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Abstract: Network anomaly detection and classification is an important open issue in

network security. Several approaches and systems based on different mathematical tools

have been studied and developed, among them, the Anomaly-Network Intrusion Detection

System (A-NIDS), which monitors network traffic and compares it against an established

baseline of a “normal” traffic profile. Then, it is necessary to characterize the “normal”

Internet traffic. This paper presents an approach for anomaly detection and classification

based on Shannon, Rényi and Tsallis entropies of selected features, and the construction

of regions from entropy data employing the Mahalanobis distance (MD), and One Class

Support Vector Machine (OC-SVM) with different kernels (Radial Basis Function (RBF)

and Mahalanobis Kernel (MK)) for “normal” and abnormal traffic. Regular and non-regular

regions built from “normal” traffic profiles allow anomaly detection, while the classification

is performed under the assumption that regions corresponding to the attack classes have

been previously characterized. Although this approach allows the use of as many features

as required, only four well-known significant features were selected in our case. In order to

evaluate our approach, two different data sets were used: one set of real traffic obtained from

an Academic Local Area Network (LAN), and the other a subset of the 1998 MIT-DARPA

www.sciforum.net/conference/ecea-1
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set. For these data sets, a True positive rate up to 99.35%, a True negative rate up to

99.83% and a False negative rate at about 0.16% were yielded. Experimental results show

that certain q-values of the generalized entropies and the use of OC-SVM with RBF kernel

improve the detection rate in the detection stage, while the novel inclusion of MK kernel in

OC-SVM and k-temporal nearest neighbors improve accuracy in classification. In addition,

the results show that using the Box-Cox transformation, the Mahalanobis distance yielded

high detection rates with an efficient computation time, while OC-SVM achieved detection

rates slightly higher, but is more computationally expensive.

Keywords: generalized entropies; network traffic; anomaly detection; OC-SVM;

Mahalanobis kernel; Mahalanobis distance; non-Gaussian data

1. Introduction

The detection and prevention of attacks and malicious activities have led to the development of

technologies and devices designed to provide a certain degree of security. One of the first technologies

for countering attacks launched against computer networks were the Network Intrusion Detection

Systems (NIDS). NIDS are classified into two groups: Signature-NIDS, which use a database with

attack signatures, and Anomaly-NIDS, which use the principle of classifying the traffic into normal and

abnormal in order to decide if an attack has occurred.

A-NIDS, also known in the literature as behavioral-based, make use of a model of normal inputs in

order to detect security events. They try to establish what a “normal profile” or anomaly-free profile for

system or network behavior is, using the network features or variables, e.g., destination and source IP

Addresses and Port, packet size, number of flows, and amount of packets.

For anomaly detection [1], some traffic variables can be employed directly or functions of these

variables, e.g., the entropy. Entropy-based approaches for anomaly detection are appealing, since they

provide more information about the structure of anomalies than traditional traffic volume analysis [2].

Entropy is used to capture the degree of dispersal or concentration of the distributions for different traffic

features [3,4]. The attractiveness of entropy metrics stems from their ability to condense an entire feature

distribution into a single number while retaining important information about the overall state of the

distribution. A sequence of packets from network traffic is captured, network features are selected, and

the entropy of these network features are calculated. With the estimated values of entropy, the anomaly

detection is performed. For this, a profile with “normal” traffic is generated, and the data that deviate

from this profile will be considered anomalies. In work [5], starting from an H entropy matrix of normal

traffic without outlier filtering, an ellipsoidal region based on the Mahalanobis distance was defined.

An improvement to [5] was proposed in [6] where the algorithm uses the Mahalanobis distance

to the exclusion of outliers, and an ellipsoidal region was generated by calculating the parameters

{x̄, γ, λ, LT}, where x̄ is the mean vector of the H matrix, γ, λ are the eigenvectors and eigenvalues

of the covariance matrix of H , and LT is the limit of the Mahalanobis distance for H [7]. In both works,

network traffic behavior was characterized by regular ellipsoidal regions.



Entropy 2015, 17 6241

This paper proposes defining non-regular regions from training traces, i.e., “normal” traffic, through

OC-SVM, which contains parameters that adjust the region to the training traces. Figure 1 shows

different defined regions for the case of two variables. In other works (see [8,9]), the RBF kernel was

used. However, this work proposes using the Mahalanobis kernel, which in general showed higher

accuracy in classification than other methods.

Euclidian distance

Mahalanobis distance

OC-SVM

Figure 1. Different regions based on different methods and metrics.

This paper is organized as follows: Section 2 gives an overview of related work in the area of network

anomaly detection. Section 3 introduces the mathematical background, including different entropy

estimators, distance metrics, and OC-SVM. Section 4 states the problem and the proposed methods

associated with the definition of a region in the space R
p that characterizes the entropy behavior of

the p intrinsic variables associated with the traces. Section 5 presents the experiments carried out to

define regions and to detect and classify anomalies employing two different types of data sets. Section 6

presents a discussion of the experimental results. Finally, Section 7 outlines the conclusions.

