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Abstract: Coupled heat transfer and chemical reaction of fluid flow in complex boundaries are
explored by introducing two additional properties, i.e., particle type and energy state into the
Lattice gas automata (LGA) Frisch–Hasslacher–Pomeau (FHP-II) model. A mix-redistribute of
energy and type of particles is also applied on top of collision rules to ensure randomness while
maintaining the conservation of mass, momentum and energy. Simulations of heat transfer and
heterogeneous reaction of gas flow passing a circular porous cylinder in a channel are presented.
The effects of porosity of cylinder, gas inlet velocity, and reaction probability on the reaction process
are further analyzed with respect to the characteristics of solid morphology, product concentration,
and temperature profile. Numerical results indicate that the reaction rate increases with increasing
reaction probability as well as gas inlet velocity. Cylinders with a higher value of porosity and
more homogeneous structure also react with gas particles faster. These results agree well with the
basic theories of gas–solid reactions, indicating the present model provides a method for describing
gas–solid reactions in complex boundaries at mesoscopic level.

Keywords: porous circular cylinder; lattice gas automata; heat transfer; chemical reaction;
fluid-structure interaction

1. Introduction

The simulation of heat transfer and chemical reaction of fluid flow in porous media is
of considerable importance in many practical applications such as combustion chambers, heat
exchangers, food processing, catalytic reactors, refrigeration, air cooling and thermal energy storage
devices. Simulation results can be found for porous catalyst particles, packed catalyst beds, and
arranged pipes. Among these studies, methods based on conventional partial differential equations
such as volume-averaging theory [1] and Darcy models [2–4], or discrete methods, e.g., lattice
Boltzmann methods (LBM) [5–8] have been the major approaches. However, to the best of our
knowledge, the porous media reported in the literature are relatively simple and usually consist of
regular arranged solid cylinders. Few studies have been carried out to investigate the characteristics
of heat transfer coupling by chemical reaction in porous media. Additionally, the conventional
methods based on nonlinear partial differential equations (PDEs) also suffer difficulties such as
truncation error and high sensitivity to boundary conditions, making it difficult to describe the
detailed structure of porous media or simulate complex processes in porous media.
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Lattice gas automata (LGA) is a mesoscopic simulation method from the viewpoint that fluids
consist of a large number of particles that “live” on regular lattices with interactions conserving
mass and momentum [9]. It is a “bottom-up” and “equation-free” method capturing both
macroscopic and mesoscopic characteristics of complex/multi-scale systems, quite distinctive from
molecular dynamics (MD), kinetic theory of gases and other methods based on the discretization
of partial differential equations. Although LGA suffers drawbacks like statistical noise, the lake
of Galilean invariance and velocity-dependent pressure, LGA preserves the particle nature and
numerical stability compared with lattice Boltzmann methods [10]. More detailed microscopic
interaction among particles or between particles and walls can be obtained when using LGA.
Thus, various investigations on flow past obstacles or reaction using lattice gas automata have
been carried out, such as flow over cylinders or plat plate [11–13], reaction and diffusion
systems [14–16], first order reactions [17], motivation phenomena of atom and molecule [18,19],
kinetically and thermodynamically controlled reactions [20–22], and Lindemann theory [23,24].
However, investigations on flow, heat transfer and chemical reaction around a porous cylinder using
LGA were rarely reported.

Therefore, in this paper, we intend to explore the application of a LGA method to the heat
transfer and chemical reaction of fluid flow around and through a porous circular cylinder in a
channel. An algorithm based on the Frisch–Hasslacher–Pomeau (FHP-II) LGA model was developed
to deal with the coupled heat transfer and chemical reaction. Quartet structure generation set
(QSGS) was used to construct the porous circular cylinder. The influences of porous structure, i.e.,
porosity, pore size and homogeneity, as well as that of reaction probability and flow velocity were
further discussed.

