
Article

Information-Theoretic Neuro-Correlates
Boost Evolution of Cognitive Systems

Jory Schossau 1,2,*, Christoph Adami 2,3 and Arend Hintze 1,3,4

Received: 1 July 2015; Accepted: 22 December 2015; Published: 25 December 2015
Academic Editors: Christoph Salge, Georg Martius, Keyan Ghazi-Zahedi and Daniel Polani

1 Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824,
USA; jory@msu.edu

2 BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824,
USA

3 Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI 48824,
USA; adami@msu.edu

4 Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA;
hintze@msu.edu

* Correspondence: jory@msu.edu; Tel.: +1-517-884-5068

Abstract: Genetic Algorithms (GA) are a powerful set of tools for search and optimization that
mimic the process of natural selection, and have been used successfully in a wide variety of
problems, including evolving neural networks to solve cognitive tasks. Despite their success,
GAs sometimes fail to locate the highest peaks of the fitness landscape, in particular if the
landscape is rugged and contains multiple peaks. Reaching distant and higher peaks is difficult
because valleys need to be crossed, in a process that (at least temporarily) runs against the
fitness maximization objective. Here we propose and test a number of information-theoretic
(as well as network-based) measures that can be used in conjunction with a fitness maximization
objective (so-called “neuro-correlates”) to evolve neural controllers for two widely different tasks:
a behavioral task that requires information integration, and a cognitive task that requires memory
and logic. We find that judiciously chosen neuro-correlates can significantly aid GAs to find
the highest peaks.
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1. Introduction

The last 50 years of research in Artificial Intelligence have taught us many things, but perhaps
the most obvious lesson is that designing complex cognitive systems is extremely hard.
Notwithstanding the success of chess-playing algorithms and self-driving cars, designing a brain that
rivals the performance of even the smallest vertebrate has proven elusive. While the computational
algorithms that are being deployed today on the aforementioned problems, (as well as on image
classification via convolutional nets) are impressive, many researchers are convinced that none of
these algorithms are cognitive in the sense that they display situational understanding. For example,
the celebrated convolutional nets can easily be fooled [1] with trivial imagery, suggesting that they
implement a sophisticated look-up table after all, with very little understanding.

The failure of the design approach has been acknowledged by several groups of researchers that
have chosen an entirely different approach, namely to use the power of evolution to create machine
intelligence. This field of “neuro-evolution” [2,3] is much less developed than the standard design
approach, but it has made great strides in the last decade. It also has the advantage (compared to
the design approach) that the approach is known to have resulted in human-level intelligence at least
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once. In the field of neuro-evolution, a Genetic Algorithm (GA) [4] is used to evolve a program that,
when executed, builds a “neuro-controller”. This neuro-controller constitutes the brain of a simulated
entity, which is called an agent or animat.

Each program is evaluated via the performance of the agent, and programs that gave rise
to successful brains are then replicated, and given proportionally more off-spring programs than
unsuccessful programs. Because mutations are introduced in the replication phase, new types of
programs are introduced every generation, trying out variations of the programs—and therefore
variations of the brains. This algorithm, closely modeled on the Darwinian process that has given
rise to all the biocomplexity on the planet today, has proven to be a powerful tool that can create
neuro-controllers for a diverse set of tasks.

Using evolution to create brains is no panacea, though. The use of Genetic Algorithms to
optimize performance (fitness) of behavior controllers is often hindered by the structure of complex
fitness landscapes, which are typically rugged and contain multiple peaks. The GA, via its fitness
maximization objective, will discover local peaks but may get stuck at sub-optimal peaks because
crossing valleys is specifically not an objective. For a population to overcome the valleys in such
a rugged landscape, programs must (at least temporarily) acquire deleterious mutations that are
at odds with a simple reward system for optimization. This difficulty is typically overcome by
increasing diversity in the population [5], by splitting the population into islands [6,7], by using
alternative objectives such as in novelty search [8], or by changing (and thus optimizing) the fitness
function itself. Of these solutions, “Diversity” and “Novelty” can be computationally intensive, while
fitness function optimization is very specific to every problem, and thus not a general solution.

Here we propose an alternative approach to fitness optimization in the evolution of cognitive
controllers, which takes advantage of the insight that functioning brains have a certain number of
characteristics that are a reflection of their network structure, as well as their information-processing
capacity. If we were able to reward these features at the same time as rewarding the performance
of the given task, it may be possible to evade the valleys of the landscape, and move on neutral
ridges towards higher peaks. The idea of using multiple objectives in Genetic Algorithms is not at all
new [9], and it has been used previously in neuro-evolution [10].

