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Abstract: We introduce a long-range particle and spin interaction into the standard Bariev
model and show that this interaction is equivalent to a phase shift in the kinetic term of
the Hamiltonian. When the particles circle around the chain and across the boundary,
the accumulated phase shift acts as a twist boundary condition with respect to the normal
periodic boundary condition. This boundary phase term depends on the total number of
particles in the system and also the number of particles in different spin states, which
relates to the spin fluctuations in the system. The model is solved exactly via a unitary
transformation by the coordinate Bethe ansatz. We calculate the Bethe equations and work
out the energy spectrum with varying number of particles and spins.
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1. Introduction

One dimensional (1D) (quasi-1D) systems exhibit some of the most diverse and intriguing physical
phenomena seen in all of condensed matter physics, such as charge (spin) density waves, quantum
wires, quantum Hall bars, Josephson junction arrays, polymers and 1D Bose-Einstein condensates. The
complete description of a solid is a complex many body problem. The particles are strongly correlated
and cannot be understood by removing the interactions between them or by considering the effects of
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interactions as a perturbation. However, for some realistic low-dimensional strongly correlated systems
a proper understanding has yet to be established through the examination of simplified exactly solvable
models, in which the integrability has been considered to be one of the striking properties from the
points of view of physics and mathematics. The 1D Hubbard model, in which the electron hopping
is strongly disturbed by the on-site Coulomb interaction, has been mainly investigated with regard of
Mott-transition through its exact solution [1]. The supersymmetric t − J model [2], which includes the
spin fluctuations via antiferromagnetic coupling, is relevant to the description of electronic mechanisms
in high-Tc superconductivity. The 1D Bariev (interacting XY) chain [3,4] is also a Hubbard-like
integrable model of special interest, as it supports Cooper type hole pairs. Motivated by the inclusion
of additional interactions, whether through internal impurities or external boundary fields, many works
have been carried out to generalize these models for different boundary fields [5–16]. This provides a
non-perturbative method to study the boundary impurity effects in one-dimensional quantum systems in
condensed matter physics. Bariev model has been generalized in many ways. The Hamiltonian studied
in [17] included the onsite interaction and pair hopping processes. The Bariev chains with correlated
single-particle and uncorrelated pair hopping were studied in [18], but there is only one type of particle.
Bariev et al. [19,20] have considered the situations with multi-particle hopping and interchain tunneling,
respectively. However, most of the investigated systems include only the nearest neighbor interactions;
the question of how to find an integrable system with long range interaction is an interesting topic.

Schulz and Shastry [21] presented a class of lattice and continuum fermion models which are exactly
solvable by a pseudo-unitary transformation, leading to nontrivial and non-Fermi-liquid behavior, with
an exponential dependence upon the interaction. The idea behind this approach is the finding of a basis
(through a unitary transformation of the original Fock basis [22,23]) in which the model takes the form
of the original Hubbard or XXZ model up to boundary twists which do not affect their solvability.
Furthermore, the Schultz-Sharstry model was generalized by introducing an exponential interaction
involving two spins with same orientation [24].

In this paper, we generalize the Bariev model by introducing an Schultz-Sharstry-like exponential
interaction which is dependent on the spin orientations of particles in the system. We note that the
applied long-range spin-dependent interaction in the hopping term can be treated as a boundary phase
twist. The phase change is in turn a function of number of particles and spins. When the Aharonov-Bohm
effect is added to a 1D Hubbard chain with periodic boundary conditions it contributes to an extra
phase shift related to the external magnetic flux [25,26], however our model can be applied both in the
situation with external magnetic field and with internal field induced by impurities or spin fluctuations.
We find the charge and spin excitations in our generalized model is a function of band filling, which
is similar to the model proposed by Hirsch [27] for studying the high-Tc superconductivity. The latter,
however, is not integrable in 1D. By applying an unitary transformation we prove the integrability of our
model. The model is solved in the framework of the coordinate Bethe ansatz [28,29]. All charge and
spin momenta are determined by a set of Bethe equations. The energy spectrum is listed based on the
classification of varying number of particles. These may be useful in the systems where the long-range
interactions cannot be ignored by only taking account of the nearest neighbour interactions.
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2. From Long-Range Interactions to a Twist Boundary Condition

To include long-range spin interactions, we introduce some coordinate dependent parameters, α, β
and κ into the Hamiltonian of the standard Bariev model. The Hamiltonian of the generalized Bariev
model to be studied is in the form

H = −t
L∑
j=1

∑
σ=↑,↓

{
c†j+1,σcj,σe

iκj(σ)ei
∑L
l=1[αj,l(σ)nl,−σ+βj,l(σ)nl,σ] + h.c.