2. Simulation Method

2.1. Lattice Gas Automata Model for Heat Transfer and Chemical Reaction

In FHP-II, particles interact with each other according to a number of pre-defined collision and
propagation rules detailed by Frish et al. [25], as shown in Figure 1. Based on these simple rules, LGA
is capable of displaying complex fluid flow behavior, and consequently, it can be used as a simulation
tool for describing physical phenomena. The mass and momentum conservation can be written as
below, respectively, ¸
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ci=

# �
cos

π

3
i, sin

π

3
i
	

, i � 1, . . . , 6

0 , i � 0

Entropy 2016, 18, 1–16 

2 

and momentum [9]. It is a “bottom-up” and “equation-free” method capturing both macroscopic 
and mesoscopic characteristics of complex/multi-scale systems, quite distinctive from molecular 
dynamics (MD), kinetic theory of gases and other methods based on the discretization of partial 
differential equations. Although LGA suffers drawbacks like statistical noise, the lake of Galilean 
invariance and velocity-dependent pressure, LGA preserves the particle nature and numerical 
stability compared with lattice Boltzmann methods [10]. More detailed microscopic interaction 
among particles or between particles and walls can be obtained when using LGA. Thus, various 
investigations on flow past obstacles or reaction using lattice gas automata have been carried out, 
such as flow over cylinders or plat plate [11–13], reaction and diffusion systems [14–16], first order 
reactions [17], motivation phenomena of atom and molecule [18,19], kinetically and 
thermodynamically controlled reactions [20–22], and Lindemann theory [23,24]. However, 
investigations on flow, heat transfer and chemical reaction around a porous cylinder using LGA 
were rarely reported.  

Therefore, in this paper, we intend to explore the application of a LGA method to the heat 
transfer and chemical reaction of fluid flow around and through a porous circular cylinder in a 
channel. An algorithm based on the Frisch–Hasslacher–Pomeau (FHP-II) LGA model was developed 
to deal with the coupled heat transfer and chemical reaction. Quartet structure generation set 
(QSGS) was used to construct the porous circular cylinder. The influences of porous structure, i.e. 
porosity, pore size and homogeneity, as well as that of reaction probability and flow velocity were 
further discussed. 

2. Simulation Method  

2.1. Lattice Gas Automata Model for Heat Transfer and Chemical Reaction 

In FHP-II, particles interact with each other according to a number of pre-defined collision and 
propagation rules detailed by Frish et al. [25], as shown in Figure 1. Based on these simple rules, LGA 
is capable of displaying complex fluid flow behavior, and consequently, it can be used as a 
simulation tool for describing physical phenomena. The mass and momentum conservation can be 
written as below, respectively, 

( 1, ) ( , )i i i
i i

n t n t   r c r  (1) 

( 1, ) ( , )i i i i i
i i

n t n t   c r c c r  (2) 

where ( , )in t r  is the occupation state of the cell in i-th direction at time t  and place r  if the cell is 
empty, its value is 0, otherwise, its value is 1. ic  is the lattice velocity in i-th direction, and  

cos ,sin , 1,...,6
= 3 3

0 , 0
i

i i i

i

    
 
 

c  

 

Figure 1. Evolution process of FHP-II, where arrows denote moving particles and points represent 
static particles: (a) node at (t, r); (b) initialization; (c) after collision; and (d) after propagation. 

Figure 1. Evolution process of FHP-II, where arrows denote moving particles and points represent
static particles: (a) node at (t, r); (b) initialization; (c) after collision; and (d) after propagation.
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In the conventional LGA model, particles in the system are of same mass (assumed as 1) and
velocity scale (assumed as |ci| = 1), in other words, they are indistinguishable. In order to describe
problems involving heat transfer and chemical reactions, the particles should be distinguishable on
temperature and substance type. In current model, every particle is at either of the two energy
states [26] ei, i.e., 0 or 1, which represent low (minimum) and high (maximum) temperatures,
respectively. Particularly, if the cell is empty, ei is fixed as 0. Particles are also marked by finite
kinds of substance types si, and in this paper, si is equal to 0 or 1, representing reactant and product,
respectively. Besides mass and momentum, extra conservations are also taken into account with
respect to energy state and substance type, given as

¸
i

nα,β
i pt� 1, rq �

¸
i

nα,β
i pt, rq (3)

where α and β are the substance type and energy state of the cell in i-th direction, respectively. To
ensure the conservation of the number of particles with different energy states and substance types
at each node during the collision step of FHP-II model, the substance type and energy state need to
follow Equations (4) and (5), respectively, known as component conservations

¸
i

sα
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¸
i

sα
i pt, rq , α � 1 or 0 (4)

¸
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eβ
i pt� 1, rq �

¸
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eβ
i pt, rq , β � 1 or 0 (5)

