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Abstract: Herein, two numerical algorithms for solving some linear and nonlinear fractional-order
differential equations are presented and analyzed. For this purpose, a novel operational matrix of
fractional-order derivatives of Fibonacci polynomials was constructed and employed along with
the application of the tau and collocation spectral methods. The convergence and error analysis
of the suggested Fibonacci expansion were carefully investigated. Some numerical examples with
comparisons are presented to ensure the efficiency, applicability and high accuracy of the proposed
algorithms. Two accurate semi-analytic polynomial solutions for linear and nonlinear fractional
differential equations are the result.
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1. Introduction

Fractional calculus is a vital branch of mathematical analysis which deals with derivatives and
integrals to an arbitrary order (real or complex). There are intensive studies of fractional calculus from
both theoretical and practical points of view. The applications of fractional calculus in many fields such
as physics, economics, probability theory and statistics are numerous. For example, many physical
and engineering models are described by fractional differential equations. For some applications of
fractional calculus, one can refer to [1].

Due to the great importance of fractional differential equations (FDEs) and their applications
in various disciplines, many researchers have shown considerable interest in developing numerical
algorithms for solving these types of equations. Numerical solutions for various types of FDEs by
applying several techniques were proposed, for instance, Adomian’s decomposition method [2,3],
the Taylor collocation method [4], the variational iteration method [5], the finite difference
method [6,7] and the ultraspherical wavelets method [8,9]. In addition, orthogonal polynomials
have been widely used for obtaining numerical solutions for different types of FDEs. For example,
Chebyshev polynomials of the second kind were employed by Sweilam et al. for solving space
fractional-order diffusion equations [10]. Moreover, Chebyshev polynomials of the first kind were
used for solving some fractional differential equations in Khader and Sweilam [11].

The three well-known versions of spectral methods; namely collocation, tau and Galerkin methods
play pivotal roles in the numerical solutions of various types of differential equations. The spectral
solutions are expressed in terms of truncated series of various polynomials. Actually, this solution
is written as ∑akφk, where {φk} is a set of polynomials, which is often orthogonal. The expansion
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coefficients ak can be determined by applying an appropriate spectral method. The collocation approach
is performed by enforcing the differential equation to be satisfied exactly at some selected points called
nodes or collocation points. The tau method is a synonym for expanding the residual function
as a series of orthogonal polynomials and then, applying the boundary conditions as constraints.
The Galerkin method is basically based on selecting some combinations satisfying the underlying
boundary (initial) conditions as basis functions, and then, enforcing the residual to be orthogonal
with the basis functions. This approach is fruitfully applied in many studies to solve two point linear
boundary value problems (BVPs), in one and two dimensions [12–15].

The utilization of operational matrices of derivatives of different orthogonal polynomials is very
effective for treating almost all types of differential equations. To be more precise, several operational
matrices are employed for obtaining numerical solutions of ordinary differential equations. In this
regard, Abd-Elhameed in [16] has developed a novel harmonic numbers operational matrix of
derivatives to solve linear and nonlinear sixth-order BVPs. Likewise, Abd-Elhameed [17] and
Doha et al. [18] used tau and Galerkin operational matrices of derivatives, respectively, to solve
the singular Lane-Emden differential equations. The approach of employing the operational matrices
is not limited to application in ordinary differential equations, but it can be also followed to handle
FDEs. In this respect, a number of articles were devoted to introducing numerical solutions for these
equations. In this respect, a Legendre operational matrix of fractional derivatives were constructed and
employed for solving some types of FDEs in [19]. As well, Rostamy et al. [20] handled these equations
with the aid of a Bernstein operational matrix of fractional derivatives. Other articles were interested
in using the operational matrices of fractional integration to solve FDEs, i.e., Kazem [21].

The Fibonacci polynomials with their generalizations, and Fibonacci numbers and the golden
ratio, are key elements in number theory. They have enormous applications in various disciplines such
as computer science, statistics, physics, biology and graph theory [22]. Several studies were peformed
to theoretically discuss Fibonacci polynomials and generalized Fibonacci polynomials (see [23–25]).
However, as far we know, articles interested in using these polynomials in different applications are
scarce. For example, a collocation procedure for treating BVPs based on using the Fibonacci operational
matrix of derivatives has been developed in [26,27].