2. Related Work

Works dedicated to anomaly detection systems employ different features and entropy as a measure

of dispersion, uncertainty, or randomness in order to detect changes in network traffic, which allows

anomaly detection. Wagner et al. [3] justify the use of entropy, saying, “The connection between

entropy and worm propagation is that worm traffic is more uniform or structured than normal traffic in

some respects and more random in others.” Xu et al. [4] propose a method based on the construction of a

3-dimensional feature space by reporting the contents of Shannon entropy of four intrinsic characteristics

of the traffic (source and destination IP address, source and destination ports) as a mechanism for

detecting intrusions. Nychis et al. [10] consider two types of distribution based on flow-header and

behavioral features. They concluded that the port and address distributions are strongly correlated, both

in their entropy time series and in their detection capabilities.

Some authors ([11–14]), have utilized generalized entropies (Tsallis and Rényi entropy), showing

advantages over Shannon entropy, adapting the q parameter in order to improve the detection of

anomalies. Ziviani et al. [11] investigated Tsallis entropy in the context of DoS attack detection and

found empirically that a value of q around 0.9 provides high detection of this attack. On the other hand,
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Tellenbach et al. [12] utilized the set q ∈ {−3} ∪ {−2,−1.75, ..., 1.75, 2} in order to detect DDoS and

scanning attacks. Ma et al. [13] used Tsallis entropy and Lyapunov exponent with chaotic analysis

of the entropy of source and destination IPs to detect DDoS attacks, employing q = 1.1.

Bhuyan et al. [14] used generalized entropy to describe characteristics of network traffic data and as

an appropriate metric to facilitate building an effective model for detecting both low-rate and high-rate

DDoS attacks, for q ∈ {1, 2, 3, ..., 15}.

At the classification stage, different techniques are used. In [5], the authors detected anomalies

using regular regions obtained from “normal” network traffic through Mahalanobis distance (i.e.,

hyper-ellipsoids). In [8], Li et al. proposed the OC-SVM method for construction of non-regular regions,

using the RBF kernel, and considering that “the normal data set is much larger than the abnormal.”

Zhang et al. [9] detected anomalies using the OC-SVM detector with RBF kernel.

Defining regular and non-regular regions in the feature space in order to detect and classify anomalies

in network traffic using entropy, Mahalanobis distance, and OC-SVM, this paper proposes:

• the use of Mahalanobis distance for construction of decision regions,

• the novel inclusion of the MK in OC-SVM for classification improvement respect to RBF kernel,

• the refinement of classification via the k-nn algorithm in the temporal sense.

In addition, the Box-Cox transformation was used to transform non-Gaussian distributed data to a set

of data that has approximately Gaussian distribution, and fulfills the requirement of Gaussianity for the

Mahalanobis distance.

3. Mathematical Background

3.1. Entropy Estimators

Let X be a random variable (r.v) which takes values of the set {x1, x2, ..., xM}, pi := P (X = xi) the

probability of occurrence of xi, and M the cardinality of the finite set; hence, the Shannon entropy is:

ĤS(P ) = −

M
∑

i=1

pi log (pi) . (1)

Based on the Shannon entropy [15], Rényi [16] and Tsallis [17] defined generalized entropies, which

are related to the q-deformed algebra

ĤR(P, q) =
1

1− q
log

(

M
∑

i=1

pqi

)

(2)

and

ĤT (P, q) =
1

q − 1

(

1−
M
∑

i=1

pqi

)

, (3)

where P is a probability distribution. When q → 1 the generalized entropies are reduced to

Shannon entropy.
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In order to compare the changes of entropy at different times, the entropy is normalized, i.e.,

H̄ =
Ĥ

Ĥmax

, (4)

where the maximum value of Rényi entropy for the observation vector of size L is given by

ĤR
max(P, q) = log(L) (5)

while the maximum of Tsallis entropy is given by

ĤT
max(P, q) =

1− L1−q

q − 1
. (6)

The parameter q as shown in Equations (2) and (3) is used to make the entropy more or less sensitive to

certain events within the distribution, thus modifying the entropy values, and consequently the entropy

behavior. In addition, for a specific event with probability p selecting an appropriated value of q, the

entropy value with respect to Shannon entropy can be increased (or decreased), see Figure 2.
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Figure 2. Entropy estimators (Shannon, Rényi, and Tsallis) for random variable (r.v) X with

probabilities Px = {p, (1− p)}.

