
Article

Wavelet Energy and Wavelet Coherence as EEG
Biomarkers for the Diagnosis of Parkinson’s
Disease-Related Dementia and Alzheimer’s Disease
Dong-Hwa Jeong 1,†, Young-Do Kim 2,†, In-Uk Song 2, Yong-An Chung 3,* and Jaeseung Jeong 1,*

Received: 7 August 2015; Accepted: 18 December 2015; Published: 29 December 2015
Academic Editor: Carlo Cattani

1 Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Korea; donghwa@kaist.ac.kr
2 Department of Neurology, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of

Korea, Incheon 21431, Korea; limbic@catholic.ac.kr (Y.-D.K.); siuy@catholic.ac.kr (I.-U.S.)
3 Department of Radiology, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of

Korea, Incheon 21431, Korea
* Correspondence: yongan@catholic.ac.kr (Y.-A.C.); jsjeong@kaist.ac.kr (J.J.); Tel.: +82-32-280-5243 (Y.-A.C.);

+82-42-350-4319 (J.J.); Fax: +82-32-280-5244 (Y.-A.C.); +82-42-864-5318 (J.J.)
† These authors contributed equally to this work.

Abstract: Parkinson’s disease (PD) and Alzheimer’s disease (AD) can coexist in severely affected;
elderly patients. Since they have different pathological causes and lesions and consequently require
different treatments; it is critical to distinguish PD-related dementia (PD-D) from AD. Conventional
electroencephalograph (EEG) analysis has produced poor results. This study investigated the
possibility of using relative wavelet energy (RWE) and wavelet coherence (WC) analysis to distinguish
between PD-D patients; AD patients and healthy elderly subjects. In EEG signals; we found that
low-frequency wavelet energy increased and high-frequency wavelet energy decreased in PD-D
patients and AD patients relative to healthy subjects. This result suggests that cognitive decline in
both diseases is potentially related to slow EEG activity; which is consistent with previous studies.
More importantly; WC values were lower in AD patients and higher in PD-D patients compared
with healthy subjects. In particular; AD patients exhibited decreased WC primarily in the γ band and
in links related to frontal regions; while PD-D patients exhibited increased WC primarily in the α
and β bands and in temporo-parietal links. Linear discriminant analysis (LDA) of RWE produced a
maximum accuracy of 79.18% for diagnosing PD-D and 81.25% for diagnosing AD. The discriminant
accuracy was 73.40% with 78.78% sensitivity and 69.47% specificity. In distinguishing between the
two diseases; the maximum performance of LDA using WC was 80.19%. We suggest that using a
wavelet approach to evaluate EEG results may facilitate discrimination between PD-D and AD. In
particular; RWE is useful for differentiating individuals with and without dementia and WC is useful
for differentiating between PD-D and AD.

Keywords: wavelet analysis; relative wavelet energy; wavelet coherence; Parkinson-related dementia;
Alzheimer’s disease; EEG

1. Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder that causes motor disabilities including
tremors and cognitive impairment. Patients with progressive PD exhibit several cognitive dysfunctions
that are similar to those found in patients with Alzheimer’s disease (AD). It has been previously
reported that 26% of patients with PD-related dementia (PD-D) exhibit similar symptoms of cognitive
impairment to those observed in patients with AD [1]. Distinguishing PD-D from other forms of
dementia is important because they possess entirely different pathological causes and lesions and
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thus require different treatment strategies. PD is currently diagnosed via medical examination by a
clinical doctor. Typical PD is detected based on clinical signs, but no specific clinical criteria exist for
the differential diagnoses of PD-D and AD [2,3]. Therefore, it is difficult to distinguish between PD-D
and AD using neuropsychological tests, particularly at the early stages of the disease [4]. Mild PD-D is
often misdiagnosed and commonly confused with mild AD [5]. Thus, additional examinations, such
as brain tissue analysis and brain scans, are critically important to increase diagnostic precision. We
previously utilized single-photon emission computed tomography (SPECT) scanning to distinguish
between PD-D and AD; however, this neuroimaging method requires considerable time, cost, and
effort [4,6,7], compared with the electroencephalography (EEG). The EEG is potentially useful for the
early diagnosis of PD-D and AD because the cost, space, and time requirements of this method are
lower than those of other neuroimaging techniques.

PD-D and AD patients often exhibit slow oscillatory brain activity compared with normal subjects.
PD-D patients produce EEG signals with reduced α power and increased amplitudes of θ and δ
powers [8–14]. The EEG patterns produced by AD patients also show slow brain activity, similar to
that observed in PD patients. The combinations of decreased α power and increased δ and θ powers
in AD patients indicates a global “slowing” of background EEG activity [15,16]. In addition, studies of
non-linear properties have mostly reported a loss of complexity and decreased connectivity in EEG
of AD patients [15]. Furthermore, these slowing oscillatory activities are considered to be strongly
correlated with cognitive decline [17–19].

Although numerous studies have compared the EEG patterns produced by PD, PD-D, and
dementia, few studies have compared PD-D patients with those exhibiting other forms of dementia,
such as AD, using advanced EEG techniques because these diseases exhibit similar EEG characteristics
(e.g., slow brain oscillatory activity). A previous study using source localization found that
abnormalities in central δ source and posterior θ and β1 sources in PD-D were more pronounced
relative to AD patients and normal elderly subjects [20]. This study has also shown reduced posterior
cortical sources of α1 rhythms in both PD-D and AD patients, with far greater decreases in α in AD
patients than in PD-D patients. In addition, activity (5.6–7.9 Hz) in posterior derivations has been
observed in patients with dementia with Lewy bodies (DLB) and PD-D, while dominant α bands
have been observed in AD patients [21]. Furthermore, increased relative θ power in the left temporal
region and reduced median frequency have also been reported in AD and PD patients [22]. This result
showed slow EEG patterns in both AD and PD patients although slower patterns in PD compared
with AD were repeatedly reported. Recently, another study investigated quantitative EEG patterns
among AD patients, PD-D patients, PD patients without dementia, and controls [23] and demonstrated
that δ and θ powers were highest in PD-D patients and lowest in controls. This result is consistent
with findings of previous studies (i.e., slow EEG patterns in PD-D and AD patients); however, it was
controversial whether there were significant differences observed in the comparison of PD-D patients
and AD patients, PD-D patients and PD patients, PD-D patients and controls, and AD patients and
controls. Furthermore, after examining inter- and intra-hemispheric coherence, it was found that β
frontal-occipital inter-hemispheric coherence was highest in PD-D patients, while α and β frontal
inter-hemispheric coherence was highest in PD-D patients and lowest in AD patients [23].