The principal objective of the present article is to present and implement new numerical spectral
solutions of some types of FDEs. For this purpose, the operational matrix of fractional derivatives of
Fibonacci polynomials are constructed, and then employed along with the tau and collocation spectral
methods for obtaining numerical solutions of FDEs.

The paper is organized as follows: first, in Section 2, some preliminaries including some
fundamental definitions of the fractional calculus theory are presented. This section also includes an
overview on Fibonacci polynomials and their relevant properties. Section 3 is interested in constructing
Fibonacci operational matrix of the fractional derivatives in the Caputo sense. Section 4 is devoted
to implementing and presenting two numerical algorithms for solving two-term FDEs. Section 5 is
interested in investigating the convergence and error analysis of the suggested expansion of Fibonacci
polynomials. Some numerical examples and discussions are presented in Section 6, hoping to illustrate
the efficiency, simplicity and applicability of the two proposed algorithms. Finally, some conclusions
are reported in Section 7.

2. Preliminaries

2.1. Some Definitions and Properties of Fractional Calculus

In this subsection, some notations, definitions and preliminary facts about fractional calculus
theory are presented.



Entropy 2016, 18, 345 3 of 15

Definition 1. The Riemann–Liouville fractional integral operator Iµ of order µ on the usual Lebesgue space
L1 [0,1] is defined as:

Iµ f (t) =

{
1

Γ(µ)

∫ t
0 (t− τ)µ−1 f (τ)dτ, µ > 0,

f (t), µ = 0.

where the following properties are satisfied:

(i) IµIv = Iµ +v

(ii) IµIv = IvIµ

(iii) Iµtv = Γ(v+1)
Γ(v+µ+1) tµ+v

where µ > −1 and v > −1.

Definition 2. The Riemann–Liouville fractional derivative of order µ > 0 is defined by:

(Dµ
∗ f )(t) =

(
d
dt

)n
(In−µ f )(t), n− 1 < µ < n, n ∈ N.

Definition 3. The fractional differential operator in Caputo sense is defined as:

(Dµ f )(t) = 1
Γ(n−µ)

∫ t
0 (t− τ)n−µ−1 f (n)(τ)dτ, µ > 0, t > 0,

where, n − 1 < µ < n, n ∈ N.

The operator Dµ satisfies the following basic properties for n − 1 < µ < n:

(Dµ Iµ f )(t) = f (t),

(IµDµ f )(t) = f (t)−
n−1
∑

k=0

f (k)(0+)
k! tk, t > 0,

Dµtk = Γ(k+1)
Γ(k+1−µ)

tk−µ, k ∈ N, k ≥ dµe , (1)

where the ceiling notation dµe denotes the smallest integer greater than or equal to µ. For more
properties of fractional derivatives and integrals, see for example [28,29].

2.2. Some Properties of Fibonacci Polynomials

It is well-known that the Fibonacci polynomials may be constructed by the following
recurrence relation

Fm+2(x) = xFm+1(x) + Fm(x), m ≥ 0,

with the initial values:
F0(x) = 0, F1(x) = 1.

These polynomials have the following explicit form:

Fm(x) =

(
x +
√

x2 + 4
)m
−
(

x−
√

x2 + 4
)m

2m
√

x2 + 4
.

Moreover, they can be represented by the following power form:

Fm(x) =
bm−1

2 c

∑
r=0

(
m− r− 1

r

)
xm−2r−1, (2)

where the notation bzc represents the largest integer less than or equal to z .
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The first derivative of Fibonacci polynomials is related with the original Fibonacci polynomials
by the following relation (see [30]):

dFm+1(x)
dx =

bm−1
2 c
∑

i=0
(−1)i(m− 2i)Fm−2i(x), m ≥ 1.