We present evidence from simulations of evolving virtual agents that establishes that it is
possible to improve the performance of a GA, increase the rate of adaptation, and improve the
performance of the final evolved solution, all by incorporating neuro-correlates of the evolving agent’s
brains into the fitness calculation. These neuro-correlates are metrics inspired by the interface
between Network Science and Cognitive Science that attempt to measure “how well a brain is working”,
independently of the achieved fitness. These measures typically do not assess an agent’s performance
of a task because it is often difficult to relate task performance to cognitive ability. Ideally, these
neuro-correlates either quantify the mode and manner that information is being processed, or in
which manner the nodes of the network are connected. It is important that these neuro-correlates are
agnostic of performance, as otherwise their reward would not open a new dimension in optimization.

The evaluation of an agent in any GA typically involves measuring the agent’s performance
for a given task or environment. We show that multiplying the performance of an agent with the
value of its neuro-correlate will improve the speed of evolution and increase the ratio of evolved
agents that perform perfectly (this is a simple way of performing multi-objective optimization, see
for example [11]). Any observed improvement can be traced back to an increase in the number of
potentially beneficial mutations that may persist or sweep the population. If a mutation increases
cognitive ability but does not yet have an effect on the agent’s performance, then it is evolutionarily
neutral and can be lost by drift. However, if the neuro-correlate shows an increase that is neutral
with respect to performance, but improves cognition in some other form (and therefore increases
a neuro-correlate), then such a mutation is no longer neutral and is instead selected. In future
generations, such an improvement might become beneficial for task performance. Therefore, using
neuro-correlates in conjunction with performance allows these otherwise neutral mutations to stay in
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the population for longer or even promote them to fixation. Subsequent mutations then have a chance
to take advantage of these changes that otherwise would have been lost to drift.

2. Background

We evolve agents to solve two very different tasks: a temporal-spatial integration task
(active categorical perception, see [12–15]) using embodied agents, and a purely mathematical
(disembodied) task that requires complex cognitive processing: the generation of random numbers
using deterministic rules. The temporal-spatial integration task requires agents to observe and
categorize blocks of different sizes falling toward them, by catching small blocks while avoiding large
blocks. This task cannot be solved by a purely reactive machine (see [15]) because agents must use
memory in order to recognize the block’s trajectory and predict where it will land. The task creates
a fitness landscape known to be deceptive, as prior results have shown that only a small fraction
(about 10%) of populations result in an optimal solution. The sub-optimal agents usually get stuck
on local peaks that deliver about 80% of maximal fitness [15].

In the second set of experiments we investigate a task where agents are rewarded for generating
long sequences of random numbers (without access to a random number generator or any other
stochastic source). Agents are given an oscillating bit as an indicator of time, and assigned fitness
based on the length of the dictionary generated from a Lempel–Ziv compression [16] of the agent’s
output. Like the previous task, this task cannot be solved by a purely reactive machine, although
would be trivially solved if the agents could access stochastic processes. However, because the agents
use only deterministic processes we expect this task to require a great amount of temporal integration
and memory in order for them to achieve a good amount of randomness. Indeed, generating random
numbers is a known task to test cognitive ability and disability, in particular in the realm of Autism
Spectrum Disorders and dementia [17–19].

The standard substrate for neuro-evolution are Artificial Neural Networks (ANNs, see e.g., [20]),
but we use here a different substrate (“Markov networks” or “Markov Brains”) that has proven to
be adept at behavioral decision-making tasks [21–28]. In contrast to ANNs in which neurons are
continuous-valued and non-firing, neurons in Markov brains (MBs) are digital with only two states:
quiescent or firing. Markov neurons can interact with any other neuron via arbitrary logical functions
(as opposed to the ubiquitous transfer- and activation-function found in ANNs). We use MBs because
we have experienced that they are computationally more powerful and more evolvable, while having
a much smaller computational footprint than ANNs. ANNs on the other hand have a wide range of
applications, and our results might generalize to those applications as well.

The logic functions that connect neurons, along with the topology of the network, are encoded
directly by a string of bytes. The logic gates act on Markov variables (our equivalent of a neuron), and
the output is written into other Markov variables. In a sense, the MB is defined by the edges between
nodes, as it is the edges which carry all the computational power. Each gate is specified by a gene, and
the beginning of each gene on the chromosome is specified by a particular combination of bytes–in our
case, the “start codon” (42,213). The bytes that follow determine the identity of the neurons it reads
from, and the identifier of the neuron(s) it writes to. The subsequent bytes encode the logic of the
gate, which can be done by simply encoding the truth table. While other MB implementations allow
for stochastic logic gates, here we confine ourselves to deterministic gates, which have a much more
concise encoding (see Refs. [15,22,24] for a more detailed description of MB encoding and function).