Afterwards, the energy states and substance types of each node are mixed and re-distributed. In
fact, the energy states and substance types will be arbitrarily attached to the particles at the node after
collision. The overall conservations of mass and momentum will still follow Equations (1) and (2).
However, for the propagation process, the particle will move with energy state and substance type,
which is described as Equation (6). The evolution process of this model is illustrated in Figure 2.

nsipt�1,r�ciq,eipt�1,r�ciq
i pt� 1, r� ciq � nsipt,rq,eipt,rq

i pt, rq (6)
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The temperature and product concentration at a node are described as the proportion of particles
with high energy state (β = 1) and the proportion of product particles (α = 1), respectively, as the
following dimensionless forms:

T �

°
i

nα,1
i pt, rq

°
i,β

nα,β
i pt, rq

(9)

C �

°
i

n1,β
i pt, rq

°
i,α

nα,β
i pt, rq

(10)

2.2. Chemical Reaction Scheme

The scheme of chemical reaction is based on the algorithm proposed by Bresolin and
Oliveira [27] to simulate unimolecular and bimolecular reactions. For first-order reactions considering
unimolecular collision, the rate constant, k, is described as

k �
» 8

0
vpEqPpEqdE (11)

where vpEq is the frequency of collisions with energy E above the minimum energy E�, PpEq is the
energy distribution of the molecules, which is given by the Maxwell–Boltzmann distribution, and for
a molecule with n classic energy states, the fraction of molecules with energy states E1,E2, . . . ,En can
be written as

PpE1, E2, . . . Enq �
e
�pE1 � E2 � . . . Enq

RT
RT

�
e
�E
RT
RT

(12)

Integrating Equation (12) over all energy values yields:

PpEq �
�

E
RT


n�1 e
�E
RT

pn� 1q!RT
(13)

According to Rice–Ramsperger–Kassel (RRK) model [28–30], the frequency of collisions vpEq is
suggested to be the formula as follows:

$&
%

vpEq � 0 i f E   E�

vpEq � Cp1�
E�

E
qn�1 i f E ¥ E�

(14)

where C is a constant. For the simulation of chemical reaction in LGA, the collisions between
molecules can be interpreted as taking place among particles at a node.

In this paper, each reactant particle propagates with an associated probability r deciding it reacts
and converts to a product particle or not, generally described as the probability of effective collision.
This probability is determined by a probability distribution function and a threshold for reaction.
Herein, for simplification, the standard Gaussian distribution was used as the probability distribution
function instead of Maxwell–Boltzmann distribution, a threshold K� was used instead of E� to decide
the critical energy state of a reactant particle. During the collision step of LGA, a random number
K following the probability distribution function is generated and compared to K�; if K > K�, the
reaction is consider to be able to take place, otherwise, no reaction occurs.

Moreover, the frequency of collisions in LGA is supposed to be 1.0 per iteration when K > K�,
otherwise its value is 0, similar to Equation (14). Thus, the specific reaction constant equals to the
integration of energy distribution function above K� according to Equation (11). Therefore, reaction



Entropy 2016, 18, 2 5 of 16

probability r is equal to the proportion of the particles with energy above K�, as well as the specific
reaction constant. As shown in Figure 3, the curve represents the probability distribution function
(PDF), and K� is a threshold for reaction, the shaded area (beyond K�) represents the frequency
of collisions of hot populations, i.e., reaction probability r. For a given K�, reaction probability is
obtained, and vice versa. In this work, K� was determined by a given reaction probability from
the inverse of normal distribution [31]. The applications of the chemical reaction scheme will be
further discussed.
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3. Results and Discussion

3.1. Validation of the Chemical Reaction Scheme

The chemical reaction scheme was applied to irreversible first-order reaction A Ñ B and
reversible first-order reaction A é B , such as nuclear decay and transformation of isomers. The
reactions take place in a square enclosure with area 200 � 200 (lattice units). Every site was initially
filled with six A-type particles and bounce-back type boundary condition was employed to all walls,
where the momentum of particle is directly reversed while the substance state keeps unchanged
during the collision process. Additionally, no heat transfer was taken into consideration in these
two cases.

