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Abstract: In the paper we define three kinds of entropy of a fuzzy dynamical system using different
entropies of fuzzy partitions. It is shown that different definitions of the entropy of fuzzy partitions
lead to different notions of entropies of fuzzy dynamical systems. The relationships between these
entropies are studied and connections with the classical case are mentioned as well. Finally, an analogy
of the Kolmogorov–Sinai Theorem on generators is proved for fuzzy dynamical systems.
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1. Introduction

The notion of entropy is basic in information theory [1,2]; it is suitable for measuring the value of
information which we get from a realization of the considered experiment. A customary mathematical
model of a random experiment in the information theory is a measurable partition of a probability
space. Partitions are standardly defined within classical, crisp sets. It turned out however, that for
solving real problems partitions defined within the concept of fuzzy sets [3,4] are more suitable.
That was a reason why several concepts of generalization of the classical set partition to a fuzzy
partition [5–10] have been created. A fuzzy partition can serve as a mathematical model of the random
experiment whose results are vaguely defined events, the so-called fuzzy events. Kolmogorov and
Sinai [11] (see also [12]) used the entropy to prove the existence of non-isomorphic Bernoulli shifts
(Example 1). Because the Kolmogorov and Sinai theory of entropy of classical dynamical systems
has many important and interesting applications, it is reasonable to also expect similar results in the
fuzzy case.

In this paper we present our results concerning the entropy of fuzzy dynamical system based
on a given probability space. The results represent fuzzy generalizations of some concepts from the
classical probability theory. First, we briefly repeat some basic facts from the theory of fuzzy partitions
(Section 2) and the classical Kolmogorov–Sinai theory (Section 3). The presented concepts of entropy
of fuzzy partitions (Riečan–Dumitrescu, Maličky, and Hudetz entropy) were used to define three
kinds of entropy of a fuzzy dynamical system (Section 4). We study the relationships between these
entropies and also connections with the classical case. We obtain the measure which can distinguish
non-isomorphic dynamical systems more sensitively than the Kolmogorov–Sinai entropy (Theorem 4).
Finally, we prove an analogy of the Kolmogorov–Sinai Theorem on generators for the case of fuzzy
dynamical systems. The final section presents conclusions and some suggestions for further research.
It is noted that certain basic studies on entropy of fuzzy partitions and related notions were done
in [13–31].
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2. Fuzzy Partitions

In our considerations the Kolmogorov name appears twice. First the Shannon entropy has been
used for the distiguishing non-isomorphic dynamical systems by the Kolmogorov–Sinai entropy.
We generalize the distinguishing to the fuzzy case. Secondly the whole modern probability theory and
mathematical statistics with applications is based on the set theory, and this method was suggested
by Kolmogorov. The main prerequisite of the Kolmogorov approach (cf. [32]) is the identification of
the notion of an event with the notion of a set. So consider a non-empty set Ω, some subsets of Ω
will be called events. Denote by S the family of all events. In the probability theory it is assumed that
S is a σ´ algebra.

Definition 1. A family S of subsets of a non-empty set Ω is called a σ´ algebra if the following conditions
are satisfied:

(i) Ω P S,
(ii) if A P S, then Ω´ A P S,

(iii) if An P S pn “ 1, 2, ...q, then Y8n“1 An P S.

The couple pΩ, Sq will be called a measurable space.

Definition 2. Let pΩ, Sq be a measurable space. A mapping P : S Ñ r0, 1s is called a probability measure if
the following properties are satisfied:

(i) PpΩq “ 1,
(ii) A, B P S, AX B “ Ø implies PpAY Bq “ PpAq ` PpBq,

(iii) An P S, An Ă An` 1pn “ 1, 2, ...q implies PpY8n“1 Anq “ lim
nÑ8

PpAnq.

The triplet pΩ, S, Pq is called a probability space.

If we have a set A Ă Ω, and ω P Ω, then we have only two possibilities: ω P A or ω P Ω´ A.
The set A can be characterized by the characteristic function χA : Ω Ñ t0, 1u . On the other hand a
fuzzy set is a mapping f : Ω Ñ r0, 1s . Analogously to the σ´algebra of sets, we consider a tribe of
fuzzy sets.

Definition 3. By a tribe of fuzzy subsets of a set Ω we shall mean a family F of functions f : Ω Ñ r0, 1s
satisfying the following conditions:

(i) 1Ω P F,
(ii) if f P F, then 1´ f P F,

(iii) if fn P F pn “ 1, 2, ...q, then sup fn P F.