To the best of our knowledge, no studies have evaluated the performance of machine learning
techniques in distinguishing between PD-D and AD despite the large number of reports on using such
techniques to diagnose AD. Previous studies attempting to classify PD have primarily focused on
identifying or predicting tremors or other motor symptoms in PD patients using electromyography
(EMG). One group of researchers has reported using β peak frequency, α relative power, and α/θ
power to distinguish between patients with PD-mild cognitive impairment (MCI) and those with
PD-D [24]. However, the use of advanced EEG techniques, including wavelet approaches or machine
learning tools, to differentiate between PD-D and AD patients has not yet been reported.

Thus, the aim of the current study was to investigate the spectral powers and coherences of various
brain regions in PD-D patients, AD patients and healthy elderly subjects using wavelet transform
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(WT), which provides time-frequency information on a signal [25]. Discrete wavelet transform (DWT)
can efficiently decompose non-stationary signals, such as EEG, into sub-frequency bands. Then, the
quantity of information contained within each of these bands can be determined based on relative
wavelet energy (RWE). Since PD-D and AD patients both exhibit slow EEG activity, single-channel
RWE analysis is limited when these two groups are compared. To overcome this limitation, the
wavelet coherence (WC) among the signals in each channel was also calculated. WC can be used to
examine the relationship between two signals by estimating their spectral patterns. Additionally, WC
can provide phase synchrony between and transmit information among different brain regions; as
such WC measurements may help estimate the degree of connectivity among various brain regions
and reveal the spatial patterns of these connections. In the current study, diagnostic machines were
constructed using quadratic discriminant analysis (QDA) after statistical comparisons of RWE and
WC. The diagnostic performance of each machine was examined based on its ability to differentiate
between PD-D patients, AD patients and healthy subjects.

2. Methods

2.1. Subjects and Data Acquisition

Each subject group (PD-D, AD, and control) underwent EEG at the Incheon St. Mary Hospital.
The 26 PD-D patients had an average age of 73.73 years (range, 57 to 86 years), the 26 AD patients had
an average of 74.31 years (range, 55 to 82 years), and the 26 healthy elderly subjects had an average of
71.50 years (range, 59 to 84 years). The control group was composed of patients who had visited the
hospital for headache and did not exhibit any neurophysiological disorders. Cognitive function was
assessed using the Mini-Mental State Examination (MMSE) [26]. Patients with MMSE scores less than
or equal to 20 were diagnosed with dementia. Patients diagnosed with mild cognitive impairment
(MCI) were excluded from the current study. Age, sex, and MMSE distribution did not differ between
the three groups (Table 1).

Table 1. Demographic data and MMSE scores in the PD-D, AD, and control groups. Sex distributions
were compared using the chi-squared test, and age and MMSE were compared using ANOVA.
(The values shown are the mean ˘ standard deviation).

PD-D AD Controls Statistics
(p-Value)

Subjects Number 26 26 26 -
Sex (male) 12 11 11 χ2 = 0.110 (0.946)

Age Mean (yrs) 73.73 ˘ 6.98 74.31 ˘ 6.76 71.50 ˘ 6.01 F = 1.315 (0.275)

MMSE Mean 14.19 ˘ 4.35 14.00 ˘ 4.45 - F = 0.001 (0.974)

The EEG was recorded in the resting state with eyes closed for 20 min with Comet-Plus XLr

Lab-based EEG from Grass Technologies (Middleton, WI, USA). It was sampled with a frequency
of 200 Hz. The outputs of 21 channels based on average reference montage were obtained from 23
electrodes positioned according to the International 10–20 System (Fp1, F7, T3, T5, Fp2, F8, T4, T6, F3,
C3, P3, O1, F4, C4, P4, O2, FZ, CZ, PZ, EKG, Photic).

The first 10 min of noisy data were discarded because the stress test using the light reflex and the
breath-holding test were performed in early measurements. Baseline corrections were applied using
EEGLAB toolbox in MATLAB (R2014b). EEG signals were filtered by 50 Hz low-pass filter to avoid
muscle artifacts and 60 Hz line-noise. Pre-processed data were divided into non-overlapped 2.56-s
epochs (512 points) which is free for noises from subjects’ movement or eye-blink (<100 µV).
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2.2. Wavelet Transform and Wavelet Energy

WT, which can measure the similarity between a target signal and an analyzing function called
wavelet, is one of the most commonly used time-frequency analysis tools for biosignals. WT introduces
appropriate orthonormal series generated by a wavelet [27]. It produces information on frequency
and time by comparing target signals with shifted and stretched/compressed wavelets. It provides
coefficients at various scales and positions, which respectively indicate frequency and time [25]. The
coefficient of continuous wavelet transform (CWT) can be calculated with following equation:

C pa, bq “
ż 8

´8

f ptq
1
?

a
ψ˚

ˆ

t´ b
a

˙

dt (1)

for a scale parameter, a > 0, and position parameter, b, where f ptq is a target signal, ψ is a wavelet, and
ψ˚ is its complex conjugate. The scales are inversely proportional to frequency and can be expressed by:

Fa “
FcFs

a
(2)

where Fc is the center frequency of a wavelet and Fs is the sampling frequency. To decompose the
signal into sub-band, discrete wavelet transform let a wavelet be shifted and scaled by a scale constant
a = 2j and a position constant b = 2jk:

ψj,k ptq “ 2
´

j
2ψ

´

2´jt´ k
¯

(3)

Then, the wavelet expansion of the sampled signal, X ptq “ tx p1q , x p2q , . . . , x pNqu, can be
described as:

X ptq “
jmax
ÿ

j“1

ÿ

k

C pj, kqψj,k ptq (4)

where jmax “ log2N. The coefficients C pj, kq are detail coefficients that contain the information of the
frequency band 2´j´1Fs ă Fj ă 2´jFs, where Fs is the sampling frequency.

In this study, the Daubechies-4 wavelet was selected as a wavelet ψ and decomposed with a level
of 5. Then, 5 detail coefficients and 1 approximate coefficient were obtained. Each detail coefficient
at resolution level j was named Fj and an approximate coefficient was called F6 for the convenience
of explanation. Since the sampling frequency was 200 Hz, the decomposed frequency bands were
divided into F1 (50–100 Hz), F2 (25–50 Hz), F3 (12.5–25 Hz), F4 (6.25–12.5 Hz), F5 (3.125–6.25 Hz), and
F6 (< 3.125 Hz). The F1 band was excluded from the analysis because it was filtered due to muscle
artifacts and power noise during preprocessing. Each decomposed frequency band corresponded to
an EEG frequency band: F2 = γ, F3 = β, F4 = α, F5 = θ, and F6 = δ.

Then, the energy at each resolution level j was calculated using [28]:

Ej “
ÿ

k

|C pj, kq|2 (5)

The energy at each sampled time k was:

E pkq “
jmax
ÿ

j“1

|C pj, kq|2 (6)

and the total energy was:

Etot “

jmax
ÿ

j“1

ÿ

k

|C pj, kq|2 (7)
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The relative wavelet energy (RWE) is obtained for normalization as:

pj “
Ej

Etot
(8)

The RWE value pj, which was normalized energy density calculated with a set of coefficients at
resolution level j, implies containing power in corresponding frequency band. The RWE values except
p1 were statistically compared after they were averaged over epochs to reduce fluctuation effects due
to noises. The RWE values for each channel were calculated in MATLAB, according to the steps above.
To investigate differences in RWE values across various brain regions, EEG channels were subdivided
into the following four groups: frontal (Fp1, Fp2, F3, F4, and FZ), parietal (FZ, C3, C4, CZ, and PZ),
occipital (O1, O2, P3, P4, and PZ), and temporal (F7, F8, T3, T4, T5, and T6) regions. RWE values were
averaged over the channels in each group and then compared between the PD-D patients, AD patients,
and controls.

2.3. Wavelet Coherence

WT and its relative energy measure temporal and spectral patterns of a signal in a single channel.
Since PD-D and AD patients both exhibit slow EEG activity, single-channel analyses are limited
when these two groups are compared. To overcome this limitation, it was necessary to obtain spatial
information from several channels in this study. Coherence has been used to investigate relationships
between two signals by dividing the squared magnitude of the cross-spectral density of two signals by
the product of the power spectral densities:

Cxy p f q “

ˇ

ˇ

ˇ
P2

xy p f q
ˇ

ˇ

ˇ

Pxx p f qPyy p f q
(9)

where f is frequency, and Pxx and Pyy are functions of the power densities for two signals x and y,
respectively [29]. Pxy is a function of the cross spectral density of signal x and y which is obtained by
the product of the Fourier transform of signal x and the complex conjugate of Fourier transform of
signal y. The coherence value exhibits the values ranging from 0 to 1. A higher coherence value near
1 means two signals have highly similar spectral densities. If two signals are exactly the same, the
coherence is equal to one. The coherence for EEG signals, which are non-stationary signals, should be
measured using time-varying spectral analysis, such as WT, rather than non-varying spectral analysis
(i.e., Fourier transform). Then, power densities can be replaced with wavelet energies, and cross
spectral densities can be changed to a wavelet cross spectrum. The wavelet cross spectrum of two
signals x and y is:

Cxy pa, bq “ SpCx pa, bqC˚y pa, bqq (10)

where Cx(a,b) and Cy(a,b) are the wavelet transforms of x and y at scales a and positions b [30]. S
denotes a function of smoothing, and * means complex conjugate. Then, the wavelet coherence of two
signals x and y can be described as:

WCxy pa, bq “
S
´

Cx pa, bqC˚y pa, bq
¯

b

SpCx pa, bq2q
b

SpCy pa, bq2q
(11)

In a similar way to the relative wavelet energy, discrete wavelet transform was used to obtain
the wavelet coherence for boosting calculation speed. Then, discrete wavelet coherence between two
channels was computed as follows:

WCCH1XCH2 pj, kq “
SpCCH1 pj, kqC˚CH2 pj, kqq

b

SpCCH1 pj, kq2q
b

SpCCH2 pj, kq2q
(12)
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at resolution level j and sampled time k. As a consequence, the wavelet coherence could be obtained
from each frequency bands F1 (50–100 Hz), F2 (25–50 Hz, γ), F3 (12.5–25 Hz, β), F4 (6.25–12.5 Hz, α), F5

(3.125–6.25 Hz, θ), and F6 (< 3.125 Hz, δ) by averaging the coherence values at each frequency bands.
F1 band WC results were excluded from analysis because of muscle artifacts and power noise. WC
results in the F5 and F6 bands, which are relevant to the θ and δ frequency bands, were also excluded
because low frequency EEG components are highly influenced by volume conduction effects [31,32].
To investigate volume conduction effects, distance-dependent differences in coherence were examined
using the WC values of the control groups. The mean WC values of anterior-posterior channel pairs
and lateral-medial channel pairs were used for the volume conduction test (Table 2).