There are alternative neural substrates that we could have studied here, including NEAT or
hyperNEAT [29], genetic programming, or subsumption architecture machines [30], etc. These are all
viable substrates for exploring the benefits of neuro-correlate-aided evolution. In this contribution
we focus on testing the general validity of the neuro-correlate augmented evolution approach. We do
expect the results to depend on the underlying neural substrates, their evolvability, and how well each
neuro-correlate can be assessed. In addition, our proposed method is easy to implement for other
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systems: a neuro-correlate must be measured and the resulting value multiplied by the associated
performance. This should allow for a rapid testing of this method in other systems.

Despite evidence that an indirect encoding might be more advantageous [31–33], the direct
encoding has been very successful in evolving controllers for virtual agents to solve a wide range
of tasks [15,21,22,24,34,35]. In addition, these controllers have been instrumental in establishing
some of the neuro-correlates used in the present study, which increases our confidence that these
measures perform as described. Next we describe the eight different neuro-correlates used to assess
a controller’s topology and performance.

2.1. Network-Theoretic Neuro-Correlates

2.1.1. Minimum-Description-Length

The simplest neuro-correlate is, colloquially speaking, the largest possible brain size. It is difficult
to define such a concept mathematically, but we can imagine that if we had a description of the brain
in terms of the program that builds it, then the shortest such program would be the most concise
description of the brain in a Minimum Description Length (MDL) formalism, and larger MDLs could
encode larger brains. The size of the genome that codes for our Markov brains could serve as a proxy
for the brain MDL, but it is almost never the smallest description of the brain simply because the
genome can add more “empty tape” instead of running out of space to encode more logic gates, for
example using a gene duplication. Using the genome size (as proxy for MDL) as a neuro-correlate
makes sense because it explicitly rewards genome expansion, rather than waiting for a fortuitous
genome duplication to add the extra space. The genome size is directly proportional to the potential
number of logic gates and thus the number of connections the agent phenotype might have, since
the genome encodes the logic gates directly. Of course, under such a selective pressure genome
length is almost guaranteed to be very different from the compression limit (the smallest program
encoding the brain), but we can think of evolution as creating a selective pressure to compress the
brain description as much as possible.

In our implementation of Markov Brains the genome size varies between 2000 and 20, 000 loci
(each locus on the genome is a byte, so it can take values between 0 and 255) and can be affected
by insertion- and deletion-mutations. We do not use the number of encoded logic gates to directly
assess brain size for two reasons: First, each gate can have a different number of inputs and outputs,
which influences the complexity of the gate. Second, gene duplications can create exact copies of
a gene that codes for a gate, which changes the number of gates without (presumably) affecting
the brain’s function.

Because the connectivity of standard ANNs is fixed [20], an MDL-like neuro-correlate does not
exist there, but the Vapnik–Chervonenkis (VC)-dimension [36] that bounds the learning capacity of a
network could be a suitable alternative. Within more plastic systems ANNs that allow for encoding of
connections such as NEAT [29], the number of edges between neurons could be a proxy for potential
brain size.

2.1.2. Topological Complexity

Brains are networks of neurons, and our MBs are networks of logic gates, both of which
can be represented by graphs. Assessing the complexity of graphs is not a straight-forward task
(see, e.g., [37]), but for the purpose of brain function some graph properties are obvious
neuro-correlate candidates, and easy to measure. We first measure the graph diameter (GD) as the
highest value in the distance matrix of the network—also known as the longest of all shortest paths
between all node pairs. The intuition behind using GD as a neuro-correlate is that information
traveling along neurological pathways in brains with a large diameter has more time to interact with
other neurons, in particular in other parts of the brain. If information takes longer to pass from sensors
to actuators, it remains within the brain longer and therefore extends the agent’s short-term memory.
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2.1.3. Connectivity and Sparseness

We measure the standard graph theoretic “Gamma Index” (GI) or “connectivity” of the network
as well as its converse, the network “sparseness”. The Gamma Index is the ratio of extant connections
to all possible connections. For this measure multiple connections between nodes are treated like
a single connection, otherwise there would be an infinite number of possible connections between all
nodes of the network.

Current understanding of brain optimization and organization suggests that connections
between neurons are costly [38,39] and that this provides a strong selection pressure during evolution.
Specifically, it has been shown that minimizing connections between neurons in a brain produces
more modular and adaptable brains [10,40]. As we will see, this is not necessarily the case but
depends on the task to be solved. Also, intuitively one might think that more connections are better,
and thus optimizing for density might be as beneficial as optimizing for sparseness under the right
circumstances. To incorporate this phenomenon, we use Sparseness and Gamma Index separately, as
they reflect different aspects of brain connectivity.

