

  Interacting Brownian Swarms: Some Analytical Results




Interacting Brownian Swarms: Some Analytical Results







Entropy 2016, 18(1), 27; doi:10.3390/e18010027




Article



Interacting Brownian Swarms: Some Analytical Results



Guillaume Sartoretti * and Max-Olivier Hongler *





STI/IMT/LPM, Ecole Polytechnique Fédérale de Lausanne, Station 17 (Batiment BM), CH-1015 Lausanne, Switzerland









*



Correspondence: Tel.: +41-21-693-7778 (G.S.); +41-21-693-5391 (M.-O.H.)







Academic Editor: Giorgio Sonnino



Received: 18 November 2015 / Accepted: 11 January 2016 / Published: 14 January 2016



Abstract:

 We consider the dynamics of swarms of scalar Brownian agents subject to local imitation mechanisms implemented using mutual rank-based interactions. For appropriate values of the underlying control parameters, the swarm propagates tightly and the distances separating successive agents are iid exponential random variables. Implicitly, the implementation of rank-based mutual interactions, requires that agents have infinite interaction ranges. Using the probabilistic size of the swarm’s support, we analytically estimate the critical interaction range below that flocked swarms cannot survive. In the second part of the paper, we consider the interactions between two flocked swarms of Brownian agents with finite interaction ranges. Both swarms travel with different barycentric velocities, and agents from both swarms indifferently interact with each other. For appropriate initial configurations, both swarms eventually collide (i.e., all agents interact). Depending on the values of the control parameters, one of the following patterns emerges after collision: (i) Both swarms remain essentially flocked, or (ii) the swarms become ultimately quasi-free and recover their nominal barycentric speeds. We derive a set of analytical flocking conditions based on the generalized rank-based Brownian motion. An extensive set of numerical simulations corroborates our analytical findings.
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1. Introduction

Elementary models of multi-agents swarms often rely on the assumption that all individuals obey identical dynamical rules. This hypothesis of agents’ homogeneity significantly simplifies the mathematical modeling and its treatment. In particular, for large swarms, homogeneity enables analytical discussions based on the mean-field (MF) approach. In the MF approach, the effects of mutual interactions are aggregated into an external effective force field, driving the dynamic of a single randomly picked agent, whose behavior reflects the whole society’s evolution. Homogeneity is, however, rarely encountered in actual situations. A natural question is to then ask how heterogeneity between agents affects and/or possibly destroys the potential emergence of collective (i.e., flocking) dynamics. In the presence of heterogeneity, analytical approaches are more difficult as, a priori, the MF approach cannot be directly employed. In multi-agent swarms, heterogeneity can manifest itself in many different forms and degrees. It may concern the individual dynamics of each agent and/or the way agents interact with their fellows. An extreme heterogeneous situation is realized when, due to its specificities, a single agent is actually leading the entire swarm [1,2,3,4,5]. In this paper, we focus on comparatively low heterogeneities encountered when only the individual dynamics differ but not the interacting rules. For this case, a paradigmatic and pioneering example is the Kuramoto synchronization of heterogeneous phase oscillators for which the role of heterogeneity can, to a certain extent, be analytically discussed [6,7]. More recently, models based on rank-based drifted Brownian motion (RBM) [8], and, in particular, the so-called Hybrid Atlas Model (HAM) [9], offer another possibility to analytically discuss the heterogeneous swarm dynamics, without relying on the MF approach. In the sequel, we shall basically use the HAM modeling framework to study a new type of global heterogeneity. This is achieved when two sub-swarms are forced to mutually interact. Each sub-swarm, formed by homogeneous agents, is initially tightly flocked and obeys specific collective dynamics. The global society formed by the union of the two sub-swarms is clearly heterogeneous. This example depicts a situation where two distinct sub-swarms (agents of each sub-swarm are different) interact via a local competition mechanism (here, agents systematically try to catch their leaders in a finite observation range). In this paper, we are able to analytically characterize the post-collisional outputs. Depending on external control parameters (individual sub-swarm dynamics, strength of competition), we observe that the post-collisional situation can either be a single tight swarm or a segregation into the nominal sub-swarm.