Molecules collide and react at random. Nevertheless, the time evolution of macroscopic
amounts or concentrations of molecules is usually quite reproducible due to the reproducibility of
experimental conditions. Such laws are called deterministic. More detailed introduction can be
found in reference [32]. For reaction A Ñ B , the deterministic half-life period can be obtained by
t1{2 � ln2{R, where r represents the probability of one A-type particle changes to one B-type particle
at each time, while the half-life period means the iterations needed for reducing the number of A-type
particle by half during the simulation process. The reaction probability, r, from A to B was set to be
0.03, 0.04 and 0.05, and K� was determined as 1.88, 1.75 and 1.65, respectively. During the collision
process, a normal distributed random number was generated to compare with K� to decide to react
or not. As shown in Figure 4, it can be observed that the concentration of particle A, obtained by
Equation (10), decreases with increasing reaction time, and the reaction rate, i.e., the slope of curve
in Figure 4a, increases as reaction probability increases. Figure 4b shows reasonable agreement has
been achieved between deterministic method and present simulation. Additionally, for a system with
100 � 100, and reduction probability r = 0.001, the deterministic half-life period is 693.1 iterations,
Seybold et al. [17] reported 688.3 � 9.7 iterations, and 691 iterations using present model, which also
indicates the feasibility of present model in reaction systems.

While A
k1
é
k2

B is an equilibrium system, from the law of mass action, the deterministic

equilibrium coefficient is defined as Keq � k1{k2 � RpA, Bq{RpB, Aq, and the equilibrium coefficient
can be obtained by the ratio of the final concentration of B and A as Keq � rBs{rAs in a stochastic
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system, like simulations using lattice gas automata. The reaction probability from A to B was set as
0.05, 0.06, and 0.07, corresponding to the reaction probability from B to A 0.04, 0.03, and 0.02, and
for reaction probability of 0.02 and 0.07, K� is 2.05 and 1.48, respectively. Similar results are obtained
compared to A Ñ B , as shown in Figure 5, however, Figure 5a presents a platform as time advances,
meaning an equilibrium state has been reached. Figure 5b indicates that good agreement has been
achieved between the stochastic method and deterministic method. The chemical reaction scheme
will be further used for the simulations of gas–solid reaction described latter.
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Figure 5. Simulation of Aé B , (a) processes at different reaction probabilities; and (b) comparison
of results obtained by deterministic method and present model.

3.2. Heat Transfer and Reaction across a Porous Circular Cylinder

The characteristics of the flow and heat transfer over a solid circular cylinder in a square
enclosure and a rectangular channel have been investigated by us using this model previously,
showing reasonable feasibility and reliability of the application of this model to the problems of flow
and heat transfer, details can be found in reference [33]. Herein, simulations of flow, heat transfer and
reaction around and through a porous circular cylinder in a channel were carried out. The schematic
diagram of the simulated system is shown as Figure 6, where a porous circular cylinder with diameter
D = 1/4W is placed at the coordinates (x = 1/3L, y = 1/2W) of a channel with width W = 400 and
length L = 1200 (lattice unit). Reactant gas entering from the inlet at a velocity u, flows around and
through and react with the porous cylinder. The effects of porous structure, reaction probability and
gas velocity at inlet on the characteristics of the system will be further discussed in detail.

The porous media investigated were generated by a comprehensive approach termed as
quartet structure generation set (QSGS) [34,35], which has been demonstrated capable of generating
morphological features close to many real porous media [34]. Following the steps illustrated by
Wang et al. [23], a porous two-dimensional cylinder can be generated with a set of three construction
parameters, including (i) growing phase (fluid) distribution probability, Cd, which decides initial
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number of fluid seeds in the system; (ii) directional growth probability of fluid, Di, which is
considered the same for all directions in this work; and (iii) fluid volume fraction P.Entropy 2016, 18, 1–16 
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as smaller pore size of porous media can be obtained as the distribution probability increases, as a 
result, more react-able surface area is generated. Porous cylinders of different porosity, pore size, 
and surface area could be obtained by adjusting the three parameters (Cd, Di, P), for the purpose of 
comparison. 