Table 2. Channel pairs used for the volume conduction test.

Distance 1 Distance 2 Distance 3 Distance 4

Anterior-Posteior

Fp1-F3 Fp1-C3 Fp1-P3 Fp1-O1
Fp1-F7 Fp1-T3 Fp1-T5 Fp1-O1
O1-P3 O1-C3 O1-F3 O1-Fp1
O1-T5 O1-T3 O1-F7 O1-Fp1
Fp2-F4 Fp2-C4 Fp2-P4 Fp2-O2
Fp2-F8 Fp2-T4 Fp2-T6 Fp2-O2
O2-P4 O2-C4 O2-F4 O2-Fp2
O2-T6 O2-T4 O2-F8 O2-Fp2

Lateral-Medial

F7-F3 F7-FZ F7-F4 F7-F8
T3-C3 T3-CZ T3-C4 T3-T4
T5-P3 T5-PZ T5-P4 T5-T6
F8-F4 F8-CZ F8-F3 F8-F7
T4-C4 T4-CZ T4-C3 T4-T3
T6-P4 T6-CZ T6-P3 T6-T5

2.4. Statistical Analysis

One-way analysis of variance (ANOVA) was used to evaluate the significance of differences in
RWE and WC among the EEGs from the PD-D patients, AD patients, and healthy subjects. Statistical
significance was considered if p-values were lower than 0.05. If a significant difference was found
in the ANOVA test, the Bonferroni correction method was used as a post-hoc test. If three groups
were compared with n hypotheses, the Bonferroni-corrected significance level was 1 ´ 0.05/(3 group
comparisonsˆ n hypothesis). Every result was averaged over whole epochs to minimize the distortion
from noise. Every statistical test was performed in MATLAB.

2.5. Diagnostic Performance with Linear Discriminant Analysis

To quantitatively measure diagnostic performance, RWE and WC values were classified using
linear discriminant analysis (LDA) which is a machine learning technique that separates two or more
classes using a linear surface. The technique assumes that each set of data is normally distributed
and constructs a discriminant model with the means and covariances of the training data of each
class. The test data are classified with the likelihood obtained from prior probability analysis using the
constructed discriminant model. To avoid over-fitting, the discriminability of the RWE and WC values
was calculated using 10-fold cross-validation. The RWE and WC values were randomly partitioned
into 10 subsamples. Accuracy was measured using 9 subsamples as a training set and 1 sample as
a test set; the measurements were repeated 10 times. Following this, the 10 results were averaged
and compared. The total number of candidate features for the RWE was 95 (19 channels ˆ 5 bands),

and the number of candidate features for the WC was 513 (p
19
2
q “ 171 connectivity ˆ 3 bands). To

select an appropriate number of features, the accuracy was calculated based on the number of features
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selected by the Fisher ratio (FR) score in the training dataset. The FR provides a rank of discriminant
capability via the following relationship:

FR “
pm1 ´m2q

2

σ1
2 ` σ22 (13)

where m is the mean of a class and σ is the standard deviation of a class [33].
The diagnostic validity was confirmed with three measurements: sensitivity, specificity, and

performance. Answers that were classified as patients with a diagnosis were called positive, and
answers classified as controls were called negative. Then, true positive was correctly classified as
patients, and false negative was wrongly answered as controls, even though they were actually patients.

Finally, sensitivity and specificity were defined as sensitivity “
TP

TP` FN
and speci f icity “

TN
TN` FP

,

in which TP is the number of true positive, FN is the number of false negatives, TN is the number of true
negatives, and FP is the number of false positives. The performance is calculated as the rate of correctly

classified answers, which sensitivity and specificity is combined: per f ormance “
TP` TN

TP` FN` TN` FP
.

3. Results

3.1. Relative Wavelet Energy

RWE was calculated to describe temporal and spectral dynamics in EEG signals. We found that
the RWE values p2 and p3, which were obtained from the high-frequency bands β and γ, were smaller
in the PD-D and AD groups compared with the control group. In contrast, the RWE value p5, which
was obtained from the low-frequency band θ, was larger in the posterior channel in the PD-D patients
compared with the controls. No statistically significant differences were found among the three groups
in RWE values in the δ and α frequency bands. In the θ frequency band, the RWE values in the PD-D
group were significantly larger than those in the control group in seven channels (FZ, F4, C4, P3, P4,
O1, and O2; Bonferroni correction, p < 0.05). In the β frequency band, the RWE values in the PD-D
and AD groups were smaller than those in the control group in most channels. In channels F4 and
P4, the β energy in the PD-D group was significantly lower than in the controls. In channels Fp1, PZ,
and O2, the β energy in the AD group was significantly lower than in the controls. In channels Fp2,
F3, C3, C4, P3, and O1, the β energy in both the PD-D and AD groups was significantly lower than in
the control group. The group means over all channels also showed significant differences between
the PD-D patients and controls (Bonferroni correction, p < 0.05). In the γ frequency band, in both the
PD-D and AD groups, the RWE values were decreased in channels located in the temporal regions. In
channels T5 and T6, the RWE values in the AD group were smaller than those in the control group. In
channels T3 and P3, both the PD-D and AD groups had smaller RWE values than the control group.