The paper is organized as follows: In Section 2, we introduce the microscopic agent’s dynamic and link it to RBMs. In Section 3, relying on the HAM theory, we derive the flocking conditions for single swarms composed of scalar agents interacting via imitation. The mutual interactions are effectively of long-range types (i.e., each agent can observe all leaders independent of their distance). For a finite number of tightly flocked agents, the (scalar) inter-distance between successive fellows is a stationary random variable, and, hence, so is the size of the swarm extension. This enables us to define a characteristic stationary swarm extension. In Section 4, we consider a couple of sub-swarms, initially well separated on the real line and with different average barycentric speeds. As the positive barycentric velocity of the leftmost sub-swarm is chosen, larger than the one of the rightmost sub-swarm, collision is unavoidable. For large but finite observation ranges of the sub-swarm (i.e., range larger than the sub-swarm characteristics of each sub-swarm extension derived in Section 3), we study the asymptotic post-collisional behavior of the whole system. The conditions for either the emergence of a global flocking swarm or quasi-freedom of the sub-swarms are approximatively derived. All analytical findings are tested and corroborated by simulation experiments. Concluding remarks, along with perspectives, are finally presented in Section 5.



2. Flocking of Interacting Brownian Agents

We consider a swarm of N Brownian agents [image: there is no content], [image: there is no content], diffusing on [image: there is no content]. Agent [image: there is no content] follows the dynamic:



dXi(t)=dU,i(X→(t),t)dt+σdWi(t),Xi(0)=xi,0,



(1)




where [image: there is no content] and [image: there is no content] ([image: there is no content]) are independent White Gaussian Noise (WGN) sources. The set of individual drifts [image: there is no content] for [image: there is no content] are rank-dependent interactions that are defined as follows:

	(i)

	In real-time, agent [image: there is no content] counts the (time-dependent) number [image: there is no content] of leading fellows located within an observation interval U, namely the number of [image: there is no content] for [image: there is no content] that are located in [image: there is no content] with:



RU,i(t):={x∈[image: there is no content]∣0<x-Xi(t)≤U}.



(2)






	(ii)

	The [image: there is no content]-rank-based drift in Equation (1) is then determined by:



dU,i(X→(t),t):=α[image: there is no content]N,i=1,2,⋯,N,



(3)




with α∈[image: there is no content]+ a velocity scale factor.





According to Equation (1), agent [image: there is no content] is positively accelerated by its leaders located in [image: there is no content] but ignores the presence of its followers. These types of dynamics generically model imitation mechanisms; a typical example for the diffusion of innovation is shown in [10].

For very large swarms (i.e., when [image: there is no content]), we may define an agent probability density ρ(x,t∣x0) at position x at time t. Adopting a mean-field (MF) approach, [image: there is no content] obeys a (nonlinear) Fokker–Planck parabolic partial differential equation (pde):



∂tρ(x,t∣x0)=Fρ(x,t∣x0),F(·):=σ22∂x,x(·)-α∂x∫0Uρ(y+x,t∣x0)dy(·).



(4)




For [image: there is no content], the model can be analytically investigated, and its solution behaves as a flocked swarm of agents that propagate like a soliton wave [10,11,12]. Conversely, for small U, a first order expansion of Equation (4) yields Burgers’ equation, that can be analytically solved via the well known Hopf–Cole (logarithmic) transformation [11]. In this small U regime, [image: there is no content] exhibits a diffusive behavior that asymptotically vanishes with time. Qualitatively, when U is very small, the agents mutual interactions are not strong enough to sustain a cooperative soliton dynamic pattern. By introducing a decreasing distance-dependent modulation on rank-based drifts, it has been showed that a bifurcation point, controlled by the distance decay rate, exists that separates both propagating regimes [10,12].