Furthermore, the polynomials xm can be written as a combination of Fibonacci polynomials
as (see [30]):

xm =
bm

2 c

∑
i=0

(−1)i

[(
m
i

)
−
(

m
i− 1

)]
Fm−2i+1(x), m ≥ 0. (3)

It is usefull to rewrite relations (2) and (3) as:

Fi(x) =
i

∑
j = 0

(j + i)odd

(
i+j−1

2

)
!

j!
(

i−j−1
2

)
!
xj, i ≥ 0, (4)

xm = m!
m+1

∑
j = 1

(j + m)odd

(−1)
m−j+1

2 j(
m−j+1

2

)
!
(

m+j+1
2

)
!
Fj(x), m ≥ 0. (5)

respectively.

3. Construction of the Fibonacci Operational Matrix of the Caputo Fractional Derivative

Assume that u(x) is a square Lebesgue integrable function on (0,1). In addition, assume that u(x)
can be expanded as:

u(x) =
∞

∑
k=1

ckFk(x).

If we kept only the first (n + 1) terms of Fibonacci polynomials, then:

u(x) ≈ un(x) =
n+1

∑
k=1

ckFk(x) = CTΦ(x),

where
CT = [c1, c2, . . . , cn+1],

and
Φ(x) = [F1(x), F2(x), . . . , Fn+1(x)]T . (6)

Now, the first derivative of the vector Φ(x) can be written as:

dΦ(x)
dx

= M(1)Φ(x), (7)

where M(1) =
(

m(1)
ij

)
is the Fibonacci operational matrix of derivatives of order (n + 1) × (n + 1).

Moreover, the elements of M(1) are given explicitly as:

m(1)
ij =

(−1)
i−j+3

2 (j + 1), i > j, (i + j)odd,

0, otherwise.
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For example, for n = 6, the operational matrix M(1) is:

M(1) =



0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 2 0 0 0 0 0
−1 0 3 0 0 0 0
0 −2 0 4 0 0 0
1 0 −3 0 5 0 0
0 2 0 −4 0 6 0


7×7

.

Introducing a Fibonacci Operational Matrix of Fractional Derivatives

The principal goal of this section is to introduce a generalization of the operational matrix of the
integer case. First note that relation (7) leads to the relation:

dsΦ(x)
dxs = M(s)Φ(x) =

(
M(1)

)s
Φ(x),

where s is any postive integer. The following theorem gives the Fibonacci operational matrix of
fractional derivatives:

Theorem 1. If Φ(x) is the Fibonacci polynomial vectors which defined in Equation (6), then for any α > 0,
the following relation holds:

DαΦ(x) = x−α M(α)Φ(x),

where M(α) =
{

mα
ij

)
is the (n + 1) × (n + 1) Fibonacci operational matrix of derivatives of order α in Caputo

sense and it is given explicitly as:

M(α) =



0 0 0 · · · 0
...

...
...

...
ξα(dαe , 1) ξα(dαe , dαe) 0 · · · 0

...
...

...
...

ξα(i, 1) · · · ξα(i, i) · · · 0
...

...
...

...
ξα(n + 1, 1) ξα(n + 1, 2) ξα(n + 1, 3) · · · ξα(n + 1, n + 1)


.

In fact, the elements
(

mα
ij

)
are given explicitly by:

mα
i,j =

{
ξα(i, j), i ≥ dαe , i ≥ j;
0, otherwise.

where

ξα(i, j) = j
i

∑
k = dαe
(i + k)odd
(j + k)odd

(−1)
k−j+1

2 k!
(

i+k−1
2

)
!(

i−k−1
2

)
!
(

k−j+1
2

)
!
(

k+j+1
2

)
!Γ(k + 1− α)

. (8)
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Proof. If we apply Dα to Equation (4), then with the aid of relation (1), the following relation is obtained:

DαFi(x) =
i

∑
k = dαe
(k + i)odd

(
i+k−1

2

)
!(

i−k−1
2

)
!Γ(k + 1− α)

xk−α.