}
× e−η

∑
σ′ 6=σ nj+θ(σ−σ′),σ′ , (1)

with c†j,σ (cj,σ) being the creation (annihilation) operator of a particle with spin σ (σ being either ↑ or
↓) located at the jth site, nj,σ

.
= c†j,σcj,σ being the number operator, and θ(x) being a step function, i.e.,

θ(x) = 1 if x > 0 and θ(x) = 0 if x < 0. The anti-commutation relation is satisfied by

{cj,σ, c†l,σ′} = δj,lδσ,σ′ , {c†j,σ, c
†
l,σ′} = {cj,σ, cl,σ′} = 0. (2)

η is a coupling constant that influences the hopping amplitude of particles. Positive and negative
values of η correspond to attractive and repulsive inter-particle interactions, respectively. It is clear that
the system is reduced to standard Bariev model and is integrable if α,β and κ all vanish. The exponential
term of αj,l and βj,l is a generalized Jordan-Wigner transformation which includes interactions between
the particle on the jth site and the occupation state of all sites on the spin chain. This can be seen
clearly if we make an expansion around small α and β. If we set αj,l = βj,l = π and take the
summation of l from 1 to j − 1, the generalized Jordan-Wigner transformation will degenerate into
Jordan-Wigner transformation.

For arbitrary values of α, β and κ the system described by Equation (1) is not integrable by
direct coordinate Bethe ansatz because all particles in the system are coupled through the long-range
interaction. So the question now turns into how to determine these free parameters but keep the
integrability. For this purpose, we introduce a special unitary transformation

U
.
= exp

L+1∑
l,m=1

∑
µ,ν=↑,↓

[
i(ξµ,ν

l,mnl,µnm,ν + ζl,µnl,µ)
]
, (3)

where ξl,m is the spin interaction strength between two sites and ζl ∈ R is a parameter related to the local
chemical potential and magnetic field. They are all free parameters to be confirmed by specific physical
models. The subscripts l and m are coordinate indices, and the superscripts µ, ν are spin indices.
This is similar to choosing a different basis for the coordinate Bethe ansatz calculations. We will show
later that α, β and κ can be expressed in the form of ξ and ζ. Under the transformation cj,σ

U−→
Ucj,σU

−1, the hopping term in Hamiltonian Equation (1) turns into

c†j+1,σcj,σ
U−→ c†j+1,σcj,σ exp

[
2i(ξσ,µ

j+1,m − ξσ,µ
j,m)nm,µ + i(ζj+1,σ − ζj,σ − 2ξσ,σ

j,j+1)
]
, (4)

while the particle number operator keeps unchanged.
For normal periodic boundary conditions, there will be a phase change of pkL when one particle hops

from site L to L + 1 = 1 (j = L in Hamiltonian Equation (1)), where k = 2π/L and p is an integer.
We will give up the original boundary condition of the standard Bariev model but apply new boundary
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conditions which can keep the integrability of model Equation (1). For the transformation Equation (3),
the phase shift across the boundary is determined by the relations ξ1,m ↔ ξL,m, ξL,1 ↔ ξL,L+1 and
ζ1,m ↔ ζL,m. Without loss of generality, we can set the phase change across the boundary to be

ξσ,−σ
L+1,m

.
= ξσ,−σ

1,m − Φ⊥(σ), (5)

ξσ,σ
L+1,m

.
= ξσ,σ

1,m − Φ‖(σ), (6)

ζL+1,σ− 2ξσ,σ
L,L+1

.
= ζ1,σ − 2ξσ,σ

L,1 − Φ(σ). (7)

If we set

αj,m(σ)
.
= 2(ξσ,−σ

j,m − ξσ,−σ
j+1,m) , (8)

βj,m(σ)
.
= 2(ξσ,σ

j,m − ξσ,σ
j+1,m), m ∈ {1, · · · , j − 1, j + 2, · · · , L} , (9)

κj(σ)
.
= (ζj,σ − ζj+1,σ + 2ξσ,σ

j,j+1) , (10)

we can see easily that the Hamiltonian Equation (1) can reduce to the original Bariev model by the
unitary transformation UHU−1, up to a set of boundary conditions, and is integrable if α,β and κ all
vanish. Through Equations (5)–(10), we obtain

