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Abstract: We study the entropy of a quantized field in interaction with a two-level atom (in a pure
state) when the field is initially in a mixture of two number states. We then generalise the result for
a thermal state; i.e., an (infinite) statistical mixture of number states. We show that for some specific
interaction times, the atom passes its purity to the field and therefore the field entropy decreases from
its initial value.
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1. Introduction

The quantum state of a system is given by the von Neumann entropy [1], which may be calculated
by the expectation value of the entropy operator [2]

S = Tr{ρŜ} (1)

with Ŝ = − ln ρ, where ρ is the density matrix describing the quantum mechanical system.
In quantum information processing, it is important to have ways to measure entanglement,

entropy being one of the most important; however, negativity and concurrence [3] may also be used to
look for the different degrees of entanglement of two given subsystems.

It is relatively simple to calculate entropies associated with interacting systems—for instance,
a two-level atom and a quantised field—when both systems initially are prepared in pure states.
However, if one of the systems is initially considered in a statistical mixture, the difficulty of
calculating such entropies is increased to the point that it may become impossible to obtain analytical
results. This is because when two systems, A (for atom) and F (for field) interact, the entropies obey
a triangle inequality [4]

|SA − SF| ≤ SAF ≤ SA + SF, (2)

where SAF is the entropy of the total system, and SA and SF are the entropies of the atom and field,
respectively. An important result from this equation is that, if the total entropy is zero, the entropies
for the atom and field will be equal. Therefore, if in a lossless atom–field interaction, one can generate
pure initial states for atom (excited, ground, or any pure superposition), and for the field (one can
consider coherent states, superposition of coherent states [5], or squeezed states [6], to name some
examples), their entropies will be equal after evolution. Therefore, in the atom–field interaction, one is
able to find the entropy for the field given by the (simpler to calculate) entropy of the atom.
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A question arises: How to compute the field’s entropy in the case where one of the
subsystems (let us say the quantised field) is not in a pure state? In this case, the above triangle
inequality is of no use, and there is not a general answer.

2. Initial Mixed State

The Hamiltonian for a two-level atom interacting with a quantized field is given by [7,8]
(we set h̄ = 1)

H = ωa†a + ω0
σz

2
+ g(a†σ− + σ+a) (3)

where a and a† are the annihilation and creation operators, respectively, ω is the frequency of
the quantized field, σz is the atomic inversion operator, σ+ and σ− are the raising and lowering
Pauli matrices, respectively, g is the interaction constant between the atom and the quantized field, and
ω0 is the atomic transition frequency. Although we are considering here a two-level atom interacting
with a quantised field, these kinds of Hamiltonians may also be realized in ion–laser interactions [9,10].

To be more specific, the Pauli spin operators in the 2× 2 matrix representation read

σz =

[
1 0
0 −1

]
, σ+ =

[
0 1
0 0

]
, σ− =

[
0 0
1 0

]
. (4)

They obey the commutation relations [σ+, σ−] = σz and [σz, σ±] = ±2σ±.
We now consider the atom and field to be in resonance (ω = ω0) and get rid off the (free)

Hamiltonians for the field and the atom. We need to solve the Schrödinger equation (see [11] for
techniques for its solution)

i
∂|ψ〉

∂t
= H|ψ〉 (5)

and by transforming |ψ〉 = T|φ〉, with T = exp[−i(ωa†a + ω σz
2 )t], a Schrödinger equation in the

interaction picture is obtained for |φ〉 with the interaction Hamiltonian given by

HI = g(a†σ− + σ+a). (6)

The evolution operator, exp (−iHI t), may then be easily obtained as

UI(t) =

[
U11 U12

U21 U22

]
, (7)

with the matrix elements given by

U11(t) = cos gt
√

n̂ + 1,

U12(t) = −i sin gt
√

n̂ + 1V

U21(t) = −iV† sin gt
√

n̂ + 1

U22(t) = cos gt
√

n̂, (8)

and where n̂ = a†a is the so-called number operator and V is the London (phase) operator [12,13]

V =
∞

∑
m=0
|m〉〈m + 1| = 1√

n̂ + 1
a, (9)

with |m〉 number or Fock states; i.e., eigenstates of the harmonic oscillator.
In a sense, V and V† are the true annihilation and creation operators, as they do actually annihilate

or create a single excitation of the harmonic oscillator (in our case, a single photon of the quantized
electromagnetic field).
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Extreme care has to be taken when doing calculations with the London phase operator,
as—contrary to the usual annihilation and creation operators that obey the commutation relation
[a, a†] = 1—the former operators obey the more complex commutation relation [V, V†] = |0〉〈0|,
where |0〉〈0| is the so-called vacuum projection operator.