The inversion formula (5) enables one—after performing some manipulations—to write:

DαFi(x) = x−α
i

∑
j=1

ξα(i, j)Fj(x), (9)

where ξα(i,j) is given in (8).
Now Equation (9) can be rewritten in the following vector form:

DαFi(x) = x−α[ξα(i, 1), ξα(i, 2), . . . , ξα(i, i), 0, 0, . . . , 0]Φ(x), dαe ≤ i ≤ n + 1, (10)

and also we can write:
DαFi(x) = x−α[0, 0, . . . , 0], 1 ≤ i ≤ dαe − 1. (11)

Finally, Equation (10) together with Equation (11) yield the desired result. �

4. Two New Matrix Algorithms for Solving Fractional-Order Differential Equations

This section is devoted to analyzing and presenting two numerical algorithms for solving
fractional-order linear and nonlinear differential equations based on using the constructed Fibonacci
operational matrix. The two algorithms, namely, the tau Fibonacci matrix method (TFMM) and the
collocation Fibonacci matrix method (CFMM) are employed for solving linear and nonlinear multi-term
orders fractional differential equations, respectively.

4.1. Use of TFMM for Handling Linear Fractional Differential Equations

Consider the linear fractional differential equation ([31,32]):

Dαu(x) + p(x)Dβu(x) + q(x)u(x) = f (x), x ∈ (0, 1), α ∈ (q1, 1 + q1], β ∈ (q2, 1 + q2], q1 ≥ q2, (12)

subject to the initial conditions:

u(i)(0) = ai, i = 0, 1, . . . , q1, (13)

or the boundary conditions:{
u(i)(0) = ai, u(i)(1) = bi, i = 0, 1, . . . , q1−1

2 , i f q1 odd,
u(i)(0) = ai, u(i)(1) = bi, u(

q1
2 )(0) = a, i = 0, 1, . . . , q1

2 − 1, i f q1 even.
(14)

Now, assume that u(x) can be approximated as:

u(x) ≈ un(x) = CTΦ(x). (15)

In virtue of Theorem 1, Dαu(x) and Dβu(x) can be approximated as:

Dαu(x) ≈ x−αCT M(α)Φ(x), (16)
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and
Dβu(x) ≈ x−βCT M(β)Φ(x). (17)

Making use of the approximations in (15)–(17), the residual of (12) can be calculated by the formula:

xαR(x) = CT M(α)Φ(x) + p(x)xα−βCT M(β)Φ(x) + q(x)xαCTΦ(x)− xα f (x),

and accordingly the application of tau method (see [18]) yields:∫ 1
0 xαR(x)Fi(x)dx = 0, i = 1, 2, . . . , n− q1. (18)

Moreover, the initial conditions (13) yield:

CT M(i)Φ(0) = ai, i = 0, 1, . . . , q1, (19)

while the boundary conditions (14) yield: CT M(i)Φ(0) = ai, CT M(i)Φ(1) = bi, i = 0, 1, . . . , q1−1
2 , i f q1 odd

CT M(i)Φ(0) = ai, CT M(i)Φ(1) = bi, CT M(
q1
2 )Φ(0) = a, i = 0, 1, . . . , q1

2 − 1, i f q1 even.
(20)

From Equation (18) with (19) or (20), a linear system of equations in the unknown expansion
coefficients ci of dimension (n + 1) can be generated. Thanks to the Gaussian elimination technique or
any suitable technique, this system can be solved, and consequently, the approximate solution (15) can
be found.

4.2. Use of CFMM for Handling Nonlinear Fractional Differential Equations

Consider the following nonlinear fractional-order differential equation:

Dαu(x) = Ω
(

Dβu(x), u(x), x
)

, x ∈ (0, 1), α ∈ (q1, 1 + q1], β ∈ (q2, 1 + q2], q1 ≥ q2, (21)

subject to the initial conditions (13) or the boundary conditions (14).
We approximate u(x), Dαu(x) and Dβu(x) as in the previous section, hence the residual R̃ (x) of

Equation (21) is given by:

R̃(x) = x−αCT M(α)Φ(x)−Ω
(

x−βCT M(β)Φ(x), CTΦ(x), x
)

.