αL,m(σ) = 2(ξσ,−σ
L,m − ξσ,−σ

1,m ) + Φ⊥(σ) , (11)

βL,m(σ) = 2(ξσ,σ
L,m − ξσ,σ

1,m) + Φ‖(σ), m ∈ {2, · · · , L− 1} , (12)

κL(σ) = (ζL,σ − ζ1,σ + 2ξσ,σ
L,1) + Φ(σ) . (13)

Then for the given boundary phase shift Φ⊥, Φ‖ and Φ the specific expressions for α, β and κ are
obtained by Equations (8)–(10) with the constraints

L∑
j=1

αj,m(σ) = Φ⊥(σ) , (14)

L∑
j=1

j 6=m,m−1

βj,m(σ) + βm,m−1(σ) + βm−1,m+1(σ) = Φ‖(σ) , (15)

L∑
j=1

[κj(σ) + βj,j(σ)] = Φ(σ) . (16)

The total boundary twist is given by

γσ = Φ(σ) + Φ⊥(σ)N−σ + Φ‖(σ)(Nσ − 1) , (17)

whereNσ is number of particles with spin σ. We note that the coefficient of the last term in Equation (17)
is Nσ − 1 because the terms for m = j and m = j + 1 in constraint Equation (9) do not exist.
This boundary condition we will call a twist boundary condition. When Φ⊥, Φ‖ and Φ all take a value
pkL, the twist boundary condition reduces to the trivial periodic boundary condition. For any chosen
twist boundary condition other than the normal periodic boundary condition, if one can find parameters



Entropy 2015, 17 6048

α, β and κ satisfying the constraints Equations (8)–(10) and (14)–(16), the Hamiltonian Equation (1) is
then solvable. The transform of Hamiltonian Equation (1) under U is

H
U−→ UHU−1 = −t

L−1∑
j=1

∑
σ=↑,↓

{
c†j+1,σcj,σ + h.c.

}
exp

[
−η
∑
σ′ 6=σ

nj+θ(σ−σ′),σ′

]

−t
∑
σ=↑,↓

{
c†1,σcL,σ exp[iγσ] + h.c.

}
exp

[
−η
∑
σ′ 6=σ

nj+θ(σ−σ′),σ′

]
, (18)

with the boundary term
c†L+1,σcL,σ = exp[iγσ]c†1,σcL,σ . (19)

Generally, the sites of the chain are chosen with a homogeneous distribution. So it is natural to think
the effect of this boundary phase term γσ as an average phase shift δσ = γσ/L when a particle hops from
one site to its neighbour sites. The corresponding Hamiltonian is then

H ′ = −t
L∑
j=1

∑
σ=↑,↓

{
eiδσ c̃ †j+1,σc̃j,σ + h.c.

}
exp

[
−η
∑
σ′ 6=σ

ñj+θ(σ−σ′),σ′

]
, (20)

where
c̃ †j,σ = e−ijδσc†j,σ , c̃j,σ = cj,σe

ijδσ , ñj,σ = c̃ †j,σc̃j,σ , (21)

and the basic commutation relations are kept unchanged. δ is a function of σ, N and N↓, which
is different from the case of a periodic chain. By comparing this with the standard Bariev model
(α = β = κ = 0 in Equation (1)), one can see clearly that the introduced long-range spin interactions
are equivalent to applying a twist boundary condition. However, we note that the phase shift between
the neighbour sites may as well be distributed in any other way such that the sum equals γσ without
changing any results.

3. Bethe Equations and Energy Spectrum

In the standard Bethe ansatz approach, modified for the twist boundary condition, any eigenfunction
of the Hamiltonian takes a form similar to tensor products of plane waves [30]. We consider the
eigenstate corresponding to N particles

|Ψ〉 =
L∑

xq=1

f(xq1 , · · · , xqN )
N∏
j=1

c†xj ,σj |Ω〉 (22)

in which the number of spin-down particles is N↓. In the region xq1 ≤ · · · ≤ xqN , the function f can be
written as [31]

f(xq1 , · · · , xqN ) = εPAσq1 ,··· ,σqN (kp1 , · · · , kpN )× exp

[
i
N∑
j=1

kpjxqj

]
θ(xq1 ≤ · · · ≤ xqN ) . (23)