If we consider an initial excited state for the atom, in the 2× 2 matrix representation given by

|e〉 =
(

1
0

)
, (10)

and a statistical mixture of number states for the field, namely,

ρF(0) = Pk|k〉〈k|+ Pk+1|k + 1〉〈k + 1|, (11)

with Pk + Pk+1 = 1, the initial atom–field density matrix is given by

ρ(0) = Pk

(
|k〉〈k| 0
0 0

)
+ Pk+1

(
|k + 1〉〈k + 1| 0
0 0

)
, (12)

the evolved density matrix is given by the solution to the von Neumann equation (as we are dealing
now with mixed states, i.e., density matrices)

ρF(t) = U(t)ρF(0)U†(t), (13)

that is explicitly written as

ρ(t) =

(
Pk|ck〉〈ck|+ Pk+1|ck+1〉〈ck+1| Pk|ck〉〈sk+1|+ Pk+1|ck+1〉〈sk+2|
Pk|sk+1〉〈ck|+ Pk+1|sk+2〉〈ck+1| Pk|sk+1〉〈sk+1|+ Pk+1|sk+2〉〈sk+2|

)
, (14)

where

|ck〉 = cos gt
√

k + 1|k〉, |sk〉 = sin gt
√

k|k〉. (15)

By tracing over the atomic basis, we can obtain the field density matrix

ρF(t) = Pk|ck〉〈ck|+ Pk+1|ck+1〉〈ck+1|+ Pk|sk+1〉〈sk+1|+ Pk+1|sk+2〉〈sk+2|, (16)

from where we can calculate the entropy as

S(t) = −Pk cos2 gt
√

k + 1 ln Pk cos2 gt
√

k + 1− Pk+1 sin2 gt
√

k + 2 ln Pk+1 sin2 gt
√

k + 2

−
(

Pk+1 cos2 gt
√

k + 2 + Pk sin2 gt
√

k + 1
)

ln
(

Pk+1 sin2 gt
√

k + 2 + Pk sin2 gt
√

k + 1
)

. (17)

We plot the entropy in Figure 1 where it is shown that for such an initial mixed state for the field,
the entropy can take values close to zero about gt ≈ 8.2, and in this way, the purity of the atom is
transferred completely to the field. In Figure 2, we plot cos2 gt

√
k + 2 and sin2 gt

√
k + 1 for k = 5.

When these two terms are equal, it may be seen from Equation (16) that only the third term survives,
and the purity of the atom is completely transferred to the field.
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Figure 1. Field entropy for an atom initial excited state and the field in an equally weighted statistical
mixture of number sates, with k = 5; i.e., ρF(0) = 1

2 (|5〉〈5|+ |6〉〈6|).

Figure 2. We plot cos2 gt
√

k + 2 and sin2 gt
√

k + 1 for k = 5. It can be seen that about gt ≈ 8.2,
both terms are close to one, which means that the terms that survive in Equation (15) correspond
to the ket |k = 6〉.

3. Thermal Distribution as Initial Field State

From the treatment done in the former Section, we now consider a thermal distribution as
initial field,

ρF(0) =
∞

∑
n=0

Pn|n〉〈n|, (18)

with Pn = n̄n

(n̄+1)n+1 and n̄ the average thermal number of photons. In this case, the evolved field
density matrix reads

ρF(t) = P0 cos2 gt|0〉〈0|+
∞

∑
n=0

(
Pn sin2 gt

√
n + 1 + Pn+1 cos2 gt

√
n + 2

)
|n + 1〉〈n + 1|, (19)
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from where we write down the entropy for the field

SF(t) = −P0 cos2 gt ln cos2 gt (20)

−
∞

∑
n=0

(
Pn sin2 gt

√
n + 1 + Pn+1 cos2 gt

√
n + 2

)
ln
(

Pn sin2 gt
√

n + 1 + Pn+1 cos2 gt
√

n + 2
)

.

We plot the field entropy in Figure 3, where we can note that a strong decrease of entropy can
happen; i.e., a field purification can be realized by interacting a thermal field with a (pure) excited atom.

Figure 3. We plot the field entropy as a function of gt for the atom initially in its excited state and the
field in a thermal distribution with an average number of photons, n̄ = 0.5.

4. Conclusions

We have shown that it is possible to decrease the entropy of a thermal field by interacting it
with a two-level atom initially in its excited state. With the help of an initial field in a simpler
mixture (i.e., just two number states), we constructed the density matrix for the extended mixture of
number states given by the thermal distribution. In the case of the simpler mixture, it was shown
that a complete transfer of purity may take place. A simpler case (because of its periodicity) —that of
a two-photon interaction [14]—has already been studied. We studied the ideal case of light–matter
interaction (i.e., where no interaction of the total system with an environment takes place; see for
instance [15]); however, because we are considering initial states with only diagonal terms in the field
density matrix, it is expected that for sufficiently small cavity decay, our study describes the interaction
well, as the environment severely affects off-diagonal matrix elements, quickly destroying coherent
effects. Finally, effects such as the decrease of entropy of a subsystem by swapping purity could
also be realized in ion–laser interaction [9,10] and semiconductor microcavities [16], to name some
other possibilities.
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