The application of the spectral collocation method requires that R̃ (x) must vanish at certain
collocation points. We select the collocation points to be: i

n+1 , i = 1, 2, . . . , n− q1, and therefore:

R̃
(

i
n+1

)
= 0, i = 1, 2, . . . , n− q1. (22)

Equations (22) with (19) or (20) generate a nonlinear system of equations in the unknown
expansion coefficients ci of dimension (n + 1). Newton’s iterative technique can be employed for
solving this system, and consequently, the approximate solution is obtained from (15).

Remark 1. It is worthy to mention here that the CFMM, which described above, can be also applied to linear
fractional differential equations.

5. Convergence and Error Analysis

In this section, a comprehensive study of the convergence and error analysis of the suggested
expansion of Fibonacci polynomials is performed. For this purpose, the following Lemmas are needed.
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Lemma 1 (Byrd [33]). If f(x) is an infinitely differentiable function at the origin, then f(x) can be expanded in
terms of Fibonacci polynomials as:

f (x) =
∞

∑
k=1

∞

∑
j=0

k(−1)ja2j+k−1

22j+k−1(j + k)

(
2j + k− 1

j

)
Fk(x),

where

ai =
f (i)(0)

i!
.

Lemma 2 (Abramowitz et al. [34]). Let Iv(x) denote the modified Bessel function of order v of the first kind.
The following identity holds:

∞

∑
j=0

xj

2j j!(j + k)!
=

(
2
x

) k
2

Ik(
√

2x).

Lemma 3 (Luke [35]). The modified Bessel function of the first kind Iv(x) satisfies the following inequality:

|Iν(x)| ≤ xν cosh x
2νΓ(ν+1) , ∀ x > 0.

Lemma 4. If σ = 1+
√

5
2 denotes the golden ratio, then the following inequality is valid:

Fk(x) ≤ σk−1 ∀ x ∈ [0, 1].

Proof. We have:

Fk(x) ≤ Fk(1) =
1√
5

(1 +
√

5
2

)k

−
(

1−
√

5
2

)k
 ≤ σk−1.

�

The following two theorems discuss the convergence and error analysis of the Fibonacci expansion.

Theorem 2. If f(x) is defined on [0, 1] with
∣∣∣ f (i) (0)∣∣∣ ≤ Mi, i ≥ 0, M is a positive constant and

f (x) = ∑∞
k=1 ckFk (x), then we have:

1. |ck| ≤ Mk−1coshM
2k−1(k−1)!

.

2. The series converges absolutely.

Proof. Starting from Lemma 1, we have:

|ck| = k

∣∣∣∣∣ ∞

∑
j=0

(−1)j f (2j+k−1)(0)
22j+k−1 j!(j + k)!

∣∣∣∣∣ ≤ k
∞

∑
j=0

M2j+k−1

22j+k−1 j!(j + k)!
,

and therefore the application of Lemma 2 implies that:

|ck| ≤
2k
M

Ik(M). (23)

The inequality in (23) along with Lemma 3 leads to the inequality in the first part.
Now, to prove that the series ∑∞

k=1 ckFk (x) converges absolutely, the comparison test is

applied. Making use of the first part along with Lemma 4, yields |ckFk (x)| ≤ coshM
(k−1)!

(
Mσ
2

)k−1
but

∑∞
k=1

coshM
(k−1)!

(
Mσ
2

)k−1
= coshMeMσ/2 and therefore the series converges absolutely. �
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Theorem 3. If f(x) satisfies the hypothesis of Theorem 2, and en (x) = ∑∞
k=n+2 ckFk (x) then we have the

following error estimate:

|en(x)| < cosh M (M σ)n+1 e
M σ

2

2n+1(n + 1)!
.

Proof. By Theorem 2, we can write:

|en(x)| ≤ cosh M
∞

∑
k=n+2

µk−1

(k− 1)!
, µ =

M σ

2
,

which can be written as:

|en(x)| ≤ eµcosh M
(

1− Γ(n + 1, µ)

Γ(n + 1)

)
,

where Γ(n + 1) and Γ(n + 1,µ) denote the well-known gamma function and the incomplete gamma
function, respectively (see [36]).