2.1.4. Representations

R, a measure for the amount of information that a brain represents within internal states, is
a new information-theoretical measure of cognitive function that correlates with fitness [15,34], but
is in principle separate from an agent’s performance on a task. R measures how much an agent knows
about its environment above and beyond its current sensory information. Representations can be thought of
as internal models of the world that the agent can use to make decisions in conjunction with sensory
signals, or even in the absence of sensory signals. Because of this, R is often identified with “what a
brain knows about its world with eyes closed”. We can define R as the information the mental states
(described by a random variable M) of an agent have about the environment (described by random
variable E), given its sensors (variable S) [15]

R = I(E : M|S) = I(E : M)− I(E : M : S) = I − I(S : E)− I(S : M) . (1)

Here, I is “multi-information”: the amount of information variables share [41], which for three
variables becomes

I = H(E) + H(M) + H(S)− H(E, M, S) , (2)

where H(X) is the Shannon entropy of the random variable X. In Equation (1), I(E : M|S) is
the shared information between variables E and M given the sensor state S, I(E : M) is the
(unconditional) shared information between environment and brain internal states not including
sensors, and I(E : M : S) is the shared information between all three variables (a quantity that
may become negative). The measure R thus quantifies the correlation of mental states with world
states, while subtracting the correlations coming from the sensors. This notion is not well-defined
when using the correlation function, but it is when using information theory. R increases in evolving
agents when their tasks require knowledge or internal models about the environment [15]. Agents
without representations, or which are purely reactive agents, remain below optimal performance.
Measuring these representations is simple as long as sensor, brain, and environmental states are
directly observable (as they are here) causing only a small computational overhead.

It is important to note that R is not necessarily correlated with fitness. For instance, an agent
might have representations about an incoming threat, but may not respond. Else, an agent may make
decisions based solely on sensorial input, obtaining high fitness without representations. Therefore,
representations do not necessarily make a prediction about an agent’s performance, even though
they are usually correlated. In addition, R is not strictly speaking a neuro-correlate since it cannot be
measured intrinsically (that is, using only variables internal to the brain). It is crucial that the correlate
used does not allow predictions about performance, because otherwise the correlate in itself would
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be a proxy for fitness, and therefore optimizing a combination would not introduce a new element.
R satisfies this condition so we include this measure.

2.1.5. Information Integration

Agents solving a cognitively complex task must integrate information from different sensory
inputs to come to a single decision. Sensory inputs must be compared to one another in the light
of past experiences. The information-theoretic measure Φ is one way of quantifying a brain’s
information-integration capability [21,22,42–44]. Unfortunately, computing Φ is computationally
extremely intensive, so much so that it is cumbersome on modern high-performance computers
to calculate Φ exactly for brains of 16 neurons (for every agent at every update of an evolving
population), and essentially infeasible for brains with more than 24 neurons. For example, because
the computational complexity of Φ scales super-exponentially, calculating Φ for the brain of the lowly
nematode C. elegans with 302 neurons requires evaluating ∼ 4.8× 10457 partitions of the network, an
absurd task.

Here we use the much more practical Φatomic which is a very good approximation of Φ at a much
reduced computational cost [22] (Φatomic has also been defined as “synergistic information” [45,46]).
Specifically, Φatomic is given by the integrated information, but calculated for one specific
(the “atomic”) partition of the network, while the standard Φ optimizes over partitions. The atomic
partition is the one where each node is its own part, that is, the atomic partition segments the network
into all nodes individually.

To define Φatomic, we first define the information that is processed (in time) by the entire system.
Let us define the network’s state using the joint random variable X = X(1)X(2) . . . X(n), where X(i)

represents the elements (nodes) of the system, and X changes as time (t) progresses. Each variable Xt

is defined by a probability distribution p(xt) to find variable Xt in state xt. Each node i progresses in
time X(i)

0 → X(i)
1 and each X(i)

t is described by probability distribution p(xi
j).

The information processed by the system from time step t to t + 1 is then given by

I(Xt : Xt+1) = ∑
xt ,xt+1

p(xt, xt+1)log
p(xt, xt+1)

p(xt)p(xt+1)
. (3)

The measure Φatomic then quantifies how much of the information processed by the system
cannot be explained by the sum of the information processed by each individual computational unit.
Thus, in a sense Φatomic quantifies how much processing is “more than the sum of its parts”, where
the parts are defined by the individual neurons:

Φatomic = I(Xt : Xt+1)−
n

∑
i=0

I(X(i)
t : X(i)

t+1) + I . (4)

Here, I(X(i)
t : X(i)

t+1) is the information processed by the ith neuron, and I (called “integration”
or “multi-information” in other work) measures the nonindependence between the network
variables [41,47–50] and is defined as

