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Abstract: We provide an entropy analysis for light storage and light retrieval. In this
analysis, entropy extraction and reduction in a typical light storage experiment are identified.
The spatiotemporal behavior of entropy is presented for D1 transition in cold sodium atoms.
The governing equations are the reduced Maxwell field equations and the Liouville–von
Neumann equation for the density matrix of the dressed atom.
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1. Introduction

The light storage effect (LSE) has become a powerful technique that offers storing and restoring quantum
information [1–7]. Quantum repeaters [8–11], as well as quantum-information networks [12–25] have
been facilitated through the LSE technique. According to electromagnetically-induced transparency
(EIT) [26–28], LSE is prominent when two fields that have a common excited state interact on different
transitions. Ground states of hyperfine D1 and D2 transitions in alkali atoms [29] have long radiative
decay and form memory nodes for quantum communication. In EIT experiments, the coupling field
is known as the write field. In order to reveal information about the mutual interaction of EIT pulses,
coupling and probe, a delayed pulse in the coupling channel is applied. It is known as the read field. The
read and write sequence have been exploited in remote quantum memories, as well as in the Duan, Lukin,
Cirac and Zoller scheme for a quantum repeater [12]. As the read field propagates, the generated field in
the probe channel, at the time section of the read field, gradually grows. Recently, EIT-based four-wave
mixing has been studied in a four-level system of a 87Rb D2−line transition with circularly-polarized
fields [30]. The propagation in a duplicated two-level atom using irreducible tensorial representation
of the bases for fine structure transition in sodium atoms has been reported for circularly-polarized
fields [31].
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The aim of this paper is to present an alternative view of the light restoring phenomenon. Our
issue is based on entropy. The notion of entropy seems to be useful, since it is a measure of the lack
of information about the so-called restoring field. Thus, entropy should be maximal at the entrance
boundary for probe and coupling fields. As the read field propagates, the generated restoring field in
the probe channel increases with entropy production. The entropy associated with light scattering is
discussed, as well.

This paper is organized as follows. Section 2 depicts the energy diagram for the D1 line in sodium,
where the single-, as well as double-excitation are indicated. In addition, Section 2, presents the atomic
basis operators and relative units adopted in this work. Section 3 is devoted to entropy associated
with light scattering for single excitation. Section 4 is devoted to Shannon entropy associated with
light storage and its retrieval for the lower Λ excitation of the four-level atom configuration. Section 5
presents conclusions. Finally, Appendix A presents the time evolution of the density matrix components.
The maximal density matrix components that are accessible to the D1 atomic configuration are given.
Therefore, we can easily study triple-color, four-color, as well as different V configurations with the
same set of equations. The first (second) V configuration corresponds to the transitions between the
excited hyperfine levels and lower (upper) ground hyperfine level.

2. The Theoretical Description

This paper is an attempt to analyze coherent excitation of D1 transition 3 2S1/2 − 3 2P1/2 in sodium.
The field with Rabi frequency Ωp couples the lower hyperfine (hf) state |1〉 = |Fl = 1〉 to the upper hf
states |3〉 = |Fu = 1〉 and |4〉 = |Fu = 2〉. In addition, the field Ωc couples the second lower hf state
|2〉 = |Fl = 2〉 to upper hf states, where F stands for total angular momentum with l(u) indicating the
lower (upper) hf state. The coupling fields in a double-Λ excitation are shown in Figure 1.

For one-color excitation, its frequency ω0 is tuned to the line center of the fine structure transition.
In arrival time distribution analysis, it is preferable to deal with the D1 line in sodium atoms. This is
because sodium has a smaller upper hyperfine splitting ∆u = ω4 − ω3 than that of rubidium. Therefore,
the influence of phase modulations produced by upper hyperfine splitting will be smaller in sodium.
The propagation dynamics of linearly-polarized and co-propagating fields will be investigated. The state
of the atom is described by the Liouville–von Neumann equation for the density matrix of the dressed
atom as −i∂tρ = Lρ = (Ĥ + iΦ̂)ρ, where L, Ĥ and Φ̂ stand for the system Liouvillian, Hamiltonian,
and the relaxation superoperators, respectively [32–34]. The relaxation superoperator contains both
radiation and collisional contributions. In this paper, we have followed the notations of Fiutak and Van
Kranendonk for the representation of the density matrix components, the atom-laser interaction and the
radiation damping operator [32], where ~ = 1. The atomic basis operators using the irreducible set e(F )

i,k

have been presented in [35]. The indices i and k numerate hyperfine states from one to four. In this
paper, the bases operators e(F )

i,k are written in flattened form as Υα and α = 1, 2, ..., 28, instead of the
tensor double and lower indices form e