Now, we have |en (x)| ≤ eµcoshM
Γ(n−1)

∫ µ
0 tne−tdt but since e−t 〈1, ∀t〉 0. Therefore we have

|en (x)| ≤ eµcoshMµn+1

(n−1)! which completes the proof of the theorem. �

6. Numerical Tests

This section presents some numerical experiments and comparisons to illustrate the efficiency
and applicability of the two proposed algorithms in this paper.

Example 1 (Doha et al. [37]). Consider the following linear fractional initial value problem

D2u(x) + D
1
2 u(x) + u(x) = x2 + 8

3
√

π
x

3
2 + 2, x ∈ (0, 1), (24)

u(0) = u′(0) = 0. (25)

We apply TFMM for the case n = 2. The residual of Equation (24) can be calculated by the formula:

√
xR(x) =

√
xCT M(2)Φ(x) + CT M( 1

2 )Φ(x) +
√

xCTΦ(x)−
(

x
5
2 +

8
3
√

π
x2 + 2

√
x
)

where the operational matrices M(2) and M( 1
2 ) are given explicitly as follows:

M(2) =

 0 0 0
0 0 0
2 0 0

 , M( 1
2 ) = 1√

π

 0 0 0
0 2 0
− 8

3 0 8
3

 .

If we apply the method which described in Section 4.1 to Equation (24), then we get:

(32 + 100
√

π)c3 + (40 + 15
√

π)c2 + 30
√

πc1 = 32 + 70
√

π. (26)

Moreover, the initial conditions (25) yield:

c3 + c1 = 0, and c2 = 0. (27)

Equations (26) and (27) can be immediately solved to give c1 = −1, c2 =0, c3 = 1, and consequently
u(x) = x2 which is the exact solution.
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Example 2 (Doha et al. [38]). Consider the following inhomogeneous Bagley–Trovik equation:

D2u(x) + D
3
2 u(x) + u(x) = f (x), x ∈ (0, 1),
u(0) = 0, u′(0) = α,

(28)

where f(x) is chosen such that the exact solution of Equation (28) is u(x) = sin(αx). We apply the two methods,
namely, TFMM, CFMM for different values of α and n. In Table 1, we display a comparison between the results
obtained if the two methods TFMM, CFMM are applied with the results obtained by applying Chebyshev spectral
method (CSM) which developed in [38]. The displayed results in this table show that our algorithm gives a lesser
error in almost all cases.

Table 1. Comparison between TFMM and CSM in [38] for Example 2.

n
α = 1 α = 4π

TFMM CFMM CSM [38] TFMM CFMM CSM [38]

4 1.0 × 10−4 3.4 × 10−5 3.4 × 10−4 7.2 × 10−3 8.2 × 10−4 3.9 × 100

8 9.1 × 10−7 2.7 × 10−8 4.3 × 10−7 5.8 × 10−6 1.5 × 10−6 4.7 × 10−1

16 5.3 × 10−12 4.9 × 10−13 1.8 × 10−8 5.7 × 10−11 7.4 × 10−13 3.5 × 10−5

32 6.2 × 10−14 9.8 × 10−16 7.1 × 10−10 2.6 × 10−13 2.2 × 10−14 1.4 × 10−6

Example 3 ([32,39]). Consider the following linear boundary value problem:

Dq1 u(x)− Dq2 u(x) = −1− ex−1, x ∈ (0, 1), q1 ∈ (1, 2], q2 ∈ (0, 1],
u(0) = u(1) = 0

(29)

The exact solution of (29) in the case corresponds to q1 = 2 and q2 = 1 is u(x) = x(1 − ex–1).
In Table 2, we compare our results with those obtained in [32,39]. Figure 1 illustrates that the
approximate solutions in the case corresponds to q2 = 2 and for various values of q1 near the value 1,
have similar behavior.
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Table 2. Comparison between TFMM and [32,39] for Example 3.