3.2. Feature Space

Let X i
t , i = 1, 2, ..., p be features or random variables of some phenomenon under study and R

p

a p-dimensional feature space or space where our variables live. When the phenomenon is observed

during a time period T, N observations are collected. These observations can be studied one by one or

by group. In our case, the N observations are partitioned into m sequences or windows of length L.

For each sequence or time window, a functional f(•) is applied. As our purpose is the study of network

traffic and the randomness of the features, we will employ the entropy as f(•), which maps a set of

values of a sequence of Rp into a point in R
p.
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Let Xj ∈ R
p, j = 1, 2, ..., N be the vectors associated at p features, and Hi, i = 1, .., m, the entropies

associated at Xj in each sequence. Therefore, we have XN×p, a matrix representing the observations,

and Hm×p, the matrix of the entropy of the m sequences.

XN×p =













X1
1 X2

1 · · · Xp
1

X1
2 X2

2 · · · Xp
2

...
...

...
...

X1
N X2

N · · · Xp
N













f(•)
→ Hm×p =













H̄(X1
1 ) H̄(X2

1 ) · · · H̄(Xp
1 )

H̄(X1
2 ) H̄(X2

2 ) · · · H̄(Xp
2 )

...
...

...
...

H̄(X1
m) H̄(X2

m) · · · H̄(Xp
m)













(7)

An Hm×p matrix row represents a point in the p-dimensional feature space, and the m points generate

a cloud, which characterizes the behavior of p variables of the phenomenon under study. The entropy

values will be normalized, H̄(Xp
i ) ∈ [0, 1], in order to perform comparisons between the variables.

3.3. Mahalanobis Distance

The Mahalanobis distance is defined as [18]: d2 = (x − µ)
′

C−1(x − µ) where x ∈ R
p is the

sample vector, µ ∈ R
p denotes the theoretical mean vector, and C ∈ R

p×p denotes the theoretical

covariance matrix.

An unbiased sample covariance matrix is

S =
1

N − 1

N
∑

i=1

(xi − x̄)(xi − x̄)
′

, (8)

where the sample mean is

x̄ =
1

N

N
∑

i=1

xi. (9)

Thus, Mahalanobis distance using Equations (8) and (9) is given by:

d2 = (x− x̄)
′

S
−1(x− x̄). (10)

One basic assumption preceding any discussion of the distribution properties of Mahalanobis distance

is that the p-multivariate observations involved are the result of a random sampling of a p-variate

Gaussian population having a mean vector µ and a covariance matrix C. As µ and C are theoretical

values, for a data set containing x1, x2, .., xN samples, S and x̄ are theirs estimated respectively, and the

distribution of d2
i (x̄i,S) is given by:

d2
i (x̄i,S) ∼

[

(N − 1)2

N

]

β[α,p/2,(N−p−1)/2] (11)

where β[α,p/2,(N−p−1)/2] represents a beta distribution with a level of confidence α and parameters p/2

and (N − p− 1)/2, N is the number of samples and p the number of variables, see [7,19].

If the data sets does not follow a Gaussian distribution, a method to transform non-Gaussian

distributed data to a data sets with an approximate Gaussian distribution should be employed. In this

paper, the Box-Cox transformation [20] was used. This transformation is a family of power expressions

y(z) = xz−1
z

for z 6= 0 and y(z) = log(x) for z = 0, where z is the transformation parameter that

maximizes the Log-likelihood function.
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3.4. One Class Support Vector Machine and Mahalanobis Kernel

OC-SVM maps input data x1, ...,xN ∈ A (a certain set) into a high dimensional space F (via Kernel

k(x,y)) and finds the maximal margin hyperplane which best separates the training data from the origin

(see Figure 3).

F

b

w

Figure 3. Illustration of One Class Support Vector Machine idea.

Theoretical fundamentals of SVM and OC-SVM were established in [21–24]. In order to separate the

data from the origin, the following quadratic program must be solved [21]

min
w∈F,b∈R,ξ∈RN

1

2
‖w‖2 +

1

νN

N
∑

i

ξi − b (12)

subject to (w · ϕ(xi)) ≥ b − ξi; ξi ≥ 0, ν ∈ (0, 1], where w is the normal vector, ϕ is a map

function A → F , b is the bias, ξi are nonzero slack variables, ν is the outlier parameter control, and

k(x,y) = (ϕ(x),ϕ(y)). Moreover, the decision function is given by f(x) = sgn ((w ·ϕ(xi))− b) .

By applying the kernel function and Lagrangian multiplier (αi) to the original quadratic program, the

solution of Equation (12) creates a decision function:

f(x) = sgn

(

N
∑

i

αik(xi,x)− b

)

, (13)

where w =
∑

i αiϕ(xi) and
∑

i αi = 1.