(F )
i,k . The basis operators are orthogonal in difference space; in a

sense, the trace of the metric tensor vanishes: (Υα,Υβ) = Tr{Υ+
αΥβ} = δα,β , where δα,β = 1 for α = β

and zero for α 6= β. In terms of basis operators, the density matrix ρ can be expanded as ρ =
∑

α ραΥα.
The density matrix is normalized as Trρ = 1. The normalization condition provides the completeness
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of the basis operators. The components of the density matrix operators are as follows. There are four
components with zero rank tensors: ρ1 ↔ ρ

(0)
1,1, ρ2 ↔ ρ

(0)
2,2, ρ3 ↔ ρ

(0)
3,3 and ρ4 ↔ ρ

(0)
4,4. The populations of

hf levels are given by n1 =
√

3ρ1, n2 =
√

5ρ2, n3 =
√

3ρ3 and n4 =
√

5ρ4. There are eight complex
coherences: ρ5 ↔ ρ

(1)
1,3, ρ7 ↔ ρ

(1)
1,4, ρ9 ↔ ρ

(1)
2,3 and ρ11 ↔ ρ

(1)
2,4 and their adjoint. We have alignment

components for lower and upper hyperfine states, such as: ρ13 ↔ ρ
(2)
1,1, ρ14 ↔ ρ

(2)
2,2, ρ15 ↔ ρ

(2)
3,3 and

ρ16 ↔ ρ
(2)
4,4. The lower and upper Raman coherences of the second rank are: ρ17 ↔ ρ

(2)
1,2 and ρ19 ↔ ρ

(2)
3,4.

The components that are of third rank are ρ21 ↔ ρ
(3)
4,2, ρ23 ↔ ρ

(3)
3,2 and ρ25 ↔ ρ

(3)
4,1. Finally, we have the

hexadecapole moment components ρ27 ↔ ρ
(4)
2,2 and ρ28 ↔ ρ

(4)
4,4.

WpWcW0

È1, F=1>

È2, F=2>

DΩ2,1

Dp Dc È3, F=1>
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32S1�2

32P1�2

Figure 1. Excitation of the sodium D1 line. The dashed arrow shows the excitation with
one beam, which is tuned to the fine structure transition. ∆ω0 is the detuning. The solid
arrows show the double-Λ configuration excitation with Ωp and Ωc fields. ∆p and ∆c are
the detuning of the fields with Ωp and Ωc from the transitions |1〉 → |3〉 and |2〉 → |3〉,
respectively. ∆ω2,1 and ∆ω4,3 are lower and upper hyperfine splitting, respectively.

The present work describes, mainly, two cases for entropy considerations. The first one is to study the
stationary illumination of the D1 line with hyperfine structure to reveal the associated spectral entropy.
The light is tuned to the fine structure transition as shown in Figure 1. The second case is devoted
to the dual-pulsed light excitation to investigate the entropy associated with the quantum interference
within the double-Λ excitation. Special attention is paid to the entropy associated with the light storage
effect. In what follows, and irrespective of the strength of the fields, we shall associate the fields Ωp

and Ωc with the transitions |1〉 → |3〉, |4〉 and |2〉 → |3〉, |4〉, respectively. To reduce absorption, the
pulses are detuned from the third level, as indicated in Figure 1. The detuning of the pulses is within the
upper hyperfine splitting. In addition, the coupling pulses Ωp and Ωc also couple the fourth hyperfine
level with detuned coherences of the first and third rank. The second rank Raman coherence for the
lower hyperfine levels seems to be the most important in light storage principles, since it has a long
radiative decay. However, ignoring components of the same rank or higher will produce the reduction of
dissipation, and loss of the information will be revealed. Thus, we have considered the maximal bases.
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The flattened form of the density matrix components seems to be convenient in our description,
especially for numerical computations. In addition, as concerns the time evolution of the density matrix,
one can easily find the connection between the flattened form and the explicit form, which shows the rank
of the density matrix component and the levels. The connection can be made in terms of the collisional
relaxation rates. As an example in Equation (A5), one can see that the collisional relaxation rate of ρ5 is
γ

(1)
1,3 . The superscript (1) is the rank of the coherence ρ5, and the lower index 1, 3 indicates the connected

levels by the field.
To reduce our computation, we use the same absorption coefficient α′ for the p and c channels as an

approximation. The atom-field coupling constant is given as v = drE/(2
√

3), where dr is the reduced
value of the dipole moment and E stands for the electric field amplitude [32]. The Rabi frequency is
related to the atom-field coupling constant through the relation Ω = 2

√
2(v/~) by inspection of the

eigenvalues of the matrix [iL]. The relation between Rabi frequency and the laser intensity I is given as
Ω/γ = ( I

2Isat
)1/2 where Isat is the saturation intensity [29,36,37].