x [39] [32] TFMM Exact

0.1 0.05934820 0.05934383 0.05934303 0.05934303
0.2 0.05934820 0.11013431 0.11013421 0.11013421
0.3 0.11014318 0.15102443 0.15102441 0.15102441
0.4 0.15103441 0.18047562 0.18047535 0.18047535
0.5 0.19673826 0.19673476 0.19673467 0.19673467
0.6 0.19780653 0.19780804 0.19780797 0.19780797
0.7 0.18142196 0.18142748 0.18142725 0.18142725
0.8 0.14500893 0.14501561 0.14501540 0.14501540
0.9 0.08564186 0.08564683 0.08564632 0.08564632

Example 4 ([32,39]). Consider the following nonlinear boundary value problem:

Dqu(x)− u2(x) = 2π2cos(2πx)− sin4(πx), x ∈ (0, 1), q ∈ (1, 2), (30)

subject to the homogenous boundary conditions:

u(0) = u(1) = 0.

The exact solution of Equation (30) for the case q = 2 is u(x) = sin2(πx) We apply CFMM. Table 3
lists the maximum pointwise error of Equation (30) for the case q = 2 and different values of n. Figure 2
illustrates that the behavior of the approximate solution for values of q near 2 is somehow close to the
behavior of the exact solution.

Table 3. Maximum absolute error of Example 4.

n 3 5 7 9 11 13 15

Error 5.2 × 10−3 2.0 × 10−6 3.4 × 10−8 5.9 × 10−10 4.7 × 10−12 1.6 × 10−14 1.2 × 10−16
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Example 5 ([40]). Consider the fractional Van der Pol equation with fractional damping:

Dα+βu(x) + η(u2(x)− 1)Dαu(x) + u(x) = asin(ωx), x ∈ (0, 1), α + β ≤ 2, (31)

subject to the homogenous initial conditions:

u(0) = u′(0) = 0.
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We solve Equation (31) for the case corresponds to a = 1.31, ω = 0.5. In Table 4, we compare our
results with the numerical solution obtained in [40] and the solution obtained from Mathematica 9 by
applying the fourth-order Runge–Kutta method. In Table 5, we compare our results with the results
obtained in [40] in case with no damping η = 0.

Table 4. Comparison between CFMM and [40] for Example 5 in case α = β = 1, η = 0.1.

x [40] n = 6 [40] n = 15 Runge–Kutta CFMM n = 6 CFMM n = 10

0.1 0.000149 0.000119 0.000109 0.000108 0.000109
0.2 0.001000 0.000894 0.000876 0.000878 0.000876
0.3 0.003113 0.002980 0.002953 0.002958 0.002953
0.4 0.007227 0.007022 0.006987 0.006983 0.006987
0.5 0.013976 0.013647 0.013603 0.013607 0.013603
0.6 0.023709 0.023454 0.023403 0.023405 0.023403
0.7 0.037322 0.037010 0.036952 0.036952 0.036952
0.8 0.055164 0.054838 0.054775 0.054774 0.054775
0.9 0.077783 0.077416 0.077348 0.077347 0.077348

Table 5. Comparison between TFMM and [40] for Example 5.

x 0.1 0.3 0.5 0.7 0.9

[40] n = 120 2.36 × 10−7 8.15 × 10−7 1.54 × 10−6 2.42 × 10−6 3.42 × 10−6

TFMM n = 12 2.57 × 10−10 3.22 × 10−10 5.27 × 10−10 9.58 × 10−10 7.81 × 10−10

Remark 2. The results of Table 5 indicate that the numerical spectral solutions obtained by CFMM are in high
agreement with the solutions of the fourth order Runge-Kutta method, also it is more accurate than the results
obtained in Maleknejad [40] with the same number of retained modes.

Example 6 ([40]). Consider the fractional Rayleigh equation with fractional damping:

u′′ (x) + γ(1− 1
3 (Dαu(x))2)u′(x) + u(x) = 0, x ∈ (0, 1), 0 < α < 2, (32)

subject to the initial conditions:
u(0) = 1, u′(0) = 0.