 

 

 

Figure 7. Porous cylinder generated with different construction parameter. (a–d) Effect of porosity 
on the morphology of cylinder, where Cd = 0.02, Di = 0.2 and (a) P = 0.2, (b) P = 0.4, (c) P = 0.6, and  
(d) P = 0.8. (e–h) Effect of directional growth probability on the morphology of cylinder, where  
Cd = 0.02, P = 0.2 and (e) Di = 0.05, (f) Di = 0.15, (g) Di = 0.25, and (h) Di = 0.35. (i–l) Effect of distribution 
probability on the morphology of cylinder, where Di = 0.2, P = 0.2 and (i) Cd = 0.005, (j) Cd = 0.015,  
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Figure 6. Schematic diagram of the processes happened in the circular cylinder with porous media structure.

Figure 7 presents the inner morphology of the porous circular cylinders of diameter D = 100
(lattice unit) resulted from different combinations of construction parameters, where shaded area
is solid phase and the rest to be pores. As can be seen in Figure 7a–d, the solid phase disappears
homogenously with increasing porosity, leading to larger pore sizes; and for Figure 7e–h, more
agglomeration of solid phase, i.e., less surface area and bigger pore size, appeared for larger
directional growth probability; on the contrary, for Figure 7i–l, more homogenous structure as well as
smaller pore size of porous media can be obtained as the distribution probability increases, as a result,
more react-able surface area is generated. Porous cylinders of different porosity, pore size, and surface
area could be obtained by adjusting the three parameters (Cd, Di, P), for the purpose of comparison.
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Figure 7. Porous cylinder generated with different construction parameter. (a–d) Effect of porosity
on the morphology of cylinder, where Cd = 0.02, Di = 0.2 and (a) P = 0.2, (b) P = 0.4, (c) P = 0.6,
and (d) P = 0.8. (e–h) Effect of directional growth probability on the morphology of cylinder, where
Cd = 0.02, P = 0.2 and (e) Di = 0.05, (f) Di = 0.15, (g) Di = 0.25, and (h) Di = 0.35. (i–l) Effect of
distribution probability on the morphology of cylinder, where Di = 0.2, P = 0.2 and (i) Cd = 0.005,
(j) Cd = 0.015, (k) Cd = 0.025, and (l) Cd = 0.035.
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Table 1 lists the simulation cases with different parameter sets, with Cases 1 to 4 selected from
Figure 7 to investigate the influence of the parameters of QSGS algorithm on the reaction process,
Cases 1, 5 and 6 to study the effect of reaction probability, and Cases 1, 7 and 8 are used to investigate
the inlet velocity.

Table 1. Parameter sets for simulation cases.

Case No.
Parameters of QSGS r u
Cd Di P

1 0.02 0.2 0.2 0.1587 1.0
2 0.02 0.2 0.4 0.1587 1.0
3 0.035 0.2 0.2 0.1587 1.0
4 0.02 0.35 0.2 0.1587 1.0
5 0.02 0.2 0.2 0.0668 1.0
6 0.02 0.2 0.2 0.3085 1.0
7 0.02 0.2 0.2 0.1587 0.5
8 0.02 0.2 0.2 0.1587 0.8

A conceptual first order heterogeneous reaction between the reaction gas and the porous cylinder
illustrated in Equation (10) is considered in this research, with A being the inlet reactant gas, B the
porous solid material, and C as the product gas.

Apgq � Bpsq Ñ Cpgq (15)

This reaction happens at the solid surface and is simply interpreted as one reactant gas particle
reacting with one solid site and generating one product gas particle at mesoscopic level, where the
(microscopic level) inner structures or properties of the gas particle or solid site are ignored. The
conversion of solid phase B can be defined by the ratio of the number of reacted solid sites to the
initial number of solid sites, and a formula as follows is defined

X � 1�
Nt

N0
(16)

where Nt is the number of solid sites at time t, and N0 is the initial number of solid sites. Thus, the
reaction rate can be further obtained from the time derivative of Equation (11) as dX{dt.

Instead of heat generated during the reaction process, a simplified heat transfer case is
considered, where solid sites are set as hot heat source with constant temperature (i.e., 1.0). Gaseous
particles will be enhanced to high energy state at impact with solid surface. The gas particles initially
entering the channel are of constant low temperature state as 0.

Bounce-back and adiabatic boundary conditions are applied to the channel walls except the
outlet which is a free boundary where all particles are released. Solid sites are set as bounce-back
boundaries, where gaseous particles will also decide to reaction with according to the chemical
reaction scheme.

The simulation carried out in such an order that reaction is not considered in the first 2000
iterations to test the coupling of flow and heat transfer only, also to ensure that the reaction takes
place at a stable flow field. Reaction is introduced thereafter to investigate its effect to the flow and
heat transfer.