I =
n

∑
i=0

H(X(i)
t )− H(Xt), (5)

and H(Xt) = −∑xt p(xt) log p(xt) is the Shannon entropy of variable Xt. With both system information
unexplained by part sums over time, and spatial integration measures of nonindependence, Φatomic

represents both temporal and spatial network synergies. Calculation of Φatomic then simplifies to

Φatomic =
n

∑
i=0

H(X(i)
t |X

(i)
t+1)− H(Xt|Xt+1) , (6)
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where H(Xt|Xt+1) is the conditional entropy of variable Xt given Xt+1 (and similarly for the
conditional entropy of the each neuron Xi). These conditional entropies quantify our uncertainty
about the “cause repertoire”, that is, the ensemble of states that could have given rise to the
state Xt+1 [21].

As with previous neuro-correlates, the act of integrating information does not imply that there
will be an action based upon such integrations. However, selecting agents with a higher Φatomic over
others with the same performance guarantees the preservation of potentially beneficial mutations.
In addition, we know that Φatomic is a limiting factor in the evolution of cognitive abilities: to
perform a given task the agent requires a minimal amount of Φatomic [51], and a better performance
necessitates a higher minimal amount of Φatomic.

2.1.6. Predictive Information

Predictive information (PI) can be measured in several ways [22,52,53]. It is the one-step mutual
information that a system has between time t and t + 1. MB animats have sensors and actuators,
and PI can be measured as a one-step mutual information of the sensors and future sensors, or the
actuators and future actuators, or the sensors and future actuators, or the actuators and future sensors.
Here we measure PI of the sensors and future sensors (PIss), and sensors and future actuators (PIsa)

PIss = I(St : St+1) ,

PIsa = I(St : At+1) ,
(7)

where St represents the sensor values at time t and At represents the actuator values at time t.
An organism solving a physical task will move through the environment such that this

information is increased—we typically do not look around randomly, but in a predictable manner.
It has been shown that increasing PIss can be advantageous for creating meaningful behavior on
agents [53]. Alternatively, predictive information can be understood as the information the sensors
have about the actuators after the brain processed the sensor information. For a purely reactive
agent, increasing this PIsa (for predictive information from sensor to motor) would be advantageous,
because the actions of the agent become more appropriate given the experienced sensor patterns.
At the same time, if agents need to become less reactive but more dependent on their internal states
PIsa should decrease after adaptation (as shown in [22]).

2.2. Complex Environments

We investigate the effect that rewarding neuro-correlates have on adaptation in two different
environments. The first is a temporal-spatial integration task where an agent must catch or avoid
blocks that fall towards it (see Figure 1). The task is an adaptation of the “active categorical perception
task” studied earlier [12–14], and requires a comparison between past and present sensor inputs
to make inferences about future optimal behavior. While the task is seemingly simple, the sensor
modalities (embodiment) of the agent are limited in such a way that this becomes a complex problem
to be solved by an agent [15].

The second environment we use to optimize the agents is the generation of (pseudo) random
numbers, and does not require embodiment of the brain. This task does not require any input, but the
agent must produce a sequence of zeros and ones with high entropy. This task is also used to assess
cognitive abilities in humans: it is known that autism [54], schizophrenia [55], as well as different
forms or Alzheimer’s disease can be diagnosed by analyzing a sequence of symbols generated by a
human subject who was asked to produce a sequence that is as unpredictable as possible [17,54,56,57].
This complex task involves memory [18], processing [19], and the ability to sequentially process
information [17]—components that are also involved in the algorithmic generation of pseudo random
numbers. It is unclear if an evolved Markov Brain random number generator resembles either
a computer algorithm or the cognitive abilities found in humans. Nevertheless, this task clearly



Entropy 2016, 18, 6 8 of 22

qualifies as a complex problem requiring many components to work together, while at the same
time it is not another example of an embodied agent. The randomness of the produced sequence is
measured by its compressability using the Lempel–Ziv–Welch (LZW) algorithm [16].

A

14

15

0 1 2 3
0 1 2 3

B

Sensor States
= on = off

Figure 1. (A) In the simulation, large or small blocks fall diagonally toward the bottom row of a
20× 20 discrete world, with the agent on the bottom row. For the purpose of illustrating the task,
a large brick is falling to the left, while a small brick is falling to the right. In simulations, only one
block is falling at the time, and any one brick can fall either only to the left or only to the right. The
agent is rewarded for catching small blocks and punished for catching large blocks; (B) A depiction
of the agent’s neurons (bottom left: triangles depict sensors, circles illustrate brain (internal) neurons,
trapezoids denote actuators) and the sequence of activity patterns on the agent’s 4-bit retina (right),
as a large brick falls to the right. Reproduced from [15], with permission.