In general, however, the joint nonlocal and nonlinear characteristics of Equation (4) precludes direct analytical characterization of this bifurcation point. Alternative approaches then have to be found. In the present paper, focusing on Equation (1) with [image: there is no content], we shall use available results for rank-based Brownian motions [8,9] to approximately estimate the observation range required to generate a soliton-like propagation.


Rank-Based Brownian Motions (RBMs)

For calculation convenience, we now consider the dynamics of Equation (1) with respect to the swarm’s barycenter. That is to say, Equation (3) becomes:



dU,i(X→(t),t):=α[image: there is no content]N-γ,γ:=1N∑l=0N-1αlN=αN-12N(average barycentric drift).



(5)




In other words, agents [image: there is no content], [image: there is no content] counts, in real time, the number of its leaders [image: there is no content] with [image: there is no content]. It then updates its drift [image: there is no content] as given in Equation (5), where γ is the average drift velocity of the swarm. Since the WGN in Equation (1) achieves unbounded realizations, the ability for all [image: there is no content]’s to exactly count the number of their leaders effectively requires an infinite observation range U.

By construction, one can verify that the stability conditions:



∑k=1lαk-1N-γ=α2Nl·l-N<0∀1≤l<N



(6)




are verified, meaning that the laggards have a systematic average tendency to catch up with the leaders.
The rank-based drifts effectively implement a stylized gravity model, where the set of conditions for Equation (6) ensures the existence of a stationary probability measure for the RBM. This stationary regime corresponds to a tight propagating swarm that effectively behaves like a soliton propagating wave. Moreover, [8,13] established that in this stationary state, the inter-distances between successive agents are independent, [image: there is no content]-exponentially distributed random variables with:



[image: there is no content]=αNσ2l·N-l,l=1,2,⋯,N-1.



(7)




Since the swarm’s stationary size is the sum of [image: there is no content] independent exponentially distributed r.v.’s, it defines a hypoexponential probability distribution [image: there is no content] with density:


dH(x)=∑l=1N-1[image: there is no content]e-[image: there is no content]x∏l=1,k≠lN-1λkλk-[image: there is no content]dx.



(8)




Accordingly, the average size of the swarm [image: there is no content] and its corresponding variance [image: there is no content] behave as follows:


[image: there is no content](N)=∫0∞xdH(x)=∑l=1N-1λl-1=Nσ2α∑l=1N-11l(N-l)≈[image: there is no content]2σ2αlog(N),σS2(N)=∫0∞(x-[image: there is no content])2dH(x)=∑l=1N-1λl-2≈[image: there is no content]σ4α2[π23+4log(N)N]→[image: there is no content]σ4π23α2.



(9)




The coefficient of variation [image: there is no content], which measures the stochasticity of the swarm’s size, vanishes in the mean-field limit ([image: there is no content]). Observe that, in the mean-field limit, the agents’ density [image: there is no content] of the RBM directly coincides with Burgers’ dynamics for [image: there is no content]. This leads to a tight soliton-like propagation density with infinite support. This is consistent with Equation (9), where the swarm’s size slowly diverges for [image: there is no content].




3. Heuristic Characterization of the Observation Threshold Leading to Cooperative Dynamics

Consider the nominal dynamics Equation (1) and now assume finite observation ranges (i.e., [image: there is no content]). Due to the unboundedness of the WGN, an exact ranking procedure is therefore not strictly possible. A non vanishing probability (decreasing with increasing U’s) exists to find outlying leaders (i.e., located beyond the observation range of some of their followers). While the average swarm size [image: there is no content] from Equation (9) is valid only when [image: there is no content], we postulate that it can still be used to approximately characterize the minimal observation range [image: there is no content] required to sustain a tight swarm. Indeed, whenever [image: there is no content], it is highly probable that some agents cannot determine their respective ranks. These outlying agents will underestimate their instantaneous drifts (from their incomplete observations), ultimately leading to their escape from the bulk. Outlying agents always escape the swarm from the rear, leading with time to an effective “evaporation”.