The statistical result of temperature, component concentration, and solid phase conversion are
obtained from the simulation by space average. It is noted that the statistics level has impacts on the
detail of macroscopic picture. This effect is, however, not discussed in this work. Instead, to ensure
consistency, the space averaged results in every 2 � 2 grids are presented for all cases.
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3.2.1. Effect of Inner Porous Structure

As discussed in the previous part, the inner porous structure will be influenced by the
parameters of QSGS. In this section, the influence of inner structure on the behavior of flow, heat
transfer and chemical reaction around and through the cylinder will be investigated. The inlet
velocity is constant as 1.0 with a site density ρ = 1.0, and based on FHP-II model, Re = 158.2 using D
as the characteristics parameter.

Figure 8 shows the temperature contours around and inside the porous cylinder before chemical
reaction takes place at t = 2000 iterations. A large number of fluid particles are activated to high
energy state when they flow over and in the porous circular cylinder, forming a high temperature
zone at surrounding and inside the porous structure. As time elapses, the high temperature zone
extends to the neighboring field gradually, and no clear eddies have developed behind the cylinder.
The field of gas velocity also appeared to have impacts on the profile of temperature.
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The heterogeneous reaction is started after 2000 iterations. A product zone is then formed as
fluid particles flow over and through the porous cylinder and react with the solid sites according to
the reaction scheme. Figure 9 shows the product concentration around the solid cylinder at different
times for Case 4. The solid sites disappear gradually as time goes on. It can be observed that the
product emerges mainly at some hot points, and distributes homogeneously around the cylinder at
the beginning, and then diffuses off from the reaction interface to the surrounding. Figure 10 shows
the corresponding temperature contour around the cylinder for Figure 9. The structure of cylinder
changes with time, thus the heat transfer characteristics changes as a result.
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In order to compare the reaction characteristics of computational cases with porous inner
structure, contours of product concentration are shown as Figure 11, for t = 2500. It can be observed
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that the solid cylinder has disappeared completely at t = 2500 for Case 2 which has higher porosity
than the other three cases. Figure 12 shows the conversion of porous cylinders with different inner
structure, as a function of time. It is also notable that solid conversion of higher porosity (Case 2)
is faster. This is considered due to the less amount of solid phase, as well as the larger pore size,
which facilitates the diffusion of reactant and product. The other three cases with same porosity of
0.2 proceed similarly, but it can still be noted that Case 3 with larger distribution probability progress
faster than the other two cases for the former part of time, about 2500 iterations. This can be attributed
to the higher homogeneity resulting from larger distribution probability, leading to a larger surface
area (reacting sites) to mass ratio. However, this improvement on reaction speed is limited by the
relatively smaller pore size slowing down the gas diffusion. Knowing this, it is understandable that
Case 4, with larger solid agglomeration and bigger pore size due to higher value of directional growth
probability, has the exact opposite performance compare to Case 2.
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3.2.2. Effect of Reaction Probability

In order to obtain the influence of reaction probability on the process evolution, the value of
K� was set to be 0.5 and 1.5, and the reaction probability was determined as 0.3085 and 0.0668
according to the normal distribution function. The reaction probability decides the reaction velocity,
as Equation (9). The product concentration and temperature contour around the cylinder at t = 2500
are shown as Figure 13. It can be obviously noted that the reaction processes faster with a higher
value of probability, which also can be seen from Figure 14. The conversion increases as reacting time
advances and reaction probability increases. For instance, the complete reaction time increases from
696 iterations to 1140 iterations when the reaction probability decreases from 0.3085 to 0.0668.
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3.2.3. Effect of Inlet Gas Velocity

The equilibrium mean occupation numbers are calculated by Fermi–Dirac distribution,
as follows

neq
i �

1
1� expph� q � ciq

(17)

where h is a real number and q is a D-dimensional vector. The two parameters are termed as Lagrange
multipliers. For simplification, the Lagrange multipliers of the equilibrium distributions for lattice gas
automata can be obtain by the algebra formula [9]

nipuq � d� 2dci � u� 2d
1� 2d
1� d

c2
iαu2

α � d
1� 2d
1� d

u2 (18)

where d is equal to ρ{7 for FHP-II, and u is the node velocity. Thus, the variable ni at the inlet nodes
can be initialized by Equation (18) with a given particle density d and a node velocity u.