We solve Equation (32) for the case corresponds to γ = 0.1, 0.5. In Table 6 we give a comparison
between CFMM and the operational matrix method developed in Maleknejad [40] for the case
corresponds to α = 1, γ = 0.1, 0.5.

Remark 3. From the numerical results of Table 6, we conclude that CFMM with fewer number of terms is
compared favorably with the fourth-order Runge-Kutta solution obtained from Mathematica.

Table 6. Comparison between CFMM n = 10 and [40] n = 15 for Example 6.

x
γ = 0.1 γ = 0.5

[40] Runge–Kutta CFMM [40] Runge–Kutta CFMM

0.1 0.994977 0.995021 0.995021 0.995047 0.995086 0.995086
0.2 0.980157 0.980198 0.980198 0.980681 0.980712 0.980712
0.3 0.955739 0.955775 0.955775 0.957446 0.957468 0.957468
0.4 0.922054 0.922085 0.922085 0.925977 0.925992 0.925992
0.5 0.879519 0.879543 0.879543 0.886946 0.886953 0.886953
0.6 0.828629 0.828646 0.828646 0.841048 0.841046 0.841046
0.7 0.769953 0.769962 0.769962 0.788998 0.788988 0.788988
0.8 0.704126 0.704126 0.704126 0.731528 0.731510 0.731510
0.9 0.631845 0.631835 0.631835 0.669382 0.669356 0.669356
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Example 7. Consider the following fractional differential equation:

u(9.5)(x) = exer f (
√

x), x ∈ (0, 1), (33)

subject to the initial conditions:
u(r)(0) = 1, 0 ≤ r ≤ 9,

where, er f (x) = 2√
π

∫ x
0 e−t2

dt.

The exact solution of Equation (33) is u(x) = ex. To illustrate the advantages of our method
if compared with methods which employ orthogonal polynomials, We solve Equation (33) by our
proposed algorithm namely, TFMM, and also by using Legendre spectral tau method (LSTM). Table 7
presents a comparison between the maximum pointwise errors which resulted from the application
of TFMM and LSTM for different values of n. In addition, a comparison between the running times
(in seconds) if the two methods are applied is also displayed in Table 7. The results of this table indicate
the advantages of our method if compared with LSTM. Moreover, they ensure that TFMM is efficient
for higher order fractional differential equations.

Table 7. Comparison between LSTM and TFMM for solving Example 7.

n 14 16 18 20 22 24

LSTM
E 2.3 × 10−4 3.7 × 10−6 6.5 × 10−8 3.8 × 10−10 6.2 × 10−12 9.1 × 10−15

t 37.407 45.781 61.573 70.594 86.247 107.241

TFMM
E 6.5 × 10−5 8.1 × 10−8 9.7 × 10−10 6.2 × 10−12 2.9 × 10−14 3.7 × 10−16

t 28.891 36.212 39.847 48.827 63.952 74.528

Remark 4: From the obtained numerical results in Tables 1–7 and the obtained estimates in Theorems 2 and 3,
we list here the advantages of the current work:

(1) The generation of Fibonacci Polynomials is very easy either from the recurrence relation or from the
direct definition.

(2) The implementation of Fibonacci polynomials is efficient compared to the orthogonal polynomials in
other words. The running time of the “Mathematica” code is very short compared with using the
orthogonal polynomials.

(3) The speed of convergence of Fibonacci polynomials (inverse factorial rate of convergence) is very efficient.
Theorem 2 ensures this result.

7. Conclusions

In this work, two numerical algorithms for solving linear and nonlinear two-term fractional order
differential equations are developed. The basic idea behind the proposed algorithms is based on
constructing a new operational matrix of fractional derivatives of Fibonacci polynomials to reduce
both linear and nonlinear fractional differential equations to systems of linear or nonlinear algebraic
equations which can be solved efficiently. As far as we know, the derived Fibonacci operational matrix
of fractional derivatives is novel and it is the first time to use such matrix in solving fractional-order
differential equations. The tested numerical examples show the high efficiency and performance of the
proposed algorithms.
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