By solving the Schrödinger equation H|Ψ〉 = E|Ψ〉, the energy eigenvalue of the Hamiltonian
Equation (18) is given by

E = −2t
N∑
j=1

cos kj . (24)
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We note that the form of the energy eigenvalue does not change from the standard Bariev chain.
However, we will see later that the momentum kj is now spin dependent. Two-particle scattering matrices
are given by

Sα1 α2
α1 α2

=
sin[(k1 − k2)/2]

sin[(k1 − k2)/2 + iη]
(α1 6= α2)

Sα1 α2
α2 α1

=
sin[iη]

sin[(k1 − k2)/2 + iη]
exp

[
i
k1 − k2

2
sign(α1 − α2)

]
(α1 6= α2) (25)

Sα0 α0
α0 α0

= 1 (α1 = α2 = α0) ,

which are similar to the R−matrices of the standard 6-vertex models. The two are related via a simple
gauge transformation as [32]

S12(λ) = V1(λ)R12(λ)V −1
1 (λ), V (λ) = diag

(
eiλ/4, e−iλ/4

)
. (26)

for λ = (k1 − k2).
In general, we have

S12(λ1 − λ2) = V1(λ1)V2(λ2)R12(λ1 − λ2)V −1
1 (λ1)V −1

2 (λ2). (27)

It is easy to show

S12(λ1 − λ2)S13(λ1 − λ3)S23(λ2 − λ3)

= V1(λ1)V2(λ2)V3(λ3)R12(λ1 − λ2)R13(λ1 − λ3)R23(λ2 − λ3)V −1
1 (λ1)V −1

2 (λ2)V −1
3 (λ3), (28)

which will satisfy the Yang-Baxter equation. So the integrability of the present model is kept. One can
also solve the problem by constructing the R-matrix of this model following the the techniques in [33].

The charge momentum kj and spin momentum Λµ satisfy the Bethe equations

eikjL = e−iγ↑
N↓∏
µ=1

sin
[

(kj−Λµ)

2
+ iη

2t

]
sin
[

(kj−Λµ)

2
− iη

2t

] , (29)

N↓∏
ν=1,ν 6=µ

sin
[

(Λµ−Λν)
2

+ iη
t

]
sin
[

(Λµ−Λν)
2
− iη

t

] = e−i(γ↓−γ↑)
N∏
j=1

sin
[

(Λµ−kj)
2

+ iη
2t

]
sin
[

(Λµ−kj)
2
− iη

2t

] . (30)

The structure of roots for these equations depends strongly on the hopping amplitude η.
The interactions between particles are repulsive when η > 0, all particles with different spins cannot form
a pair. In this situation all kj must be real, which can be proved under the thermodynamical limit. η < 0

corresponds to attractive interactions in the system. Particles with different spins tend to exist in the form
of cooper-pairs. The solution kj = Λ + i|η| corresponds to these bound states for charge excitations.
If we choose two sets of quantum numbers Ij and Jµ and set θ(x; a) = arctan

(
tan(x/2) coth(a/2)

)
,

Equations (29) and (30) then take the form

Lkj = −γ↑ + 2πI ′j +

N↓∑
µ=1

{π− 2θ(kj − Λµ;η)}

= −γ↑ + 2πIj −
N↓∑
µ=1

{2θ(kj − Λµ;η)} , (31)
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γ↓ − γ↑ = 2πJ ′µ −
N↓∑

ν=1;ν 6=µ

[π− 2θ(Λµ − Λν ; 2η)] +
N∑
j=1

[π− 2θ(Λµ − kj;η)]

= 2πJµ +

N↓∑
ν=1;ν 6=µ

[2θ(Λµ − Λν ; 2η)]−
N∑
j=1

[2θ(Λµ − kj;η)] , (32)

where I ′j and J ′µ are both common integers. The quantum numbers Ij = I ′j +N↓/2 and Jµ = J ′µ + (N↑+

1)/2 depend upon the charge and spin property in the system. From Equations (31) and (32) we can see
that Ij and Jµ are either integer or half-integer, according to the number of total particles and the number
of spin-up (spin-down) particles. There are four cases,

• Ij and Jµ are both integers if N and N↑ are both odd;
• Ij and Jµ are both half-integers if N is odd and N↑ is even;
• Ij is a half-integer and Jµ is an integer if N is even and N↑ is odd;
• Ij is an integer and Jµ is a half-integer if N and N↑ are both even.