For consistency, the initial conditions [image: there is no content], to be drawn from a probability measure with finite support [image: there is no content], namely Xi,0∈[image: there is no content] with [image: there is no content]=[l,r]⊂[image: there is no content] and length([image: there is no content])=r-l≤[image: there is no content](N) must be restricted. Let us now define a characteristic relaxation time [image: there is no content]=[image: there is no content]σ2 that corresponds to the time needed by the stochastic processes to diffuse over the interval of length [image: there is no content]. For observation ranges U>[image: there is no content] and initial conditions Xi,0∈[image: there is no content], all N agents mutually interact at time [image: there is no content], and, therefore, correctly determine their relative ranks. We assume that this will remain true with high probability, for times [image: there is no content]. In other words, we expect that the initially tight swarm is likely to remain flocked for [image: there is no content], effectively a meta-stable state. For asymptotic times, however (i.e., [image: there is no content]), the swarm’s tightness will be destroyed. Indeed, for any finite U, outliers will ultimately escape the attraction generated by the bulk of the remaining swarm. Therefore, our heuristic postulates that the characteristic observation range, separating these two regimes, Uc=[image: there is no content](N). The actual validity of these simple heuristics have been tested in several numerical experiments that are reported in Figure 1 and Figure 2.

Figure 1. End probability distribution [image: there is no content] at time [image: there is no content] of swarms of [image: there is no content] agents, with respect to U. Here, all agents initially start at [image: there is no content]. (a): tight swarm for U=3Uc=3[image: there is no content] (red) and “diffusive evaporating” swarm for [image: there is no content] (blue). (b): tight swarm for [image: there is no content] (red) and “diffusive evaporating” swarm for [image: there is no content] (blue). The respective observation ranges U are depicted at the top of each figure.



[image: Entropy 18 00027 g001 1024]





Figure 2. End probability distribution [image: there is no content] at time [image: there is no content] of a swarm of [image: there is no content] agents, initially starting at [image: there is no content]. The observation range U=Uc=[image: there is no content] is depicted at the top of the figure. Notice that the evaporation (i.e., destruction of swarm tightness) does not start before the relaxation time [image: there is no content].
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4. Interactions between Collinear Colliding Swarms

In this section, we investigate the mutual interactions between two initially distinct swarms [image: there is no content] and [image: there is no content] composed of [image: there is no content], [image: there is no content] respectively [image: there is no content], [image: there is no content] agents driven by rank-based interactions. Initially, we let all agents from [image: there is no content] be randomly positioned with [image: there is no content]; similarly, for [image: there is no content], we assume that [image: there is no content]. Assume non-overlapping supports [image: there is no content] with [image: there is no content] (interval [image: there is no content] is located on the left of [image: there is no content]) and finite observation ranges U such that [image: there is no content]). Accordingly, at time [image: there is no content], agents from [image: there is no content] do not interact with agents from [image: there is no content] and vice versa. We further assume that initially the swarm [image: there is no content] with [image: there is no content] has an average barycentric drift velocity [image: there is no content] and that [image: there is no content]. This implies that the [image: there is no content]-agents will, on average, catch and ultimately overcome their [image: there is no content]-fellows. Therefore, for large times, the [image: there is no content]-agents exhibit a net tendency to become [image: there is no content]-leaders. Qualitatively, after a [image: there is no content]-[image: there is no content] collision, the following dynamic features occur:


	(i)

	[image: there is no content]-agents become leaders and thus are less influenced by (or possibly almost independent from) [image: there is no content]-agents. This implies that, with time, [image: there is no content]-agents will exhibit a net tendency to recover their nominal drifts (i.e., the drifts realized before the collision).



	(ii)

	[image: there is no content]-agents feel the presence of their leaders from [image: there is no content] and, therefore, have a net tendency to increase their drifts.