In this work, we used the Mahalanobis kernel (MK), which is defined as: K(x,y) = exp(−(x −

y)
′

C(x − y)), where C is a positive definite matrix. The Mahalanobis kernel is an extension of the

Radial Basis Function kernel (RBF). Namely, by setting C = ηI, where η > 0 is a parameter for

decision boundary control and I is the unit matrix, we obtain the RBF kernel:

exp(−η ‖x− y‖2). (14)

The Mahalanobis kernel approximation [25] used in this work is:

k(x,y) = exp(−
η

p
(x− y)

′

S−1(x− y)), (15)

where p is the number of variables, and S is defined by Equation (8).
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4. Problem Statement

Let Ω be an Internet traffic data trace, called here Ω-trace, and p the number of random variables X i

representing the traffic features. It is known that the temporal behavior of these variables in the case of

“normal” traffic differs from that when there are attacks. On the other hand, in order to characterize these

behaviors, entropy can be used, and then instead of studying the traffic features directly, their temporal

entropy behaviors Hi(t) will be studied. We have the following behaviors:

• if Ω-trace was obtained during “normal” network traffic and the outlier exclusion was performed,

it will be called β-trace,

• if Ω-trace was obtained during a period containing “normal” traffic plus one or more attacks, it

will be called ψ-trace.

The main problem is to find a region, RN or RA, in the feature space R
p characterizing the temporal

behavior of the entropy of the p intrinsic variables associated with a class determined by the traces, i.e.,

• if Ω-trace is β-trace, then a region RN (“normal” traffic) can be constructed and it will serve to

detect the anomalies,

• if Ω-trace is ψ-trace, then a region RA (abnormal traffic) can be constructed and will serve to

classify the anomalies of this class.

Our approach to defining the “normal” RN or abnormal regions RA in the feature space

uses Mahalanobis distance to construct regular regions (i.e., hyper-ellipsoids) and OC-SVM for

non-regular regions.

Figure 4 shows the general architecture of the proposed method, which is composed of three parts:

training, detection, and classification. Feature extraction, windowing, entropy calculation, and the

Box-Cox transformation (for non-Gaussian data) are performed in the training and detection stages.

In the training stage, the different regions in the feature space are defined and the decision functions

are obtained. In the detection stage, the “normal” regions RN and the decision functions are used to

detect anomalies in the current traffic. Finally, the anomaly is classified through defined regions RA of

known classes.

DB

Feature
Extraction

Entropy
calculation

DETECTION

MD Decision
function

TRAINING

CLASSIFICATION

MD
Decision
functions

Windowing

Normal traffic
model

MD OC-SVM

Abnormal traffic
models

MD OC-SVM

Box-Cox
transformation

Figure 4. General architecture of the proposed method.
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4.1. Algorithm for the Construction of Decision Regions

4.1.1. Training Stage

An Ω-trace is divided into m non-overlapping slots of L packets each. Next, normalized entropy

estimates by means of Equations (1)–(3) of each p variable for every j-slot of size L are obtained, using

the relative frequencies p̂i =
ni

L
, where ni is the number of times that the i-element appears in the j-slot.

Then, the matrix H ∈ R
m×p is built as follows:

Hm×p =













H̄(X1
1 ) H̄(X2

1 ) · · · H̄(Xp
1 )

H̄(X1
2 ) H̄(X2

2 ) · · · H̄(Xp
2 )

...
...

...
...

H̄(X1
m) H̄(X2

m) · · · H̄(Xp
m)













(16)

where H̄(Xp
j ) represents the normalized entropy estimation of the p variable of each j-slot obtained

from Ω-trace. The H matrices are inputs of the algorithms for constructing the regions.

Algorithm for constructing regions based on the Mahalanobis distance (MD) method

1. Verify that the columns of the H matrix follow a Gaussian distribution. If the data are

non-Gaussian, then a transformation is performed so that the new data approximately follow a

distribution of this type. In this paper, the Box-Cox transformation was employed.

2. Perform the exclusion of outliers of the H matrix. The LT limit for Mahalanobis distance is

calculated through Equation (11).

3. Calculate the mean vector x̄ = {x̄1, x̄2, ..., x̄p}, where the i-element is the mean of the i-column

of the H matrix, see Equation (9).

4. Calculate the covariance matrix S of the H matrix. As the S matrix is positive definite and

Hermitian, all its eigenvalues λ1 ≥ λ2 ≥ ... ≥ λp are real and positive, and its eigenvectors

γ1,γ2, ...,γp form a set of orthogonal basis vectors that span the p-dimensional vector space.

5. Solve the matrix equation Sγ = λγ according to a specific algorithm in order to obtain the

eigenvalues λi and eigenvectors γi of S.