To examine regional difference in RWE values, we subdivided the EEG channels into the following
four groups: frontal (Fp1, Fp2, F3, F4, and FZ), parietal (FZ, C3, C4, CZ, and PZ), occipital (O1, O2, P3,
P4, and PZ), and temporal (F7, F8, T3, T4, T5, and T6). With the exception of the temporal regions, the
PD-D and AD groups both had lower RWE values in the β frequency than the control group (Figure 1).
In the occipital regions, the RWE values in the PD-D group were significantly smaller than those in the
control group (Figure 1c). We also found a trend of decreased RWE values in the δ, θ, and α frequency
bands and increased RWE values in the γ frequency band in the PD-D and AD groups compared to
the controls; however, none of these differences were significant.
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Figure 1. The mean RWE values in different brain regions in the PD-D, AD, and control groups. (a) 
Frontal region (Fp1, Fp2, F3, F4, and Fz); (b) Parietal region (Fz, C3, C4, Cz, and Pz); (c) Occipital 
region (P3, P4, Pz, O1, and O2); (d) Temporal region (F7, F8, T3, T4, T5, and T6). Larger RWE values 
were found in the β frequency band in the PD-D and AD groups relative to the control group in the 
frontal, parietal, and occipital regions (a–c). There were significantly larger decreases in RWE value 
in the θ frequency band in the PD-D group vs. the control group (c). (* denotes a Bonferroni-corrected 
p-value < 0.05.) 

3.2. Wavelet Coherence 

To avoid volume conduction effects, we examined how distance affected the WC results. Control 
group WC values were used for this analysis. Larger WC values were found in lower frequency bands 
(Figure 2); thus, low-frequency components of EEG signals are more influenced by volume 
conduction. In the anterior-posterior comparison, WC values decreased with increasing distance 
(Figure 2a). In the lateral-medial comparison, distance did not appreciably affect WC values and the 
largest values were found between symmetric channels. Because large inter-hemispheric coherence 
was frequently reported, these channel pairs were only weakly influenced by volume conduction. 
We excluded the WC results corresponding to the δ and θ frequency bands and adjacent channel 
pairs from the above examination. 

Overall, we found lower coherence values in AD patients than in PD-D patients and controls 
and higher coherence values in PD-D patients than in controls in a large number of channel pairs. 
Significantly different coherence patterns were found among the subject groups (p < 0.05); these 
patterns were distinctly different at each frequency band. In particular, the PD-D and AD groups 
exhibited differences in the α frequency band (Figure 3a). In the β frequency band, the PD-D patients’ 
WC values were higher than those of the AD patients, and some connections showed significant 
differences between the PD-D patients and the controls (Figure 3b). In most of the connections in the 
α and β bands, the PD-D patients’ WC values were smaller than those of the AD patients. In the γ 
band, the AD patients’ WC values were lower than those of the controls (Figure 3c). 

Figure 1. The mean RWE values in different brain regions in the PD-D, AD, and control groups.
(a) Frontal region (Fp1, Fp2, F3, F4, and Fz); (b) Parietal region (Fz, C3, C4, Cz, and Pz); (c) Occipital
region (P3, P4, Pz, O1, and O2); (d) Temporal region (F7, F8, T3, T4, T5, and T6). Larger RWE values
were found in the β frequency band in the PD-D and AD groups relative to the control group in the
frontal, parietal, and occipital regions (a–c). There were significantly larger decreases in RWE value in
the θ frequency band in the PD-D group vs. the control group (c). (* denotes a Bonferroni-corrected
p-value < 0.05.)

3.2. Wavelet Coherence

To avoid volume conduction effects, we examined how distance affected the WC results. Control
group WC values were used for this analysis. Larger WC values were found in lower frequency bands
(Figure 2); thus, low-frequency components of EEG signals are more influenced by volume conduction.
In the anterior-posterior comparison, WC values decreased with increasing distance (Figure 2a). In
the lateral-medial comparison, distance did not appreciably affect WC values and the largest values
were found between symmetric channels. Because large inter-hemispheric coherence was frequently
reported, these channel pairs were only weakly influenced by volume conduction. We excluded
the WC results corresponding to the δ and θ frequency bands and adjacent channel pairs from the
above examination.

Overall, we found lower coherence values in AD patients than in PD-D patients and controls
and higher coherence values in PD-D patients than in controls in a large number of channel pairs.
Significantly different coherence patterns were found among the subject groups (p < 0.05); these
patterns were distinctly different at each frequency band. In particular, the PD-D and AD groups
exhibited differences in the α frequency band (Figure 3a). In the β frequency band, the PD-D patients’
WC values were higher than those of the AD patients, and some connections showed significant
differences between the PD-D patients and the controls (Figure 3b). In most of the connections in the α
and β bands, the PD-D patients’ WC values were smaller than those of the AD patients. In the γ band,
the AD patients’ WC values were lower than those of the controls (Figure 3c).
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Figure 2. WC values corresponding to between-channel distances. Larger WC values were found in 
lower frequency bands, indicating that low-frequency components of EEG signals were more 
influenced by volume conduction effects. (blue line = δ, red line = θ, yellow line = α, purple line = β, 
green line = γ). (a) In the anterior-posterior comparison, WC values were largest between adjacent 
channel pairs and decreased as channels became more distant; (b) In the lateral-medial comparison, 
the largest WC values were found between symmetric channels; other WC values were similar 
regardless of distance (dist. = distance between channels). 

 

Figure 3. Connections with significant differences between the two patient groups for each band. For 
Bonferroni-corrected p-value < 0.05, the channel pairs were connected with different colored lines to 
indicate channel topography and marked in black on the adjacency matrix (CS: Control subjects, AD: 
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Figure 2. WC values corresponding to between-channel distances. Larger WC values were found in
lower frequency bands, indicating that low-frequency components of EEG signals were more influenced
by volume conduction effects. (blue line = δ, red line = θ, yellow line = α, purple line = β, green line = γ).
(a) In the anterior-posterior comparison, WC values were largest between adjacent channel pairs and
decreased as channels became more distant; (b) In the lateral-medial comparison, the largest WC
values were found between symmetric channels; other WC values were similar regardless of distance
(dist. = distance between channels).
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Figure 3. Connections with significant differences between the two patient groups for each band. For
Bonferroni-corrected p-value < 0.05, the channel pairs were connected with different colored lines to
indicate channel topography and marked in black on the adjacency matrix (CS: Control subjects, AD:
AD patients, PD-D: PD-D patients). (a) In the α band, the connections in the PD-D group had larger
WC values than those in the AD group; (b) In the β band, many of the connections in the PD-D group
had larger WC values than those in the AD and control groups; (c) In the γ band, the AD group had
lower WC values than those of the control groups.