One can think of many other complex environments for which this method of GA augmentation
might be suitable, such as: navigation tasks [22], classification and perception tasks [24], or tasks
that require an understanding of group behavior [35,58]. As long as neuro-correlates are measurable
and doing so does not impose too high a computational overhead, this augmentation should be
applicable. However, different environments could benefit differently from the neuro-correlates
used—for example a one-layered perceptron in a classification task might not require internal
representations. In such cases the representation measure R might become useless. Alternatively
Φatomic might become meaningless in a task that does not require the integration of information.
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3. Methods

We performed evolutionary experiments to test how neuro-correlates affect the performance of
a GA (Our source code is available at https://gitlab.msu.edu/jory/entropy-2015-neuro-correlates).
In each block-catching experiment the performance of an agent was assessed by measuring the number
of blocks correctly caught and correctly avoided in 80 trials. In the random-number-generation (RNG)
experiment, agents were provided with one bit that at each time step changed from 0 to 1 and back for
500 updates (that is, an oscillator). The output of the network over those 500 updates was collected
and compressed. The number of symbols written into this compressed string was used as a proxy for
the maximum entropy of that string. Highly regular or constant strings result in very short sequences
after compression, while strings with higher entropy cannot be compressed that easily and result in
longer strings. This environment has no particular state the world can be in, thus measuring R is
meaningless in this context.

Once performance is assessed, fitness can be calculated, upon which the GA’s selection
mechanism can operate. It is standard in this domain to use an exponential of performance
(1.1performance) as a fitness measure to encourage selection of more complex behavior (similar to [59])
implying that each unit increase in performance increases fitness by 10%. Using fitness alone is
our control: the non-augmented case. We explored the use of eight neuro-correlate measures for
augmenting performance of the GA: minimum-description-length (MDL), diameter of the brain
network (GD), amount of information integration (Φatomic), amount of representation about the
environment (R), Gamma Index (connectedness), sparseness, and two variations of predictive
information: sensors t to sensors t + 1, and sensors t to actuators t + 1 (PIss and PIsa). Augmenting
performance by a neuro-correlate is performed by multiplying the normalized neuro-correlate with
the exponential performance of the agent. Each evolutionary experiment is repeated 128 times
and agents are allowed to adapt over 10, 000 generations (all evolutionary parameters are identical
to [15], except duplication and deletion are identical at 0.05). The population begins and ends at
size 100 and the mutation rate is 0.005. At the end of each experiment the line of descent (LOD) is
reconstructed [59] and the results on the LOD are averaged over all replicates. The general form for
fitness calculation used in this work is

ω = 1.1α
N

∏
i=1

[
κi

κimax
+ 1

]
(8)

where N is the set of neuro-correlates to use. It is interesting that using PI as a linear additive
function together with performance [60] as a way to augment selection has met with moderate
success in the context of lifetime-learning in embodied artificial intelligence. Here we use a non-linear
multiplicative function instead, which emphasizes the effect of both beneficial and deleterious
mutations. The experiments described here use N = 1, but the general form allows any number of
neuro-correlates to augment performance together in a form of multi-objective optimization. In (8),
α is the measure of performance, κ the measure of the neuro-correlate, and κimax the maximum
theoretical value for the neuro-correlate used.

Alternatively, the distribution of fitness or neuro-correlates at the end of evolutionary adaptation
is measured. The violin plots we use aggregate the replicate experiments and visualize the
distribution. The final population contains genetic variation not yet culled by selection. To reduce
such variation, we take from each experiment the organism on the line of descent three generations
prior to the final generation.

4. Results and Discussion

We find that three of the eight proposed neuro-correlates improve adaptation when used to
augment the GA in the block-catching task. The agent populations not only adapt faster, but
also evolve to a higher average performance after 10, 000 generations (see Figure 2a). These
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neuro-correlates are Φatomic and Graph Diameter (p < 0.05) and Gamma Index (p < 0.0001) whereby
p values were calculated using the Mann-Whitney U test. PIss (p < 0.01) and Sparseness (p < 0.05)
produced significantly worse results when used as augmenting neuro-correlates.

Because Φatomic, Graph Diameter, and Gamma Index all have a positive effect on evolution,
it seems additional selection pressure for neural architecture and material drastically helps these
populations of agents evolve to solve their task. It is possible that Sparseness has a negative effect
because Markov Brains start with relatively small neural architectures and must evolutionarily grow
to match the problem.