6. Finally, define a hyper-ellipsoidal region obtained from the H matrix by means of {LT, x̄,γ,λ}.

Algorithm for constructing regions based on the OC-SVM method

1. Verify that the columns of the H matrix follow a Gaussian distribution. If the data are

non-Gaussian, then a transformation is performed so that the new data approximately follow a

distribution of this type.

2. Perform the exclusion of outliers of the H matrix. The LT limit for Mahalanobis distance is

calculated through Equation (11).

3. Solve Equation (12) via the Sequential Minimal Optimization Algorithm (SMO) [26], using two

different kernel functions: RBF and MK. Considering the H matrix as input data, the entropy

support vectors xi and the constants αi and b are obtained.
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The algorithm for constructing regions based on the MD or OC-SVM allows regions RN to be defined

if the trace contains “normal” traffic, or regions RA if the trace contains abnormal traffic.

4.1.2. Detection Stage

1. In the current traffic, a j-slot of size L packets is captured, the p features or variables associated to

each packet are extracted, and their entropies estimated. With these values, the input vector hj is

built as follows:

hj =
(

H̄(X1
j ), H̄(X2

j ), · · · , H̄(Xp
j )
)

. (17)

2. The decision function for the MD region is given by Equation (10). If d2
j (hj) ≤ LT, then the

j-slot is considered “normal”; otherwise, it is an anomaly.

3. The decision function for OC-SVM is expressed by Equation (13). If the decision function maps

hj to +1, then hj is considered “normal”; otherwise, it is an anomaly.

4.1.3. Anomaly Classification Stage

If hj Equation (17) is outside the “normal” region, i.e., hj /∈ RN , but hj ∈ RA, then the behavior is

abnormal and the vector will be classified. Here, hj is evaluated with all decision functions defined in

the training stage.

If hj is outside all the defined regions or hj is located in two or more regions, then classification is

refined through a criterion based on the k-temporal nearest neighbors algorithm in order to ensure that a

point does or does not belong to a specific class.

The principle of the k-temporal nearest neighbors algorithm is that given hj and its k temporal

successors hr, r = j+1, j+2, .., j+k, hj using majority vote among these k-temporal nearest neighbors

is classified. If hj is outside all the defined regions and its k temporal successors are as well, then a new

attack class will be found or not.

Figure 5 shows an example of the algorithm considering two regions and k = 2 temporal nearest

neighbors. In Figure 5a, point hj is classified in the RA region, while in Figure 5b, point hj is classified

in the RB region.

(a) (b)

Figure 5. Use of k-temporal nearest neighbors algorithm in classification stage. (a) hj is

outside all the defined regions; (b) hj belongs to two or more regions.
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5. Experiments and Results

5.1. Our Data Sets

We evaluated our approach by analyzing its performance over two different experimental databases.

The first is from an Academic LAN [27], and is composed of traffic data traces collected over seven

days. A trace contains “normal” traffic (β1) and four traces are formed with “normal” traffic plus traffic

generated by four real attacks: port scan (ψ1), and three worms: Blaster (ψ2), Sasser (ψ3), and Welchia

(ψ4). The second is a sub-set of the 1998 MIT-DARPA [28] (public set benchmark for testing NIDS),

and is composed of one training trace (β2) that was collected over five days of “normal” behavior of the

network and four traces containing the traffic generated by Smurf (ψ5), Neptune (ψ6), Pod (ψ7), and

portsweep (ψ8) attacks.

The β1-trace is composed of “normal” traffic captured over six days. In the training stage, only a

day’s traffic is used, and the rest is used for test. A similar procedure is employed for the MIT-DARPA

β2-trace. In the case of anomalous traces, a portion of each ψ-traces were used for training, and the

complete traces for the test were employed.

5.2. Traffic Features

According to Section 3.2, the selected features are extracted from the header of each traffic network

packet and represented as random variables Xr; r = 1; ...; p. For our experiments, where attacks

generate deviations from the typical behavior of IP and Port addresses, four random variables were

selected: X1 source IP addresses, X2 destination IP addresses, X3 source port addresses, and X4

destination port addresses, and the temporal behavior of these features via their entropies hXp for normal

and abnormal traffic were studied.

An Ω-trace is divided into m non-overlapping slots of L packets each. For each i-slot,

the normalized entropy for each p variable H̄(Xp
i ) was obtained and the entropy vectors

hXp =
(

H̄(Xp
1 ), H̄(Xp

2 ), ..., H̄(Xp
m)
)

were constructed. Then, as inputs of the algorithms the following

matrices HIp = (hX1
′ hX2

′) ∈ R
m×2, HPt = (hX3

′ hX4
′), HIpDPt = (hX1

′ hX2
′ hX4

′), HIpSP t =

(hX1
′ hX2

′ hX3
′) ∈ R

m×3, HIpP t = (hX1
′ hX2

′ hX3
′ hX4

′) were formed. For estimations of the

generalized entropies the selected q-values are {0.01, 0.5, 1.5, 2, 10}.