The elements of F are called fuzzy events. If S is a σ´ algebra, then F “ tχA; A P Su is a tribe.
Another example of a tribe is the family F of all functions f : Ω Ñ r0, 1s measurable with respect
to S. Analogously to the notion of a probability P on a σ´ algebra S, P : S Ñ r0, 1s , we introduce the
notion of a state m on F, m : F Ñ r0, 1s .

Definition 4. Let F be a tribe. By a state on F we mean a mapping m : F Ñ r0, 1s satisfying the
following conditions:

(i) mp1Ωq “ 1,
(ii) if f , g, h P F, f “ g` h, then mp f q “ mpgq `mphq,

(iii) if fn P F pn “ 1, 2, ...q, fn Ò f , then mp fnq Ò mp f q.

One of the nicest results in the theory is the Butnariu and Klement representation theorem [33]
(see also Theorem 8.1.12 in [34]).
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Theorem 1. Let F be a tribe and m : F Ñ r0, 1s be a state. Then there exists a probability measure P
such that

mp f q “
ż

f dP

for every f P F.

Recall that P is defined on the σ´ algebra T = tA Ă Ω; χA P F}. Hence it is reasonable to
consider a probability space pΩ, S, Pq and the family F of all S-measurable functions f : Ω Ñ r0, 1s .
The following concept was used, for example, in [6,23].

Definition 5. Let pΩ, S, Pq be a probability space, F be the family of all S-measurable functions f : Ω Ñ r0, 1s
(i.e., rα, βs Ă r0, 1s ñ f´1 prα, βsq P S ). By a fuzzy partition (more precisely F—partition) we
understand any sequence f1, ..., fn P F such that:

f1 ` f2 ` ...` fn “ 1.

Evidently, if A = t f1, ..., fku , B = tg1, ..., glu are fuzzy partitions of pΩ, S, Pq, then the system
A _ B :“

 

fi ¨ gj; i “ 1, 2, ..., k, j “ 1, 2, ..., l
(

is also a fuzzy partition of pΩ, S, Pq. We put
_n

i“1Ai “ A1 _A2_..._An. A usual measurable partition tA1, ..., Anu of Ω (i.e., each finite sequence
tA1, ..., Anu of measurable subsets of Ω such that Yn

i“1 Ai “ Ω and Ai X Aj “ Ø (i ‰ j)) can be
regarded as a fuzzy partition, if we consider fi “ χAi instead of Ai. Indeed:

χA1 ` χA2 ` ...` χAn “ 1.

3. Kolmogorov–Sinai Entropy

An inspiration for fuzzy entropy was the entropy of the classical partition.

Definition 6. Let pΩ, S, Pq be a probability space, A = tA1, ..., Anu be an S-measurable partition of Ω.
Then the Kolmogorov–Sinai entropy of A is the number:

H pAq “
ÿ

n
i“1φpPpAiqq,

where φ : r0, 1s Ñ < is the Shannon entropy defined via:

φpxq “

#

´ xlogx, i f x ą 0;
0, i f x “ 0.

If A, B are two partitions of pΩ, S, Pq, then A _ B :“ tAX B ; A P A, B P Bu. The symbol
A1 _A2 _ ..._Ak “ _

k
i“ 1Ai has a similar meaning.

Of course, the most important application of Kolmogorov–Sinai entropy has occured in
dynamical systems.

Definition 7. By a dynamical system we mean the quadruple pΩ, S, P, T q, where pΩ, S, Pq is a probability
space and T : Ω Ñ Ω is a measure preserving transformation (i.e., T´1pAq P S, and PpT´1pAqq “ PpAq for
any A P S).

Example 1. Let X “ tu1, ..., uku, p1, ..., pk ě 0, p1 ` p2 ` ...` pk “ 1, Ω “ XN “
 

pxnq
8
n“1 : xn P X

(

,
S be the σ´ algebra generated by the family of all subsets A Ă Ω of the form
A “

 

pxnqn : xi1 “ ui1 , xi2 “ ui2 , ..., xit “ uit
(

, and P : S Ñ r0, 1s be the probability generated by
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the equalities P
` 

pxnqn : xi1 “ ui1 , xi2 “ ui2 , ..., xit “ uit
(˘

“ pi1 ¨ pi2 ¨ ... ¨ pit , and the mapping
T : Ω Ñ Ω by the equality:

Tppxnq
8
n“1q “ pynq

8
n“1, yn “ xn`1, n “ 1, 2, ....

Then pΩ, S, P, T q is a dynamical system, so-called Bernoulli shift (the independent repetition of the
experiment tp1, ..., pku).