Therefore, depending on the values of the population sizes [image: there is no content] and [image: there is no content] and drifts [image: there is no content] and [image: there is no content], two alternative situations emerge:


	(a)

	Mutual capture of swarms. After collision, [image: there is no content] and [image: there is no content] aggregate into a global tight swarm [image: there is no content]. The average barycentric drift [image: there is no content] of [image: there is no content] is larger than [image: there is no content]. Thus, in this case, mutual interactions generate an increase in the average velocity of the global population.



	(b)

	Quasi-asymptotic freedom of swarms. After collision, and for asymptotic times, the swarms [image: there is no content] and [image: there is no content] evolve almost without interactions (quasi-free swarm evolutions). In the quasi-free regime, [image: there is no content] and [image: there is no content] recover their respective initial individual barycentric velocities [image: there is no content] and [image: there is no content].





In the sequel, the implementation of the velocity condition [image: there is no content] is realized by considering two distinctive rank-based dynamics: (i) The Hybrid-Atlas model (HAM) introduced by T. Ichiba et al. [9] and (ii) a new modified HAM model (MHAM). For both cases, we analytically estimate the threshold values of the relevant control parameters that lead to either outcome (a) or (b).


4.1. Colliding Swarms Driven by Hybrid Atlas Models

In this first situation, we assume that the swarms [image: there is no content] and [image: there is no content] are populated by slightly different types of agents. Agents [image: there is no content] and [image: there is no content] share a common rank-based drift, given in Equation (1), but we endow the [image: there is no content]s with an extra systematic constant drift [image: there is no content]:



dU,i(X→(t),t)=α[image: there is no content]N+𝟙{i≤[image: there is no content]}Γ1,



(10)




with N=[image: there is no content]+[image: there is no content].
This ensures that [image: there is no content]-agents, on average, initially travel faster than [image: there is no content]-agents, and, therefore, [image: there is no content]. Since the initial [image: there is no content]-support [image: there is no content] is located on the left of [image: there is no content], a [image: there is no content]-[image: there is no content]-collision is unavoidable. At this point, we emphasize that when [image: there is no content], the global heterogeneous society [image: there is no content]=[image: there is no content]∪[image: there is no content], when subject to the dynamics given by Equation (1), is a special case of HAM dynamics [9]. In [9], the authors derive the set of combinatorial stability conditions that ensure the existence of a tight swarm stationary state. Heuristically speaking, one has to explicitly verify that, in all possible ranking configurations, the agents [image: there is no content] and [image: there is no content] are systematically driven by attractive drifts directed toward the barycenter of [image: there is no content].

For [image: there is no content], the hypotheses in [9] are not strictly realized (since the perfect ranking determination would indeed require [image: there is no content]). Along the same lines as in Section 3, we assume that for large enough but finite U, the agents’ ranking in [image: there is no content] during collision remains approximately unaffected. Accordingly, the HAM tightness conditions also remain approximately valid in [image: there is no content], during collision. The average barycentric drift of [image: there is no content], during collision and when [image: there is no content] is ahead of [image: there is no content], reads:



γHAM=1N∑i=1[image: there is no content](αi-1N+Γ1)+∑i=[image: there is no content]+1Nαi-1N=(-1+N)α+2[image: there is no content]Γ12N.



(11)




Therefore, the recentered rank-based drift [image: there is no content] of agent [image: there is no content] from [image: there is no content], in this configuration, becomes:



dU,i(X→(t),t)=α[image: there is no content]N+𝟙{i≤[image: there is no content]}Γ1-γHAM,l=1,2,⋯,N-1.



(12)




According to [9], the set of combinatorial tightness stability conditions for HAM dynamics, under any permutation [image: there is no content] of the N=[image: there is no content]+[image: there is no content] agents read as:



∑k=1lαk-1N+𝟙{p(k)≤[image: there is no content]}Γ1-γHAM[image: there is no content]0,for l=1,2,⋯,N-1,∀p∈ΣN,



(13)




where [image: there is no content] expresses the necessary condition.
To check the validity of Equation (13), it is sufficient to focus on the most critical agent configuration. This configuration is realized when all faster agents take the ranks 1,...,[image: there is no content] (i.e., when [image: there is no content] is ahead of [image: there is no content]). This corresponds to the choice l=[image: there is no content] in Equation (13), under the permutation [image: there is no content], where:



∑j=0[image: there is no content]-1αjN+Γ1=-[image: there is no content][image: there is no content](α-2Γ1)2N.