0 2000 4000 6000 8000 10000

Generation

40

45

50

55

60

65

70

75

80

T
a
sk

 #
 C

o
rr

e
ct

(a)

0 2000 4000 6000 8000 10000

Generation

95

100

105

110

115

120

L
Z

W
 L

e
n

g
th

(b)

Figure 2. (a) Average fitness over 10, 000 generations (over 128 replicates) for the block-catching task;
(b) Average fitness over 10, 000 generations (over 128 replicates) for generating random numbers.
•: the control using only performance in the Genetic Algorithm (GA). The effect of augmenting
the fitness function (Equation (8)) with Φatomic (O), with R (N), with graph diameter (�) on task
performance, with minimum-description-length (D), with Gamma Index (F), with sparseness (+),
with PIss (�), and with PIsa (7) on task performance.
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The results are very similar for the RNG task (see Figure 2b). Significance of the effect is roughly
the same: Φatomic, Graph Diameter, and Gamma Index significantly affect evolution positively when
used as fitness-agumenting neuro-correlates (p < 0.01). R cannot be used in the context of the RNG,
and is therefore not shown.

Predictive information is maximized in cases where reactive behavior is rewarded. In tasks that
require memory, maximizing predictive information can be detrimental (and is not the best predictor
of fitness, see [22]). It is possible that a predictive information with a larger time delay, or a conditional
predictive information such as I(St : At|At−1) [61] could produce better results. We plan on exploring
those in the future.

Multi-parameter optimization (MPO) can often solve many problems related to
multidimensional complex fitness landscapes but can suffer from a number of problems, all
well-described in the multi-parameter optimization literature (for an overview see [11,62]). In most
of these problem cases, the parameters to be optimized work against each other in the form of
trade-offs (one parameter can only be optimized at a cost of another). We observe this effect with
Gamma Index and sparseness depending on the task to evolve, while all other neuro-correlates
work synergistically with performance. See Figures A1–A3 for evolutionary history interactions
between neuro-correlates. We find that some neuro-correlates affect performance or each other
antagonistically. While in our experiments this trade-off reduces the final performance of the evolved
agents, it could be overcome using MPO. An objective which is antagonistic using our fitness
function could be beneficial in MPO, which should be explored in the future.

4.1. Augmented Selection and Its Effect on Other Neuro-Correlates

Using a neuro-correlate to augment a Genetic Algorithm can shorten the runtime requirements
and may improve the overall performance of the evolved population depending on the
neuro-correlate and objective. One might ask how augmenting selection using one neuro-correlate
affects the other correlates not under direct selection. Intuitively one would expect that selection for
a particular neuro-correlate, in conjunction with performance, should increase not only performance
(as discussed above) but also the measure itself. Similarly, since neither of the Predictive Information
measures augment selection, we do not expect an increase in Predictive Information when using them
in conjunction with performance. However, we find PIsa to increase when selecting for it together
with performance in the RNG environment.

We find no other effect of one neuro-correlate driving the evolution of another. The most
prominent example of this effect is with Gamma Index driving the evolution of nearly all
other neuro-correlates and vice versa (see Figure 3). This further supports the idea that using
neuro-correlates does not necessarily create negative synergy as discussed in Results and Discussions
concerning multiple parameter optimization.
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Figure 3. Comparison of different optimization methods at the end of evolution of the block-catching
task. The top row shows the performance distribution (gray) and average performance given the
different selection regimes (MDL abbreviates minimum-description-length, which is the potential
brain size based on the length of the encoding genome, GI abbreviates Gamma Index, GD graph
diameter, and PIss and PIsa are predictive information sensor t to sensor t+ 1, and sensor t to actuator
t + 1, respectively). Subsequent rows show the effect of the different selection regimes (x axis) on the
respective neuro-correlates.

In the RNG environment R cannot be used because there is no environment about which the
agent could build representations. For other neuro-correlates we observe the same trend in the RNG
task as in the block-catching task (see Figure 4). Selecting for a particular neuro-correlate increases
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its measure over evolutionary time, more so than the increase found without explicit selection. The
exception to this is Gamma Index and sparseness and Φatomic. All other neuro-correlates seem to have
no additional effect on each other.
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Figure 4. Comparison of different optimization methods on each other at the end of evolution of the
random number generation task. The top row shows the performance distribution (gray) and average
performance given the different selection regimes (MDL abbreviates minimum-description-length,
which is the potential brain size based on the length of the encoding genome, GI abbreviates Gamma
Index, GD graph diameter, and PIss and PIsa are predictive information sensor t to sensor t + 1, and
sensor t to actuator t + 1, respectively). Subsequent rows show the effect of the different selection
regimes (x axis) on the respective neuro-correlates.
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4.2. Neuro-Correlate Interactions

We showed that selection can be augmented by using specific neuro-correlates, while others do
not help. Is that because selecting for the neuro-correlates themselves already provides an advantage
for performance? One might think that for example maximizing knowledge about the world (R)
requires the agent to move in such a fashion that performance enhances automatically. To test
this we repeated the above described experiment, but instead of augmenting performance with
a neuro-correlate, this time selection was performed on the neuro-correlates alone.