Let A “ tA1, ..., Anu be an S-measurable partition of pΩ, S, Pq. In the following,
by T´1pAq the partition

 

T´1pA1q, T´1pA2q, ..., T´1pAnq
(

is denoted. The partition A _

T´1pAq_..._ T´pn´1qpAq “ _
n´1
i“ 0 T´ipAq represents an experiment consisting of n realizations A,

T´1pAq, . . . ,T´pn´1qpAq of experiment A. The entropy hpT, Aq of experiment A with respect to T is
defined via:

hpT, Aq “ lim
nÑ8

1
n

Hp_n´1
i“ 0 T´ipAqq.

Definition 8. The Kolmogorov–Sinai entropy of dynamical system pΩ, S, P, T q is defined by the formula

hpTq “ sup thpT, Aqu ,

where the supremum is taken over all S-measurable partitions A of Ω.

If two dynamical systems are isomorphic, then they have the same entropy. It solves the existence
of non-isomorphic Bernoulli shifts. Probably one of the most important results of the theory of
invariant measures for practical purposes is the Kolmogorov–Sinai Theorem stating that h(T) = hpT, Aq,
whenever A is a partition generating the given σ´ algebra S (i.e., a measurable partition such that
σpY8i“0T´ipAqq “ S). In the following section, we give an analogy of this theorem for the case of fuzzy
dynamical systems.

4. The Entropy of Fuzzy Dynamical Systems

Let us return to the fuzzy case. Let a probability space pΩ, S, Pq be given. Each fuzzy
partition A “ t f1, ..., fku of Ω represents in the sense of the classical probability theory a random
experiment with a finite number of outcomes fi, i “ 1, 2, ..., k, (which are fuzzy events) with a
probability distribution pi “ mp fiq “

ş

fi dP, i “ 1, 2, ..., k, since pi ě 0 for i “ 1, 2, ..., k, and
řk

i“1 pi “
řk

i“1
ş

fi dP“
ş
řk

i“1 fi dP “ 1. This is a motivation for the following definition.

Definition 9. Let pΩ, S, Pq be a probability space and A “ t f1, ..., fku be a fuzzy partition of Ω. Put
mp f q “

ş

f dP. Then the entropy of A is given by the formula:

HpAq “
ÿ

k
i“1φpmp fiqq.

In the preceding section we have defined a dynamical system pΩ, S, P, T q. Now we shall define
the fuzzy dynamical system.

Definition 10. Let pΩ, S, Pq be a probability space, F be the family of all S-measurable functions f :
Ω Ñ r0, 1s , mp f q “

ş

f dP. Then the quadruple pΩ, F, m, τq, where τ : F Ñ F is m-invariant (i.e.,
mpτp f qq “ mp f q for all f P F), is called a fuzzy dynamical system.

Example 2. Let T : Ω Ñ Ω be a measure P preserving map. Define τ : FÑ F by the formula:

τp f q “ f ˝ T for all f P F. (1)
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Then:
mpτp f qq “ mp f ˝ Tq “

ż

f ˝ T dP “
ż

f dP ˝ T´1 “

ż

f dP “ mp f q,

hence τ is invariant.

Example 3. Let pΩ, S, P, T q be a classical dynamical system. Put F “ tχA; A P Su . Then the system
pΩ, F, m, τq, where τ : F Ñ F is defined by (1), is a fuzzy dynamical system. By this procedure the
classical model can be embedded to a fuzzy one.

Lemma 1. Let pΩ, F, m, τq be a fuzzy dynamical system, A be a fuzzy partition of Ω. Then the following
limit exists:

hpτ, Aq “ lim
nÑ8

1
n

Hp_n´1
i“ 0 τipAqq.

Proof. Put:
an “ Hp_n´1

i“ 0 τi pAqq.

Then an`m ď an ` am, for any n, m P N, and this inequality implies the existence of lim
nÑ8

1
n

an.

Definition 11. Let pΩ, F, m, τq be a fuzzy dynamical system. For any non-empty G Ă F define the
Riečan–Dumitrescu entropy hGpτq of pΩ, F, m, τq by the equality:

hGpτq “ sup thpτ, Aqu ,

where the supremum is taken over all fuzzy partitions A Ă G .

From the following example it follows that the entropy hGpτq is a fuzzy generalization of the
Kolmogorov–Sinai entropy.

Example 4. Let pΩ, S, P, T q be a dynamical system. Put G “ tχA; A P Su , and define τ : F Ñ F
by (1). Then hGpτq “ hpTq is the Kolmogorov–Sinai entropy.

The main result in the Riečan–Dumitrescu entropy is the following theorem on generators (cf. [25]).