By taking the summation of Equations (31) and (32) over the coordinate and spin indices respectively,
the momentum of the system is given as

P =
N∑
j=1

(
kj −

1

L
γ′
)

=
2π

L

 N∑
j=1

Ij +

N↓∑
µ=1

Jµ

 , (33)

where γ′ = (γ↓ − γ↑) − (N↑γ↓ + N↓γ↑)/N . In the above calculations we have used the relation∑N↓
µ=1

∑N↓
ν=1 2θ(Λµ − Λν , 2η) = 0 .

In the limiting case η −→∞ (coth (η) −→ 1), we get

Lkj = 2π

Ij +
N↓

N(L+N↓)

N∑
l=1

(Il − Ij) +
1

N

N↓∑
λ=1

Jλ

+ γ′ . (34)

Substituting it into Equation (24) we obtain the energy of the system

E0(γ) = −2tD cos

2π

L

 1

N

N↓∑
λ=1

Jλ + I +
γ′

2π

 , (35)

where D = sin(Nπ/L)/ sin(π/L) and I = (Imin + Imax)/2. We will not consider the situation where
N = L, which occurs when the chain is half filled and D is 0. Then for arbitrary combinations of N and
N↓ we have four different cases

E
even N↓
even N = −2tD cos [2π

L
( γ′

2π
+ g + 1

2
+

N↓
N
h)] ,

E
odd N↓
even N = −2tD cos [2π

L
( γ′

2π
+ g +

N↓
N
h)] ,

E
even N↓
odd N = −2tD cos [2π

L
( γ′

2π
+ g +

N↓
N
h+

N↓
2N

)] ,

E
odd N↓
odd N = −2tD cos [2π

L
( γ′

2π
+ g + 1

2
+

N↓
N
h+

N↓
2N

)] ,

(36)

where g and h are any integers and also quantum numbers which describe the charge and spin excitations.
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If we treat γ′ as the phase shift induced by an external field, for a given N and N↓ the external field
can only vary within a small range

2L − 1

2N
<

γ′

2π
+ Ī <

2L+ 1

2N
, L = −

N↓∑
λ=1

Jλ . (37)

otherwise the spin inversion will occur.

4. Results for General η

Generally, for a finite η it is difficult to get exact solutions of the Bethe equations. In this section we
try to discuss some properties of the system when L → ∞. The root distribution of Bethe equations
turns to a continuous density distribution, σ, in this case. We define functions

Zc(k) = Lk + γ↑ +

N↓∑
µ=1

2θ(k − Λµ;η) , (38)

Zs(Λ) = γ↑ − γ↓ −
N↓∑
µ=1

2θ(Λ− Λν ; 2η) +
N∑
j=1

2θ(Λ− kj;η) . (39)

In the limiting case of large L Equations (38) and (39) can be expressed in the form of integrals

2πσc(k) = lim
L→∞

1

L

d

dk
Zc(k), 2πσs(Λ) = lim

L→∞

1

L

d

dk
Zs(Λ) , (40)

where

n =

∫ K

−K
σc(k)dk =

N

L
, n↓ =

∫ Λ0

−Λ0

σs(Λ)dΛ =
N↓
L
. (41)

Now, we can see from Equations (31) and (32) that the relations

Zc(kj) = 2πIj, Zs(Λ) = 2πJλ , (42)

Ij+1 − Ij = 1, Jµ+1 − jµ = 1 , (43)

must be satisfied by roots of the Bethe equations. We are ready to obtain a set of integral equations

2πσc(k) = 1 +

∫ Λ0

−Λ0

2θ(k − Λ;η)σs(Λ)dΛ , (44)

2πσs(Λ) = −
∫ Λ0

−Λ0

2θ′(Λ− Λ′; 2η)σs(Λ
′)dΛ′ +

∫ K

−K
2θ′(Λ− k;η)σc(k)dk , (45)

where θ′(x; y) = dθ/dx = −sin(y)/4[cos(x) + cosh(y)].
Through a Fourier transform we obtain

θ̃′(ω; y) =

∫ π

−π
θ′(x; y)e−iωxdx =

1

2
e−ωy . (46)