(14)




To ensure that this sum is negative, one must finally have:



[image: there is no content]



(15)




Remark that the condition in Equation (14) does not depend on the individual swarm sizes [image: there is no content] and [image: there is no content], with our specific choice of agent drifts Equation (10).



4.2. Colliding Swarms Driven by Modified Hybrid Atlas (MHAM) Dynamics

Here, we assume that the [image: there is no content] agents from [image: there is no content] follow the dynamics of Equation (1), with [image: there is no content] and similarly, [image: there is no content] is subject to the same dynamics but with [image: there is no content]. From now on and without loss of generality, we focus only on the [image: there is no content] and [image: there is no content]. As before, we initially configure the system so that swarm [image: there is no content] and [image: there is no content] do not interact at time [image: there is no content] (i.e., X0,1=[l1,r1]=[image: there is no content], X0,2=[l2,r2]=[image: there is no content], [image: there is no content]∩[image: there is no content]=∅ and the common observation range U is such that [image: there is no content]). When [image: there is no content], we have [image: there is no content] and we look for a critical ratio [image: there is no content] under which a tight swarm survives a [image: there is no content]-[image: there is no content] collision. To this aim, let us consider a “post-colliding” configuration realized when [image: there is no content] is completely ahead of [image: there is no content]. In term of stability, this configuration is the most critical: [image: there is no content]-agents can only escape from [image: there is no content] via this configuration. Therefore, the [image: there is no content] tightness has to be checked under this specific configuration.

Accordingly, whenever the stability conditions from [9] are verified under this critical configuration, they will also be verified under any other configuration. Therefore, the tightness of [image: there is no content] only depends on this critical configuration. Formally, we now rewrite Equation (5) for [image: there is no content] and verify whether the stability requirements given by [9] are fulfilled for this critical case. In this case, the recentered dynamics read:



dU,k(X→(t),t)=ρNU,k(t)N-γMHAMfork≤[image: there is no content],NU,k(t)N-γMHAMotherwise.γMHAM=ρN∑k=1[image: there is no content]k-1N+1N∑k=[image: there is no content]+1Nk-1N=ρ[image: there is no content]([image: there is no content]-1)+[image: there is no content](2[image: there is no content]+[image: there is no content]-1)2N2.



(16)




From [9], the stability conditions for [image: there is no content] read:


∑k=1l(1+𝟙{k≤[image: there is no content]}(ρ-1))·k-1N-γMHAM[image: there is no content]0,∀1≤l≤N-1.



(17)




The most critical condition is realized for l=[image: there is no content] (this condition tests whether the distance between [image: there is no content] and [image: there is no content] remains stationary). It reads:



∑k=1[image: there is no content]ρk-1N-γMHAM=[image: there is no content][image: there is no content]([image: there is no content]-1-[image: there is no content](ρ-2)+ρ)2N2[image: there is no content]0,



(18)




implying that the critical threshold [image: there is no content] finally reads:


[image: there is no content]=1+N[image: there is no content]-1.



(19)




Notice that for [image: there is no content]=1, [image: there is no content] cannot possibly exist (i.e., [image: there is no content]=∞). The first agent has no drift, since it never observes any leader. Therefore, a society of one leader cannot possibly drive a swarm. Instead a single leader always remains flocked with [image: there is no content]. For [image: there is no content]=[image: there is no content], Figure 3 shows the critical value [image: there is no content]. When [image: there is no content], [image: there is no content] asymptotically converges toward [image: there is no content]=3. Figure 4 shows the behavior of [image: there is no content] as a function of the proportion [image: there is no content]N (faster agents in [image: there is no content]), for [image: there is no content] agents. For [image: there is no content] and [image: there is no content]N→1, [image: there is no content]→2.