Theorem 2. Let C be an S-measurable partition of Ω generating S, i.e., σpY8i“0τipCqq “ S. Then, for any
fuzzy partition A “ tg1, ..., gku , the following inequality holds:

hpτ, Aq ď hpτ, Cq `
ż

ÿ

k
i“1φpgiqdP.

Of course, if G contains all constant functions, then hGpτq “ 8. This defect can be removed by
two other constructions, by means of the Maličky entropy and the Hudetz entropy.

In the Riečan–Dumitrescu definition we considered the entropy:

H
´

_
n´1
i“ 0 τipAqq

for any fuzzy partition A. Instead of this number, we will use the number HpA, τ(A), . . . ,τn´1(A))
defined as follows. If A, B are two fuzzy partitions, A = t f1, ..., fku , B = tg1, ..., glu , then we write
A ď B if there is a partition tI1, ..., Iku of the set t1, 2, ..., lu such that fi “

ř

j:jPIi

gj for any i P t1, 2, ..., ku.

Definition 12. Let A be a fuzzy partition. Then we define

HpA, τpAq, . . . , τn´1pAqq “ inf
!

HpCq : C ě A, C ě τpAq, . . . , C ě τn´1pAq
)

.
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It is noted that this approach was suggested by Maličky and Riečan in [35], but only for the case
of classical dynamical systems. The above definition includes a more general case. Similarly as in
Lemma 1, the following assertion can be proved.

Lemma 2. Let A be any fuzzy partition of Ω. Then the following limit exists:

hpτ,Aq “ lim
nÑ8

1
n

HpA, τpAq, . . . , τn´1pAqq.

Therefore we are able to define the entropy hGpτq of a fuzzy dynamical system (Ω, F, m, τ).

Definition 13. Let G Ă F. Then the entropy hGpτq of pΩ, F, m, τq is defined by the equality:

hGpτq “ sup
!

hpτ , Aq
)

,

where the supremum is taken over all fuzzy partitions A Ă G.

Now we can compare the entropy hGpτqwith the Riečan–Dumitrescu entropy.

Theorem 3. For any G Ă F it holds:
hGpτq ď hGpτq.

Proof. Let A be a fuzzy partition, A Ă G, C “ _n´1
i“ 0 τi pAq. Then:

A ď C, τpAq ď C, . . . , τn´1pAq ď C,

hence:
HpA, τpAq, . . . , τn´1pAqq ď HpCq “ Hp_n´1

i“ 0 τipAqq,

and:
hpτ,Aq ď hpτ,Aq

for any A Ă G. Therefore hGpτqď hGpτq.

Theorem 4. Let pΩ, S, P, T q be a dynamical system. Let G “ tχA; A P Su , mp f q “
ş

f dP, and
τp f q “ f ˝ T. Then:

hpTq ď hGpτq.

Proof. Let A be an S-partition. Then:

A ď C, τpAq ď C, . . . , τn´1pAq ď C,

implies:
_

n´1
i“ 0 τipAq ď C.

Hence:
Hp_n´1

i“ 0 τipAqq ď HpCq,

and:
lim

nÑ8

1
n

Hp_n´1
i“ 0 τipAqq ď hpτ,Aq ď hGpτq.
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Therefore:
hpTq ď hGpτq.

Note that the oposite inequality hGpτqď hpTq is proved for some G in [23].
Let pΩ, S, P, T q be a dynamical system. In the following we shall consider a fuzzy dynamical

system pΩ, F, m, τq, where the mapping τ : F Ñ F is defined by the formula τp f q “ f ˝ T. We shall
consider the entropy suggested and studied by Hudetz in [36–38].

Definition 14. Let A = t f1, ..., fku be a fuzzy partition of Ω. Then the Hudetz entropy of A is defined by
the equality:

ĤpAq “
ÿ

k
i“1φpmp fiqq ´

ÿ

k
i“1mpφp fiqq.

Using the Hudetz entropy of fuzzy partition we will define the entropy of fuzzy dynamical
systems. The possibility of this definition is based on the following theorem.

Theorem 5. Let pΩ, F, m, τq be a fuzzy dynamical system, A “ t f1, ..., fku be a fuzzy partition of Ω. Then the
following limit exists:

ĥpτ,Aq “ lim
nÑ8

1
n

Ĥp_n´1
i“ 0 τipAqq.

It holds:
ĥpτ,Aq “ hpτ,Aq ´

ż

ÿ

k
i“1φp fiqdP.

Proof. Let A “ t f1, ..., fku be a fuzzy partition. Since A_ τpAq “
 

fi ¨ τp f jq; i “ 1, ..., k, j “ 1, ..., k
(

,
we get:

ĤpA_ τpAqq “ HpA_ τpAqq ´
ÿ

k
i“1

ÿ

k
j“1mpφp fi ¨ τp f jqqq.