After excluding adjacent channel pairs, connectivity distributions were examined to identify
regional differences among the comparisons of the three groups (PD-D vs. AD, PD-D vs. CS, and
AD vs. CS). Most of the connections that commonly exhibited significant difference among the three
groups were related to temporal channels. However, the connectivity patterns of the increased WC
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values in the PD-D group and the decreased WC values in the AD group were slightly different. Most
connections that had higher WC values in the PD-D group compared to the control and AD groups
(PD-D > CS and PD-D > CS & AD) were temporo-parietal channel pairs. The WC values in the PD-D
group were larger than those in the control group at F8-T6 in the α band, F7-PZ and T5-PZ in the
β band, and T4-C3 and T6-C3 in the γ band. Furthermore, the WC values in the PD-D group were
larger than those in both the controls and AD groups at T3-CZ, T4-C3, T6-C3, and F3-O2 in the β band.
Otherwise, the decreased WC values in the AD group were mostly found in connections with frontal
channels. The WC values in the AD group were smaller than those in both the control and PD-D
groups at F7-T5, Fp2-T3, and F8-T5 in the α band. Relative to the control groups, the AD group had
significantly smaller WC values at Fp1-T4, Fp1-P4, F7-T6, F7-P4, F7-FZ, Fp2-P4, Fp2-Cz, and F8-O1.

To evaluate the different connectivity pattern, we compared the mean WCs of separated channels.
The following non-adjacent channels were selected for analysis: Fp1 and Fp2 in the frontal region,
T3 and T4 in the temporal region, O1 and O2 in the occipital region, and CZ in the parietal region.
Thus, fronto-temporal channel pairs, fronto-occipital channel pairs, fronto-parietal channel pairs,
temporo-parietal channel pairs, tempo-occipital channel pairs, and occipito-parietal channel pairs
were compared among the three patients groups after averaging their WC values (e.g., the WC values
of FP1-T3 and FP2-T4 were averaged for the fronto-temporal comparison.). The mean WC values in
the AD group were lower in the fronto-temporal connection in the α and β bands than those in the
PD-D and AD groups. The mean WC values in the PD-D group were lower in the temporo-parietal
connections in the β and γ bands than those in the AD and control group (Table 3).

Table 3. Comparison of PD-D, AD, and CS group EEGs with links between different regions. Channels
were selected for separation to minimize the volume conduction effect. The mean WC values in the
frontal region (Fp1, Fp2), temporal region (T3, T4), occipital region (O1, O2), and parietal region (CZ)
were compared. (p-values lower than 0.05 were indicated in the bold type and *; * <0.05, ** <0.01,
*** <0.001).

PD-D AD CS ANOVA
F

ANOVA
p-Value

PD-D vs.
AD

PD-D vs.
CS

AD vs.
CS

Fronto-
Temporal

α 0.4482 0.3447 0.4228 8.22 0.0006 *** 0.0006 *** 1 0.0132 *

β 0.3834 0.2864 0.3678 6.38 0.0028 ** 0.0041 ** 1 0.0201 *

γ 0.3263 0.2613 0.3203 3.47 0.0362 * 0.059 1 0.1015

Fronto-
Occipital

α 0.2702 0.2574 0.2285 1.87 >0.05 - - -

β 0.2393 0.2116 0.2014 1.23 >0.05 - - -

γ 0.2290 0.2014 0.2015 0.91 >0.05 - - -

Fronto-
Parietal

α 0.2579 0.2557 0.2450 0.27 >0.05 - - -

β 0.2350 0.2051 0.2206 1.17 >0.05 - - -

γ 0.2046 0.1557 0.2170 3.20 0.0466 * 0.1804 1 0.0580

Temporo-
Occipital

α 0.3302 0.3183 0.2601 1.21 >0.05 - - -

β 0.2838 0.2718 0.2190 1.25 >0.05 - - -

γ 0.2712 0.2574 0.2027 1.50 >0.05 - - -

Temporo-
Parietal

α 0.2349 0.1884 0.2023 3.04 0.0537 0.0563 0.2874 1

β 0.2165 0.1528 0.1671 8.55 0.0005 *** 0.0005 *** 0.0093 ** 1

γ 0.2008 0.1605 0.1576 4.78 0.0111 * 0.0358 * 0.0214 * 1

Occipito-
Parietal

α 0.4071 0.3169 0.4254 1.44 >0.05 - - -

β 0.4005 0.3020 0.4102 1.64 >0.05 - - -

γ 0.3864 0.3241 0.4229 1.38 >0.05 - - -
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3.3. Diagnostic Performance with Linear Discriminant Analysis