Figure 3. Value of the critical threshold [image: there is no content], with regard to the swarm size N of the HAM, when [image: there is no content]=[image: there is no content]. The asymptotic value [image: there is no content] of [image: there is no content]=3 is depicted in red.



[image: Entropy 18 00027 g003 1024]





Figure 4. Value of the critical threshold [image: there is no content], with regard to the proportion [image: there is no content]/N of fast agents in the HAM, when [image: there is no content].



[image: Entropy 18 00027 g004 1024]











4.3. Numerical Simulations

We consider two different cases, both with [image: there is no content]=[image: there is no content]=250 agents. In both simulations, the society [image: there is no content] starts with all agents located at [image: there is no content], while agents from [image: there is no content] start at [image: there is no content]. The common observation range U is selected large enough ([image: there is no content]), and [image: there is no content]. For the experiments, we vary ρ, in order to compare i) a case in which both societies remain flocked together with ii) a case leading to the quasi-freedom behavior.

Figure 5 shows one realization in which ρ<[image: there is no content], allowing both societies to remain flocked. The left plot shows the final distribution of agents from both societies, as [image: there is no content] leads [image: there is no content]. In the right plot of Figure 5, we show the average barycentric speeds of both societies. Notice how [image: there is no content] is initially accelerated as its agents interact with those from [image: there is no content]. Later, when [image: there is no content] has overcome [image: there is no content], agents from [image: there is no content] get an extra drift due to interactions with [image: there is no content]. This finally enables both societies to evolve at the same average barycentric speed (and therefore to remain flocked).

Figure 5. Final distributions [image: there is no content] and average barycentric speeds [image: there is no content] for one realization, in which both societies that start at [image: there is no content] achieve flocking. Here, ρ=2.5<[image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content]=[image: there is no content]=250 agents. (a): distribution of the agents from [image: there is no content] (blue) and [image: there is no content] (red), at ending time [image: there is no content]. (b): average barycentric speed of each society, with respect to time.



[image: Entropy 18 00027 g005 1024]





In Figure 6, we show the same scenario, for one realization with ρ>[image: there is no content] (quasi-freedom regime). In the right plot, we still notice the initial drift gained by [image: there is no content] as its agents interact with those from [image: there is no content]. Once [image: there is no content] has overcome [image: there is no content], agents from [image: there is no content] get an extra drift, that is not large enough to keep both societies flocked together. The extra drift gained by [image: there is no content] finally vanishes, once [image: there is no content] exits the observation range of the agents from [image: there is no content]. Finally, [image: there is no content] and [image: there is no content] recover their nominal speeds.

Figure 6. Final distributions [image: there is no content] and average barycentric speeds [image: there is no content] for one realization, in which both societies that start at [image: there is no content] do not achieve flocking. Here, ρ=6>[image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content]=[image: there is no content]=250 agents. (a): distribution of the agents from [image: there is no content] (blue) and [image: there is no content] (red), at ending time [image: there is no content]. (b): average barycentric speed of each society, with respect to time.
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5. Conclusions and Perspectives

Tightly flocked swarms of agents are externally perceived as plastic (i.e., deformable) macroscopic bodies with dynamics resulting from the compromise between the individual evolutions, and the nature and range of the mutual interactions. Having macroscopic bodies at hand, basic physics naturally suggests the questions: (i) how such do solid bodies mutually interact; (ii) what emerges after collisions, and (iii) what type of information can we get from studying the results of the collisions? The discussion of collisions presents some similarities with the physics of solitons’ interactions where the underlying nonlinearities precludes the superposition principle to be be invoked. We show here that the rank-based Brownian dynamics is one possible approach to explore, in a partly analytical way, some of the challenging questions related to swarm interactions.
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