Put α “
 

pi, jq; fi ¨ τp f jq ą 0
(

.
Calculate:

řk
i“1

řk
j“1 mpφp fi ¨ τp f jqqq “

ş

p
řk

i“1
řk

j“1 φp fi ¨ τp f jqqqdP
“ ´

ş

p
ř

(i,jq Pα

fi ¨ τp f jqplog fi ` logτp f jqqqdP

“ ´
ş

pp
řk

j“1 τp f jqq
řk

i“1 filog fiqdP´
ş

pp
řk

i“1 fiq
řk

j“1 τp f jqlogτp f jqqdP

“ m
´

řk
i“1 φp fiq

¯

`m
´

řk
j“1 φpτp f jqq

¯

“ 2m
´

řk
i“1 φp fiq

¯

Hence:
ĤpA_ τpAqq “ HpA_ τpAqq ´ 2m

´

ÿ

k
i“1φp fiq

¯

.

.
By the principle of mathematical induction we get:

Ĥp_n´1
i“ 0 τipAqq “ Hp_n´1

i“ 0 τipAqq ´ n ¨m
´

ÿ

k
i“1φp fiq

¯

,

and therefore, lim
nÑ8

1
n

Ĥp_n´1
i“ 0 τi (A)) exists.

Moreover, we have:

ĥpτ,Aq “ lim
nÑ8

1
n

Ĥp_n´1
i“ 0 τipAqq “ hpτ,Aq ´

ż

ÿ

k
i“1φp fiqdP.
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Definition 15. For any non-empty G Ă F define the entropy ĥGpτq of a fuzzy dynamical system pΩ, F,
m, τq by the equality:

ĥGpτq “ sup
!

ĥpτ,Aq
)

,

where the supremum is taken over all F-partitions A Ă G.

The following theorem is a fuzzy analogy of Kolmogorov–Sinai Theorem on generators.

Theorem 6. Let C be an S-measurable partition of Ω generating S such that C Ă G Ă F. Then:

ĥGpτq “ ĥpτ, Cq ď hpτ, Cq.

Proof. Let A “ tg1, ..., gku be a fuzzy partition of Ω . It is sufficient to prove the inequality ĥpτ,Aq ď
hpτ, Cq. Based on Theorem 2 we have:

hpτ,Aq ď hpτ, Cq `
ż

ÿ

k
i“1φpgiqdP. (2)

According to Theorem 5:

ĥpτ,Aq ď hpτ,Aq ´
ż

ÿ

k
i“1φpgiqdP. (3)

By the combination of Equations (2) and (3) we get that ĥpτ,Aq ď hpτ, Cq.

5. Conclusions

In this paper we study the entropy of fuzzy partitions and the entropy of fuzzy dynamical systems.
The presented concepts of entropy of fuzzy partitions were used to define three kinds of entropy of
a fuzzy dynamical system. The relationships between these entropies are studied. The presented
measures can be considered as measures of information of experiments whose outcomes are vaguely
defined events, the so-called fuzzy events. Finally, we prove an analogy of the Kolmogorov–Sinai
Theorem on generators for the case of fuzzy dynamical systems.

Similarly to the set theory the fuzzy set theory has also been shown to be useful in many
applications of mathematics as well as in the theoretical research. We hope that also the present
text can be presented as an illustration of the fact. Of course, there exists a remarkable generalization
of fuzzy set theory. It was suggested by K. Atanassov and it is named IF-set theory [39,40]. Instead of
one fuzzy set f : Ω Ñ r0, 1s , IF-set is a pair A “ pµA, υAq of fuzzy sets µA, υA : Ω Ñ r0, 1s such that
µA` υA ď 1. The function µA is called the membership function, the function υA the non-membership
function. If we have a fuzzy set f : Ω Ñ r0, 1s then it can be represented as an IF-set A “ p f , 1´ f q .
It was reasonable to construct the probability theory on families of IF-sets (see e.g., [34,41]).

There are some results about the entropy on IF-sets (cf. [42]). Namely, any IF-set can be embedded
to a suitable MV–algebra (multivalued algebra). MV-algebras (cf. [43–45]) play in multi-valued logic
similar role as Boolean algebras in two-valued logic. There are at least two ways for further research
in the area. The first way: to study the IF-entropy without using MV-algebras, and by this way to
achieve some applications. The second way: to study the entropy on MV-algebras and some of its
generalizations as D-posets (cf. [46]), effect algebras (cf. [47]), or A-posets (cf. [48–50]).
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