LDA was used to classify the EEGs of the three subject groups. A 10-fold cross-validation test was
performed to avoid over-fitting. First, the three groups were classified using RWE values. As observed
in Section 3.1, RWE significantly differed between the PD-D/AD and control groups. It is important to
select an adequate number of features to reduce computational cost and avoid over-fitting. Features
were selected based on the ranking obtained from the FR, which has discriminant ability; for higher
FR thresholds, fewer features were selected. Applying LDA model to the RWE values accurately
separated the PD-D and AD groups from the normal controls (Figure 4a). The maximum accuracy
when comparing the PD-D and CS groups was obtained was obtained when 93 out of 95 features
were used; this value was 79.18% with 81.84% sensitivity and 76.49% specificity. The maximum
accuracy when comparing the AD and CS groups was obtained when all features were used; this
value was 81.25% with 82.25% sensitivity and 80.35% specificity. There was slightly lower accuracy in
differentiating between the PD-D and AD groups than in the other comparisons. The optimal total
performance was 74.30%, with specificity 69.47% and 78.78% sensitivity. In this case, the sensitivity was
based on the rate of correctly classified PD-D data, and the specificity was based on the rate of correctly
classified AD data. LDA of the WC values produced similar results among the three comparisons
(Figure 4b). When the same number of features was used, the total performance and sensitivity had
slightly higher values in the comparisons of the PD-D vs. AD groups than in the other comparisons,
and there was slightly greater in the comparison of the AD vs. CS groups than in the other comparisons.
The optimal performance in the comparison of the PD-D vs. AD groups was 80.19% when 483 features
out of 513 features were used, with 80.83% sensitivity and 79.50% specificity. The optimal performance
in the comparison of the PD vs. CS groups was 79.16 % when all features were used, with 78.83%
sensitivity and 79.50% specificity. The optimal performance in the comparison of the AD vs. CS groups
was 78.69% when all features were used, with 76.09% sensitivity and 81.09% specificity. When only 95
WC values were used, there was less accuracy than that produced when using the RWE values (73.35%
for PD-D vs. AD, 71.11% for PD-D vs. CS, and 71.94% for AD vs. CS; Figure 4c).
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4. Discussion

The current study has investigated energy distributions across EEG frequencies in PD-D patients,
AD patients, and age-matched healthy subjects. When calculating the RWE via discrete wavelet
transform, smaller values were found in PD-D and AD patients vs. controls; this difference indicates
slowed oscillatory activity due to cognitive decline. The WC between multiple channel pairs at each
band showed decreased connectivity in the AD patients and increased connectivity in the PD-D
patients compared with the healthy controls. In particular, in the AD patients, lower WC was primarily
observed in the links related to the frontal lobes in the γ band; conversely, in the PD-D patients,
higher WC was primarily observed in the temporo-parietal links in the α and β bands. The lower
WC in the AD patients might have resulted from a collapse of functional connectivity, particularly in
frontal regions.

Decreased β and γ frequency energy and increased θ frequency energy was observed in the
PD-D and AD patients, indicating these patients underwent a slowing of brain oscillatory activity,
which is consistent with previous reports [8–16]. Slow EEG activity implies that neural activity in the
information processing of the brain has become less complex and thus simpler dynamics exist in brains
cognitively impaired by dementia. In a longitudinal study that utilized magnetoencephalography
(MEG), peak frequency decreased as time progressed, while θ power increased, and α1 and α2 powers
decreased [10]. The referenced study indirectly revealed that slowed brain activity correlates with
cognitive decline by longitudinally examining initially non-demented PD patients. Follow-up studies
reported that the subjects possessing low background rhythm frequency (grand median < 8.5 Hz)
were at much higher risk of developing dementia than the subjects with high background rhythm
frequency [14]. The above studies suggest that slow oscillatory activity is associated with cognitive
decline. In another study of EEG patterns in PD-D patients, PD-MCI patients, and control subjects, a
significant correlation between short grant total EEG (GTE) score and cognitive decline was found [11].

In the current study, similar slow EEG oscillations were exhibited in both patient groups when
comparing RWE values. In particular, in most channels, significantly decreased β energy was found in
both the PD-D and AD groups. The total mean over all channels also showed significant differences
(Bonferroni-corrected p < 0.05). The group means of the frontal, parietal, and occipital regions were
significantly smaller in the PD-D and AD groups than in the control group, as was the mean in the β
frequency band (Figure 1). In addition, significantly higher θ energy was found in posterior channels
in the PD-D group compared with the control group. The group means in the occipital region (P3,
P4, PZ, O1 and O2) were significantly smaller in the PD-D group than in the control group, but there
were no significant differences between the AD and CS groups (Figure 1). In the PD-D patients, the
highly decreased RWE values in the posterior channels can be associated with hypoperfusion in the
occipital lobes and cerebellum [7]. Occipital hypofunction may be associated with abnormal saccadic
eye movements or hemispatial neglect, both of which frequently occur in PD-D patients [34–36]. Few
studies have compared AD and PD patients. As described above, the EEG patterns produced by both
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diseases show similar slow oscillatory activity. Several studies have reported differences in central
and posterior spectral power between PD-D and AD patients. The dominant frequency power in
the α band was slightly lower in the posterior electrodes in DLB and PD-D patients compared with
AD patients [21]. Source analysis using LORETA showed that the PD-D group had abnormal central
δ sources and posterior θ and β sources compared with the AD and control groups [20]. In these
regions, the PD-D patients exhibited increased δ and θ power and decreased β power, which indicates
slow EEG activity. When comparing AD patients, PD-D patients, PD patients without dementia, and
controls, the highest δ and θ powers were observed in the PD-D patients and the lowest δ and θ powers
were found in the controls (PD-D > AD > PD > CG) [22]. Similar patterns of highest δ energy and
lowest α, β and γ energy in PD-D patients were observed in the current study. However, there was no
significant difference in discriminant ability between the PD-D and AD groups.