5.3. The Classifier Metrics

The classifier is a mapping from instances to predicted classes, e.g., in two-class classification

problems, each instance (an entropy point in our case) is mapped to one element of the set {+1,−1}

of positive and negative class labels [29]. Given a classifier and an instance, there are four possible

outcomes: TN is the number of correct predictions that an instance is negative, FP is the number

of incorrect predictions that an instance is positive, FN is the number of incorrect predictions that an

instance is negative, and TP is the number of correct predictions that an instance is positive. With these

entries, the following statistics are computed [30]:
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• The accuracy (AC) is the proportion of the total number of predictions that were correct:

AC = TN+TP
TN+FP+FN+TP

.

• The sensitivity, detection rate, or true positive rate (TPR) is the proportion of positive cases that

were correctly identified: TPR = TP
FN+TP

.

• The specificity or true negative rate (TNR) is defined as the proportion of negative cases that were

classified correctly: TNR = TN
TN+FP

.

• The false negative rate (FNR) is the proportion of positive cases that were incorrectly classified as

negative: FNR = FN
FN+TP

.

5.4. Detection of Anomalies in Network Traffic

As noted above, anomaly-free traces were divided into m non-overlapping slots of size L (in our

case L = 32) packets. This size was chosen according to the shortest attacks contained in the test

traces—around 30 packets—and assuring at least one slot with malicious traffic.

For the input matrices HIp, HPt, HIpSP t, HIpDPt, and HIpP t, ellipsoids were found through

Mahalanobis distance, and non-regular regions were found through OC-SVM Radial Basis Function

(RBF) and Mahalanobis kernel (MK). The performance of OC-SVM was evaluated for different

combinations of parameters η and ν (see Equations (12), (14), and (15)) in the k-fold cross-validation

process with k = 5. For implementation of OC-SVM, the LIBSVM library [31] was used.

Table 1. True positive and negative rates using Tsallis entropy with q = 0.01 for different

input matrices.

Region LAN MIT-DARPA

H
T
Ip

ν η # SV β1 ψ1 ψ2 ψ3 ψ4 ν η # SV β2 ψ5 ψ6 ψ7 ψ8

MK 0.1 0.01 167 91.29 100 99.37 81.64 85.97 0.03 0.001 6 99.98 99.91 0.0 92.85 22.22

RBF 9.4 0.01 178 95.78 100 99.24 75.56 85.46 25 0.001 12 99.96 99.91 0.0 92.85 22.22

MD α = 0.9995 98.32 100 99.43 66.43 57.58 α = 0.99995 99.98 99.91 0.0 92.85 22.22

H
T
Pt

MK 0.2 0.01 172 92.61 88.88 84.57 61.18 94.09 0.03 0.001 9 99.76 99.39 100 92.85 88.88

RBF 9.4 0.01 194 92.36 88.88 83.34 61.14 91.07 25 0.001 17 99.76 99.82 100 92.85 88.88

MD α = 0.9995 98.36 77.77 75.92 60.66 69.02 α = 0.99995 99.58 99.39 100 92.85 100

H
T
IpSPt

MK 0.12 0.01 196 94.96 100 99.59 73.73 98.91 0.05 0.001 10 99.89 99.91 100 92.85 44.44

RBF 9.4 0.01 226 96.77 100 99.73 48.85 99.66 25 0.001 34 99.82 99.91 100 92.85 66.66

MD α = 0.9995 98.13 100 99.52 65.89 97.98 α = 0.99995 99.82 99.91 100 92.85 66.66

H
T
IpDPt

MK 0.2 0.01 206 93.62 100 99.47 87.12 99.59 0.05 0.001 12 99.87 99.91 0.0 92.85 88.88

RBF 10.6 0.01 232 96.74 100 99.48 87.93 99.39 25 0.001 30 99.84 99.91 0.0 92.85 100

MD α = 0.9995 98.23 100 99.55 69.54 99.25 α = 0.99995 99.81 99.91 0.0 92.85 100

H
T
IpPt

MK 0.12 0.01 206 95.23 100 99.65 79.75 99.59 0.05 0.001 14 99.82 99.91 100 92.85 88.88

RBF 10.4 0.01 291 96.23 100 99.76 86.38 99.75 25 0.001 58 99.56 99.91 100 92.85 100

MD α = 0.9995 97.94 100 99.62 69.01 99.23 α = 0.99995 99.61 99.91 100 92.85 100
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The regions found are used to detect anomalies in network traffic. Therefore, traces containing traffic

generated by different anomalies were used. Each test trace was divided into slots of size L and the

estimates of entropy for each selected variable were obtained. For each i-slot the Mahalanobis distance

was computed by Equation (10). Likewise, each i-slot was analyzed with OC-SVM decision function

Equation (13) and thus it was determined to belong to the non-regular region or not.