We find that none of the neuro-correlates affect performance substantially in the context of the
RNG task (see the top rows in Figure 5) except for Φatomic. The effect of Φatomic on the generation of
random numbers is measurable, but very small. We assume that in order to generate non-zero Φatomic

information must flow through the system. Because there is no control function, the “information” is
literally random (that is, entropy), which is what the RNG environment seems to be selecting.
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Figure 5. Effect on different neuro-correlates and performance when selecting only on a single
neuro-correlate. The left panel shows evolution in the block-catching environment, and the panel
on the right shows the random-number-generation (RNG) task.
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As expected, selecting for a single neuro-correlate increases its value in both environments
(see the diagonal for both environments in Figure 5). However, we also find that many neuro-correlates
affect each other positively and negatively, and the effect is similar in both environments. Some
of these interactions are very intuitive. All measures that benefit from more connections, for
example, cause the minimum-description-length to increase, whereas sparseness causes the
minimum-description-length to shrink. Similarly, Φatomic and R have some positive effect on each
other, and we conjecture that having the ability to form representation—even though they might not
be used to improve performance—still requires the ability to integrate information.

We find that PIss positively affects PIsa in the block-catching environment and has no effect
in the RNG environment, while PIsa has a positive effect on PIss in both environments (compare
the bottom right of each Figure 5). To our knowledge the relation between the two Predictive
Information measures has not been studied, and we are unable to provide any additional insight
into this phenomenon.

5. Conclusions

We have tested whether eight different network- and information-theoretic neuro-correlates can
be used to improve the performance of a simple Genetic Algorithm. We found that Φatomic, Graph
Diameter, and density (Gamma Index) each statistically significantly improve the performance of
a GA in two environments tested. Sparseness does not improve performance as much as density
does, suggesting sparseness is not generally beneficial for GAs in this domain. Thus, sparseness
should only be used if its application has been shown to be beneficial for the problem domain in
question. The two forms of predictive information measures (PIss and PIsa) had a negative effect in
both environments on finding optimal performers (see Figure 6), and thus it appears that PIsa should
not be used to augment selection in this domain. Gamma Index was significantly the most reliable
fitness-augmenting neuro-correlate in the block-catching task for producing perfectly performing
agents (see Figure 6).

Figure 6. Absolute number of perfectly performing block-catching agents after 10, 000 generations
evolved under the five different experimental conditions shown. * indicates significance using the
Chi-Squared test relative to Task or no neuro-correlate augmentation (p < 0.05).

Because the value of each neuro-correlate is simply multiplied by performance, the
computational overhead is bound by the complexity of each measure. Typically, R and Φatomic

measures are computationally intensive and must be repeated for every agent in the population.
This is a significant overhead, especially for increases in agent lifetime or brain size. This study
shows Graph Diameter and Gamma Index measures to be computationally inexpensive and thus
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preferable, with preference between the two for Graph Diameter. While the GA used here benefited
from augmenting selection with neural correlates, we studied only two environments, and it is
likely other environments might respond differently. Another possible extension of this work is to
investigate other neuro-correlates, or even more topologically based neuro-correlates, or perhaps
other algorithms such as novelty search [8].
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Appendix A

Evolutionary History Cross Interaction for Block Catching
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Figure A1. Selection for both task and a cognitive trait and the effect on each cognitive trait. Task (Block Catching Task) was selected for, in adition to each y axis
trait. the x axis is the trait shown over evolutionary time for the y axis treatment. The populations were allowed to evolve for 10, 000 generations and the results
averaged over 128 replicates.
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Evolutionary History Cross Interaction for Random Number Generation
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Figure A2. Selection for both task and a cognitive trait and the effect on each cognitive trait. Task (Random Number Generation Task) was selected for, in adition to
each y axis trait. the x axis is the trait shown over evolutionary time for the y axis treatment. The populations were allowed to evolve for 10, 000 generations and
the results averaged over 128 replicates.
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Evolutionary History Single Cross Interaction for Block Catching Task
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Figure A3. Selection for only task or a single cognitive trait and the effect on task and each cognitive trait. The y axis presents for what was selected and the x axis
represents the affected trait shown over evolutionary time for the y axis treatment. The populations were allowed to evolve for 10, 000 generations and the results
averaged over 128 replicates.
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