WC was measured to investigate functional connectivity in the brains of PD-D and AD patients.
To avoid the volume conduction effect, we excluded the WC results corresponding to the δ and θ
frequency bands (Figure 2) [31,32]. When performing an EEG, decreased coherence reflects reduced
functional connections between the brain regions lying underneath the electrodes. Decreased WC was
observed in the AD patients, and increased WC was observed in the PD-D patients in most channel
pairs at most frequency bands (Figure 3). In particular, in the AD patients, decreased WC was primarily
observed in the frontal region in the γ band. In the PD patients increased WC was primarily observed
in the temporo-parietal links in the α and β bands. Previous studies on AD patients have shown
decreased coherence in the α and β bands in both close and distant channel pairs. Decreased coherence
might be associated with cognitive impairment [15,37,38]. This weakened connectivity is likely the
result of disconnection of synaptic coupling due to the loss of acetylcholine, a neurotransmitter in the
brain [39]. A significant decrease in WC was found in AD patients at temporocentral regions in the δ
band and at parietal-central regions in the θ and α bands [40]. Mutual information analysis also showed
that connections between the frontal and antero-temporal regions are weaker in AD patients [41].
Recent coherence studies using complex network analysis also support collapsed connectivity in the θ
and α frequency bands [42,43]. Interestingly, in contrast to the decreased connectivity observed in AD
patients, coherence increased in the θ, high β, and γ frequency bands in PD patients [44,45]. In the MEG
study, low-α coherence (8–10 Hz) increased in the early stages of PD, while θ, high α, and β coherence
increased in patients with severe PD [46]. In comparing coherence among AD patients, PD-D patients,
PD patients without dementia, and controls, β frontal-occipital inter-hemispheric coherence and α and
β frontal inter-hemispheric coherence were found to be increased in PD-D patients and decreased in
AD patients [23]. The increased coherence in PD patients suggests that abnormal synchronization in
basal ganglia output and thalamo-cortical coherence occur in PD [47,48]. Similar patterns of decreased
coherence in AD patients and increased coherence in PD-D patients were observed in the current study.
In particular, decreased WC was primarily found in the γ band, while increased WC was primarily
found in the α and β bands (Figure 3). In addition, in AD patients, decreased WC was primarily
observed in links related to frontal region; in PD-D patients, increased WC was primarily observed in
temporo-parietal links. To examine connectivity patterns, the mean WC values of different regions
were compared (Table 3). To minimize contamination from the volume conduction effect, the following
representative non-adjacent channels in each region were selected: Fp1 and Fp2 in the frontal region,
T3 and T4 in the temporal region, O1 and O2 in the occipital region, and CZ in the parietal region.
Then, the fronto-temporal channel pairs, fronto-occipital channel pairs, fronto-parietal channel pairs,
temporo-parietal channel pairs, tempo-occipital channel pairs, and occipito-parietal channel pairs
were compared across all three groups. The mean WC values in the AD patients were lower in the
fronto-temporal connection in the α and β bands than those in the PD-D and control groups. In the
temporo-parietal connection in the β and γ bands, the mean WC values in the PD-D group were larger
than those in the AD and control groups. The lower WC in the AD patients might imply that the
neuronal path related to the frontal lobes is functionally broken in these patients either due to a loss of
neurotransmitters or from other causes [15,39]. Because higher WC was found in temporo-parietal
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channel pairs in the PD-D group, this abnormal synchrony might result from impairment of the
sensorimotor cortex. Abnormal synchrony might cause motor symptoms such as tremors [36,49].
Several studies have reported that high WC might result from synchrony of thalamo-cortical oscillatory
activity due to the deterioration of the substantia nigra in PD patients [45,46].

The discriminant abilities of RWE and WC among the PD-D patients, AD patients, and controls
were evaluated using LDA. RWE measurement, which is similar concept to spectral density estimation
using fast Fourier transform, is a good method of differentiating dementia patients, including those
with PD-D and AD, from normal subjects because dementia patients have slower EEG activity than
normal subjects. However, RWE values alone are not sufficient to differentiate between PD-D and
AD. Alternatively, WC, which was increased in PD-D patients and decreased in AD patients, is a good
candidate for distinguishing the two diseases. The performances of PD-D patients vs. control and AD
patients vs. controls in this study were relatively lower than in previous studies, which have shown
100% accuracy (AD vs. controls) using probabilistic neural networks [50]; 97% (AD vs. controls), 93.6%
(AD-MCI vs. controls), and 97% (AD vs. AD-MCI) accuracy using coherence networks [51], and 80%
(PD vs. PD-MCI) using β peak frequency, α relative power, and α/θ power [24]. However, it should
be noted that no previous studies have distinguished between EEG of AD patients and PD-D patients
as well as between EEG of PD patients and elderly healthy subjects. Because the prognoses and
treatments for AD and PD-D are completely different, differentiation between the two diseases, which
was the aim of this study, is clinically required. Severe PD usually accompanies dementia symptoms,
which can be subdivided into PD-D, diffuse DLB, and PD with AD. To date, differentiating between
these diseases has been a controversial undertaking [3,52]. In addition, there are many common motor
symptoms between PD patients and AD patient as the latter begin to deteriorate [53]. Therefore, it is
difficult to distinguish between PD-D and AD in hospitalized patients with advanced disease based
on clinical signs alone. Analyzing differences in EEG coherences, which we found to be decreased in
AD patients and increased in PD-D patients, may help in this differentiation.

In the current study, the discriminant abilities of the different measurements used were not as
robust as those in other studies. This limitation may potentially be an artifact of the data because our
previous studies using the same measurement with the current dataset also showed fewer significant
differences than those in other reports. We speculate that improved methods of analysis and consistent
data collection may solve this problem. Although the smaller RWE values in the PD-D and AD groups,
smaller WC values in the AD group, the larger WC in the PD-D group were statistically significant
and could be used for classification, there is a potential risk of over-fitting because the training subjects
and test subjects were equal. It is difficult to identify a global standard with exact parameters owing to
the subject individuality of EEG results. In the future, complex network analysis and the application of
advanced machine learning techniques, such as neural networks, should be applied to improve the
performance of the classification. Additionally, different types of PD, including PD-MCI and PD-D,
should be examined after collecting sufficient samples in each dataset.
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