For Λ0 = K = π, we have σc(ω) = 1/π and σs(ω) = 1/2π. The corresponding particle densities in
Equation (41) are n = 2 and n↓ = 1, which means that the numbers of two spin species are the same if
there is no external field.
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For a more general situation, the values of K and Λ0 are determined by Equation (41). When the
external field vanishes, the value of Λ0 must be π. From Equations (44) and (45) we get

2πσc(k) = 1 +
∞∑
ω=0

e−ikω

1 + e2ηω

∫ K

−K
eiµωσc(µ)dµ . (47)

The numerical solutions of the Bethe Equations (29) and (30) and the corresponding eigenvalues of
the Hamiltonian Equation (18) for L = 2 and L = 3 with different occupation numbers are shown
in Tables 1 and 2 respectively. As mentioned before, we will only consider the cases where N < L.
By analyzing the structure of Bethe equations, we can see that if N↓ = 0 or N = N↓ the roots of the
Bethe equations do not depend on η. These numerical results coincide with those obtained from the
exact diagonalization of the Hamiltonian Equation (18) and the analytical results in the limiting case,
η → ∞, obtained through Equation (36). For the L = 2 chain, we also give the eigenvalues E with
varying γσ, which do not change with η, as shown in Figure 1.

0
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1

0
0.5

1

0.85

0.9

0.95

1

1.05

γ
↑γ

↓

E
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1
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0.5

1

0.85

0.9

0.95

1
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γ
↑

γ
↓

E

(a) (b)

Figure 1. The eigenvalues E calculated from the exact diagonalization of the Hamiltonian
Equation (18) with respect to γσ for L = 2. (a) N = N↑ = 1. (b) N = N↓ = 1.

Table 1. The numerical results calculated from Equations (29) and (30) for the parameters,
L = 2, t = 0.5, η = 0.3, γ↑ = 0.2, and γ↓ = 0.1.

Occupation Number k1 Λ1 E

N = N↑ = 1 −0.100000 N/A −0.995004

N = N↑ = 1 3.041593 N/A 0.995004

N = N↓ = 1 −0.050000 3.754988 −0.998750

N = N↓ = 1 3.091593 0.613395 0.998750
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Table 2. The numerical results calculated from Equations (29) and (30) for the parameters,
L = 3, t = 0.5, η = 0.3, γ↑ = 0.4, and γ↓ = 0.2.

Occupation Number k1 k2 Λ1 Λ2 E

N = N↑ = 1 −0.066667 N/A N/A N/A −0.997779
N = N↑ = 1 2.027728 N/A N/A N/A 0.441197

N = N↑ = 1 −2.161062 N/A N/A N/A 0.556582

N = N↓ = 1 −0.033333 N/A −2.834687 N/A −0.999444
N = N↓ = 1 2.061062 N/A −0.740291 N/A 0.470860

N = N↓ = 1 −2.127728 N/A 1.354104 N/A 0.528584

N = N↑ = 2 −0.133333 1.961062 N/A N/A −0.610690
N = N↑ = 2 −2.227728 −0.133333 N/A N/A −0.380434
N = N↑ = 2 1.961062 −2.227728 N/A N/A 0.991124

N = N↓ = 2 −0.066667 2.027728 −0.405569 + 1.839956i −0.405569− 1.839956i −0.556582
N = N↓ = 2 −0.066667 −2.161062 −2.499964− 1.839956i −2.499964 + 1.839956i −0.441197
N = N↓ = 2 2.027728 −2.161062 1.688826 + 1.839956i 1.688826− 1.839956i 0.997779

5. Conclusions

In this paper we have constructed a generalized 1D Bariev model which describes spin-1/2 particles
with long-range interaction on a lattice. By employing an unitary transformation we find the Hamiltonian
is equivalent to a standard Bariev Hamiltonian with twist boundary conditions. This phase twist may be
used to explain the effects of an external magnetic potential and the internal fluctuations on the system.
For a strong external magnetic field, spin inversions can occur in the system. By solving the Bethe
equations in the limiting case where η → ∞ we give the specific forms of energy spectrum in different
system configurations with respect to total particle number and spin distributions. More general cases
have been discussed but the analytical result can only be obtained in the situation where there is no
external field. We also solve Bethe equations numerically and conduct the exact diagnalization of the
transformed Hamitonian. The numerical results and the analytical results coincide with each other very
well. To relate our model with real physical systems we need to determine the specific values of ξ, ζ
and η and calculate some other physical properties of the system. This could be an interesting topic for
further study.
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