Results for anomaly detection of the LAN and MIT-DARPA traces using Tsallis entropy of the

features with q = 0.01 by means of the ellipsoidal (MD) and non-regular (OC-SVM) regions are

displayed in Table 1. Additionally, the values of α, η and ν (see Equations (11), (12), (14), and (15)) are

shown. The true negative rate for the attack ψ6 is 0 or 100, as it is contained in only one slot.

5.5. Classification of Worm Attacks

Each ψ-trace was divided into m non-overlapping slots of size L. For each i−slot, i = 1, ..., m, the

estimation of entropy H̄(Xr
i ) of the four selected variables was obtained. Next, HIp, HPt, HIpSP t,

HIpDPt, and HIpP t matrices were formed. With these matrices, the regions using Mahalanobis distance

and OC-SVM with RBF and MK kernel were defined. Figure 6 shows the ellipses and non-regular

regions defined in the feature space of IP addresses R
2 for each anomalous trace from LAN and

MIT-DARPA traces. In Table 2, the selected values of the OC-SVM parameters for the construction

of non-regular regions are shown.

We assume that every entropy point outside the normal region is an anomaly; however, not every

anomaly belongs to a specific attack class. If a point is an anomaly but the majority of its temporal

neighbors are normal, then it is considered normal as well. If a point is an anomaly and the majority of

its temporal neighbors belong to a specific anomaly class, then it belongs to this class. Therefore, results

were obtained using the k-temporal nearest neighbors algorithm, as in [6].

Table 2. Parameters of OC-SVM for classification of LAN and MIT-DARPA traces with

Tsallis entropy, q = 0.01.

Kernel

LAN MIT-DARPA

ψ1 ψ2 ψ3 ψ4 ψ5 ψ8

ν η # SV ν η # SV ν η # SV ν η # SV ν η # SV ν η # SV

H
T
Ip

MK 0.01 0.6 3 0.01 0.7 28 0.01 0.9 163 0.01 0.9 115 0.0001 0.1 2 0.01 0.08 2

RBF 0.001 8 3 0.01 13 29 0.01 10 162 0.001 15 33 0.0005 3 2 0.01 25 2

H
T
Pt

MK 0.01 0.6 5 0.01 0.7 25 0.01 0.9 35 0.01 0.9 59 0.0001 0.1 3 0.01 0.08 3

RBF 0.001 8 6 0.01 13 48 0.01 10 42 0.001 15 21 0.0005 3 2 0.01 25 3

H
T
IpSPt

MK 0.01 0.6 6 0.01 0.7 42 0.01 0.9 189 0.01 0.9 133 0.0001 0.1 2 0.01 0.08 2

RBF 0.001 8 6 0.01 13 66 0.01 10 195 0.001 15 173 0.0005 3 2 0.01 25 3

H
T
IpDPt

MK 0.01 0.6 8 0.01 0.7 34 0.01 0.9 173 0.01 0.9 136 0.0001 0.1 2 0.01 0.08 2

RBF 0.001 8 6 0.01 13 49 0.01 10 179 0.001 15 85 0.0005 3 2 0.01 25 5

H
T
IpPt

MK 0.01 0.6 8 0.01 0.7 47 0.01 0.9 193 0.01 0.9 148 0.0001 0.1 2 0.01 0.08 4

RBF 0.001 8 5 0.01 13 115 0.01 10 217 0.001 15 283 0.0005 3 2 0.01 25 9
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Figure 6. Worm attack regions in 2D space. (a) Worm attack regions from LAN traces in 2D

space (L = 32); (b) Worm attack regions from MIT-DARPA traces in 2D space (L = 32).

In Figure 7, the impact of the k-value of k-temporal nearest neighbors algorithm on the classification

for LAN traces using Tsallis entropy of Ips and ports variables with q = 0.01 is shown. TPR values

are results of the classifiers trained with β-traces and TNR values are results of the classifiers trained

with ψ-traces.
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Figure 7. Impact of the k-value of k-temporal nearest neighbors algorithm on

the classification.

6. Discussion of the Experimental Results

Our approach, see Figure 4, based on mathematical tools such as Mahalanobis distance, covariance

matrix, OC-SVM, and the k-temporal nearest neighbors algorithm allows the construction of different

regions (regular and non-regular), which encompass the behaviors of the four selected features.

These regions allow:

• the classification of an entropy vector as normal or abnormal, and

• the classification of an abnormal entropy vector based on known attacks.

The effects of the number of features—input matrices—on the true positive and negative rate is shown

in Table 1. Although in general more variables mean better results, a particular case occurred in trace

ψ3, where the use of three variables was better than four.