For this section, the effect of velocity at inlet on the reaction process is discussed, and the
parameters are listed in Table 1, as Cases 1, 7 and 8. Particle density ρ is fixed as 1.0 for all numerical
computation cases, thus d is equal to 1/7. The product and temperature contour of cases with different
inlet velocities are shown as Figure 15, it can be seen that Case 8 reacts faster than Case 7 and slower
than Case 1 compared with Figure 11a, indicating that the reaction velocity increases as the velocity
at inlet increases. This information can also be obtained from the dependence of conversion on
the reacting time, as shown in Figure 16, which shows that the extent of conversion increases with
increasing reacting time, as well as inlet velocity. This agrees well with the theories of surface reaction
in gas–solid systems, such as unreacted shrinking core model [36] and pore model [37], which indicate
that the increase of gas velocity promotes the collision between gas particles as well as between gas
particles and solid sites, facilitating the diffusion and external dispersion of reactant and product.
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(a) product concentration, u = 0.5. (b) temperature contour, u = 0.5. 

 
(c) product concentration, u = 0.8. (d) temperature contour, u = 0.8. 

Figure 15. Product concentration and temperature contour of Case 7 and Case 8, where inlet gas 
velocity is 0.5 and 0.8, respectively, and t = 2500 iterations. 
Figure 15. Product concentration and temperature contour of Case 7 and Case 8, where inlet gas
velocity is 0.5 and 0.8, respectively, and t = 2500 iterations.
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Figure 16. Reaction processes at different inlet velocities. 

4. Conclusions  

A two-dimensional lattice gas automata model is developed to simulate the flow, heat transfer 
and chemical reaction around and through porous cylinders constructed by QSGS algorithm. In this 
model, two additional particle properties, i.e., particle type and energy state, are introduced to 
account for involved chemical species and fluid temperature, respectively. Heat transfer on the 
interface of gas–solid is then simulated by the change of gas particle energy state at impact. A 
chemical reaction scheme based on collision theory is developed, where chemical reaction is also 
interpreted as the change of particle type according to the probability of reaction.  

By controlling the construction parameters of the QSGS method, porous cylinders of different 
pore sizes, solid agglomeration, porosity and surface to mass ratio are generated for the 
investigation. Their effects, together with that of reaction probability and inlet fluid velocity on the 
profiles of temperature, solid conversion rate, and reaction product concentration, are discussed. 
Numerical results indicate that cylinders with a higher porosity, larger pore size, and more surface 
area to mass ratio react with gas particles faster. Moreover, the reaction velocity increases with 
increasing reaction probability as well as gas velocity at inlet. These results agree well with the basic 
theories of the gas dispersion, pore diffusion, and solid surface reaction. The proposed LGA model is 
therefore believed to provide a prospective modeling strategy for describing gas–solid chemical 
reaction occurring at complex boundaries from the viewpoint of mesoscopic level. 
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4. Conclusions

A two-dimensional lattice gas automata model is developed to simulate the flow, heat transfer
and chemical reaction around and through porous cylinders constructed by QSGS algorithm. In
this model, two additional particle properties, i.e., particle type and energy state, are introduced
to account for involved chemical species and fluid temperature, respectively. Heat transfer on the
interface of gas–solid is then simulated by the change of gas particle energy state at impact. A
chemical reaction scheme based on collision theory is developed, where chemical reaction is also
interpreted as the change of particle type according to the probability of reaction.

By controlling the construction parameters of the QSGS method, porous cylinders of different
pore sizes, solid agglomeration, porosity and surface to mass ratio are generated for the investigation.
Their effects, together with that of reaction probability and inlet fluid velocity on the profiles of
temperature, solid conversion rate, and reaction product concentration, are discussed. Numerical
results indicate that cylinders with a higher porosity, larger pore size, and more surface area to mass
ratio react with gas particles faster. Moreover, the reaction velocity increases with increasing reaction
probability as well as gas velocity at inlet. These results agree well with the basic theories of the gas
dispersion, pore diffusion, and solid surface reaction. The proposed LGA model is therefore believed
to provide a prospective modeling strategy for describing gas–solid chemical reaction occurring at
complex boundaries from the viewpoint of mesoscopic level.
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