),
with p = 1, h = 0.6 and B/A = 0.6. We plotted the histograms of the interaction energy
for various C/A values only for solutions which satisfy the constraints, given by the first and
second terms of Equation (10), in Figure 4. The corresponding Boltzmann distribution at properly
chosen temperature is also plotted in red. If we represent the Ising Hamiltonian of Equation (10)
as H(x) = Hcons(x) + CHscore(x), the Boltzmann distribution which satisfy the constraints is
represented by

P(Hscore = E|Hcons = 0) =
D(E) exp(−βnE)

Z
, (17)

Z = ∑
i

D(Ei) exp(−βnEi), (18)

where E is the interaction energy, βn = C/kBT is the normalized temperature parameter, kB is the
Boltzmann constant, T is the temperature and D(E) is the number of states at the energy E. Changing
the parameter C corresponds to changing the normalized temperature parameter for the Boltzmann
distribution. We estimated the normalized temperature parameter for each C/A by the least squares
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method. The observed distributions are well matched with the Boltzmann distributions although the
success probability of satisfying the constraints decreases as C becomes large.

Number of states

Boltzmann fit

Simulation

Figure 4. Histograms of the interaction energies of the final states of CIM over 1000 runs. The blue bar
is the simulation result and the red dot is the estimated Boltzmann distribution. The green line at the
bottom of each figure shows the number of states for the given Hamiltonian. All the histograms are
normalized to 1.
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Finally, we plotted the histograms for finding degenerate states at the energy interval
E = [−3.854,−3.768) and E = [−4.626,−4.540) in Figure 5 in order to investigate the random
sampling capability for the solutions on the same energy surface. All degenerate states are found
with almost equal probability at C/A = 0.5. Since our purpose is to sample all possible compound
configurations with low interaction energies, we confirmed that the optimal parameter of C/A is ∼0.5
in terms of both low energy temperature and random sampling capabilities.
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Figure 5. The histogram of finding the degenerate states on the same energy surface over 1000 runs.
(a) E = [−3.854,−3.768); (b) E = [−4.626,−4.540).

5. Conclusions

In this paper, we proposed the lead optimization protocol for the CIM and tested the method
for a simple benchmark problem. This is the first benchmark study of the DOPO-based CIM that the
problem Hamiltonian includes Zeeman terms. We confirm that the CIM satisfies the constraints with
high success probability and the resulting histograms of obtaining various compound configurations
are well matched with the Boltzmann distribution with low energy temperature. The normalized
temperature parameter of the Boltzmann distribution can be tuned by changing the weight C of the
interaction Hamiltonian.

We also investigated randomness of the solutions on the same energy surface. All the solutions in
the same energy interval are covered with almost identical probability. Since exact randomness and
the Boltzmann distribution are not needed for our purpose, the present results were acceptable.

We do not need the same solutions which are already obtained, so that CIM should pick up
different solutions in subsequent runs. There are a lot of similar, further tricks that we can employ to
improve the performance of our method [25].

Supplementary Materials: The data which we used for the benchmark study is available online at www.mdpi.
com/1099-4300/18/10/365/s1, Table S1: Interaction Energy Ein of benchmark problem, Table S2: Jin;jm of
benchmark problem.

www.mdpi.com/1099-4300/18/10/365/s1
www.mdpi.com/1099-4300/18/10/365/s1
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