For anomalous ψ-traces, experimental results show that the true negative rate for q < 1 is higher

than the results for q > 1. Figure 8 shows the behavior of the true negative rate using four variables for

different q values of Tsallis entropy using OC-SVM with RBF kernel.

The runtime of the decision function of OC-SVM, see Equation (13), is determined by the number

of support vectors (xi). In this regard, the Mahalanobis kernel has a smaller number of support vectors

than RBF kernel in the MIT-DARPA traces. For LAN traces, the kernel that uses fewer support vectors

is RBF.

When a sequence of anomalies occur in network traffic, the entropy values begin to move away from

the “normal” region to a new region. This transient state affects classification when few neighbors

(k ≤ 2) of the k-temporal nearest neighbors algorithm are selected. Choosing a larger k-value mitigates

the effect of this transient, and therefore, the classification rate will stabilize. Table 3 shows that when the

number of neighbors is increased, the classification accuracy in the network LAN is increased as well.

Using the k-temporal nearest neighbors method, classification is improved; however, classification is

performed k−slots later. Experimental results showed that for values of k between 3 and 5, the accuracy

classification reaches a steady state, and the delay time is not significant.
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Figure 8. True negative rate for different values of q parameter of Tsallis entropy using

OC-SVM with RBF kernel.

Table 3. Accuracy of the classification of LAN and MIT-DARPA traces vs. different

k-values of k-temporal nearest neighbors, using q = 0.01 in LAN traces, and q = 0.5 in

MIT-DARPA traces for generalized entropies.

k
OC-SVM MK OC-SVM RBF MD

H
T
IpP t H

R
IpP t H

S
IpP t H

T
IpP t H

R
IpP t H

S
IpP t H

T
IpP t H

R
IpP t H

S
IpP t

LAN

0 32.4027 61.3592 38.9434 33.8506 66.0973 40.3794 30.1646 55.5757 33.7279

1 98.7503 98.8099 97.9229 98.7698 98.6869 98.9292 96.9534 96.1043 95.4036

3 99.1611 99.1210 98.2794 99.1871 99.0668 99.0142 98.0583 97.3197 96.3232

5 99.3079 99.2017 98.3141 99.2695 99.1844 99.0906 98.4566 97.7738 96.6380

7 99.2917 99.2695 98.3856 99.2716 99.2066 99.0771 98.6311 98.1488 96.8542

MIT-DARPA

0 24.2665 25.6156 23.8716 14.1701 8.7415 9.9645 86.7067 92.3433 93.2046

1 99.9595 98.6699 99.9167 99.2338 99.9690 99.7382 99.9952 99.9976 99.9976

3 99.7430 99.6359 99.9357 99.8025 99.7596 99.7644 99.9952 99.9976 99.9976

5 99.6573 99.6097 99.9310 99.8524 99.6264 99.6811 99.9928 99.9952 99.9952

7 99.4670 99.6407 99.9286 99.8477 99.3908 99.4694 99.9904 99.9928 99.9928

Considering packet sizes of 60 bytes in a 100Mbs network to capture a slot of 32 packets, the

time required is 32×60×8
100Mbs

= 153.6 µS. Using a PC with Intel Core i7 3.4 Ghz and 16 G of RAM,

a C-implementation of the proposed method using MD and including the decision function required

computation times of no more than 5 µs. Therefore, the proposed method can be implemented in

real time.
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7. Conclusions

In this paper, an approach was proposed for detecting and classifying Internet traffic anomalies

using the entropy of selected features, Mahalanobis distance, and OC-SVM with two kernels: RBF

and Mahalanobis kernel. Regular and non-regular regions were built with “normal” traffic from training

data. For detection of an anomaly, computation times in order of few µs were obtained; consequently,

these results are very significant for real time implementations.

In the detection stage, for all traces the highest true positive and negative rates (99.35% for

“normal” traffic and up to 99.83% for anomalous traffic) were obtained, using the generalized entropies

(particularly Tsallis entropy) with q = 0.01, and OC-SVM with RBF kernel. However, the optimal q is

not addressed in this work.

In the classification stage:

1. For Academic LAN traces, using Tsallis entropy with q = 0.01, OC-SVM with Mahalanobis

kernel, and considering k = 5 for the k-temporal nearest neighbor algorithm the highest results of

accuracy (99.30%) were obtained.

2. For MIT-DARPA traces, using the MD method, Rényi entropy with q = 0.5, and k ≥ 1 for the

k-temporal nearest neighbor algorithm the highest results of accuracy (99.99%) were obtained.

Open Issues

For different networks, the larger the slot size, the more different the entropy behaviors. In the near

future, this behavior including more and recent traces in order to determine whether the learned model

from a certain network can be used in a different network should be addressed.

In order to enhance our proposed approach other classification techniques such as multi-class SVM

should be studied.
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