In our calculations, we make use of relative units, where detuning, relaxation rates and Rabi
frequencies are in γ units, and γ is the spontaneous decay rate of the P1/2 state. The time t is presented
as normalized and retarded where t ← γ(t − z/c) with c is the velocity of light and z is the prolonged
distance. The distance z is normalized to the Beer’s length z0 = 10−4 cm, as z ← z/z0 or z ← α′z.

3. Spectral Dependence of Entropies Associated with Light Scattering for Single Color Excitation
of D1 Line

In this section, we aim to describe steady-state illumination of the D1 line in the sodium atom. For
stationary illumination, we use a light with frequency ω. The detuning ∆ω0 = ω − ω0 stands for light
detuning from the fine structure transition with frequency ω0. When ∆ω0 = 0, we have four off-resonant
transitions. Our main concern is basically for the entropy and its decomposition. Shannon entropy [38]
is denoted here by Sn(Ω), which is an entropy measure on the probability distribution {ni(ω)} as:

Sn(Ω) = −
4∑
i=1

ñi(ω) log(ñi(ω)) , (1)

where ñi(ω) stands for the occupation probability densities of the respective levels at frequency ω.
We have constructed the occupation probability density ñ(ω) in terms of subdividing the occupation
probability n(ω) by the frequency window (Ω), which covers the lower hyperfine splitting. This
ensures that:

Tr|Ωρ̃(ω) =
∑
ω∈Ω

ñ1(ω) + ñ2(ω) + ñ3(ω) + ñ4(ω) = 1 (2)

over the selected frequency window under consideration.
The former procedure is to be extended to produce spectral entropy analysis for other variables, such

as the dipole operator µ(ω) with emphasis on its real and imaginary parts. Its real part is important for
slow and fast light indications. The imaginary part gives the absorption profile. For simplicity, the case
of one-color excitation in this section is considered. The dipole operator µ becomes:

µ =
i

4
(Υ5 −

√
5(Υ7 −Υ9 + Υ11)) , (3)
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with the trace metric normalization condition: Tr{µ+µ} = 1. In terms of the density matrix components,
the dipole operator µ is given as:

dp =
i

4
(ρ5 −

√
5(ρ7 − ρ9 + ρ11)) . (4)

Let J denotes the total mean number of photons scattered per unit time. The spectral dependence of
the total scattered light intensity is defined in terms of the dipole operator µ, and the left x̄λ, as well as
right xλ eigenvectors of the Liouvillian L as:

J(ω) = <
∑
λ,λ̄

Jλ,λ̄(ω) , (5)

and:
Jλ,λ̄(ω) = (µ+, xλ)(x̄λ̄, µ

+ρ) , (6)

where {λ, xλ} and {λ̄, x̄λ̄} are the right and left eigensystems. These eigensystems satisfy the
completeness relation

∑
λ |xλ〉 〈x̄λ̄| = 1, with 1 the identity operator. If we retain the exponential time

series dependence, such as e2t<λ, we clearly obtain a Lyapunov function for Jλ,λ̄ that depends on time.
The case when λ = 0 is of special importance. In this case, x0 = ρst and x̄0 = 1. The index st means
the stationary value. Thereafter:

J0(ω) = ‖(µ, ρ)‖2 . (7)

Generally, J0(ω) gives the spectral dependence of the coherent part of the scattered light. Turning to
the incoherent part of the spectrum, by removing the partition of unity in Equation (6), one obtains:

Jincoh.(ω) = (µ+, µ+ρ) . (8)

Using the expansions ρ =
∑

α ραΥα and µ =
∑

β µβΥβ , one can operate µ+ on ρ and uses the
orthogonality of the bases to obtain:

Jincoh.(ω) = γ(n3(ω) + n4(ω)) . (9)

We set γ = 1 in our dimensionless analysis. The spectral entropy associated with the scattered light
over a frequency window Ω can be investigated in terms of cross-section as:

σ(ω) =
γ

v2
J(ω) . (10)

For the coherent (Rayleigh) part of the scattered photons, we have:

σ0(ω) =
8γ2

v2
‖(µ, ρ)‖2 =

8γ2

v2
‖dp(ω)‖2 . (11)

The Rayleigh scattered light and the redistribution of radiation have been studied in [32,39–41] and
the references therein. Let us construct the spectral entropy associated with the coherent part of the
scattered photons from:

σ̃0(ω) = σ0(ω)/Ω , (12)

N =
1∑

ω∈Ω σ̃0(ω)
, (13)

σRy(ω) = N σ̃0(ω) (14)
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SRy(Ω) = −
∑
ω∈Ω

σRy(ω) log(σRy(ω)) (15)

In the same manner, we define the spectral entropy associated with the total π polarized light in terms of:

σ̃π(ω) =
8γ

v
=(dp(ω))/Ω , (16)

Nπ =
1∑

ω∈Ω σ̃π(ω)
, (17)

σπ(ω) = Nπσ̃π(ω) (18)

Sπ(Ω) = −
∑
ω∈Ω

σπ(ω) log(σπ(ω)) (19)

The remarkable features of spectrum are available in the treatment of entropy. It is to be noted that
Shannon entropy is composed of four terms that interfere with each other. We presented in Figure 2
the probability cross-section associated with the Rayleigh scattered light σRy(∆ω0) and the probability
for π scattered light σπ(∆ω0) at different atom-field coupling values. In Figure 3, we presented the
relative Shannon entropy Sn(v), the relative entropy due to Rayleigh SRy(v) and the relative entropy
due to the total π scattered light Sπ(v). The relative entropy for SRy(v) and Sπ(v) is an entropy that
is measured with respect to that entropy where all of the frequency window components are equally
probable. However, we choose relative entropy for Shannon entropy Sn as an entropy that is measured
with respect to that entropy where all of the hyperfine levels are equally populated by one fourth for all
components of the frequency window. The frequency window Ω : ∆ω0 ∈ [−300, 300] with discrete
values at step ∆ω0 = 0.1.
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Figure 2. Spectral dependence of the probability cross-sections for the Rayleigh and π

scattered light at different atom-field couplings: weak, moderate and strong.
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Figure 3. The dependence of relative entropy on the atom-field coupling v for: the scattered
π polarized light Sπ(Ω; v), Rayleigh scattering SRy(Ω; v) and Shannon entropy, based on
populations of the hyperfine levels Sn(Ω; v).

In Figure 2, the hyperfine structure is exposed, and σπ(∆ω0) has a resemblance to the stationary
spectrum. The probability associated with Rayleigh light for negative frequency detuning does not
show the doublet structure, as shown by σπ(∆ω0). In addition, σRy(∆ω0) shows more peaks due to the
interference effect at nearby wings. The reduction of the total dipole moment is shown by the positions
σRy(∆ω0) = 0, which indicate slow light. The relative Shannon entropy Sn shows the minimum at
moderate fields v = 6 to v = 8, in Figure 3. The upper hf structure is destroyed at moderate field
excitation. The hf line structure reduces to two lines separated by the lower hf splitting, resulting in a
three-level structure. For a stronger field, the structure reduces to the two-level atom, where the lower
hf splitting is destroyed. We distinguish the last case by considering that n1 approaches zero and n2

approaches unity at the upper-ground hf level. For the three-level case, n1 and n2 have values less than
unity and greater than zero. Therefore, a three-level atom corresponds to the case when the upper hf
structure is smeared in width, but the height is not higher than that of the weak field case. The presence
of a structure for weak fields increases entropy. However, the wide broadening of spectral line and the
continuous distribution of populations increases the entropy for strong fields.

Our calculations of spectral entropy are good candidates for parallel processing, as we did, where
the time of the calculations was considerably reduced. By spectral, we mean that the probability
distribution depends on frequency, and the corresponding entropy depends on the chosen frequency
window. In this paper, we have considered the entropy associated with π polarized light. For a different
polarization, the difference space can be constructed by spherically-polarized fields [33,42], and the
corresponding spectral entropy can be obtained.

4. Time-Dependent Entropy Associated with Light Storage and Light Restoring

This section focuses on entropy associated with light storage and light retrieval within the traditional
framework of EIT. It is important to obtain an entropy signature about maximum correlations in some
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parts of the total system. For this reason, the two-fold excitation of the double-Λ system is considered.
The p-field vp(t) is tuned to the |1〉 ↔ |3〉 transition, whilst the c-field vc1(t) is tuned to the |2〉 ↔ |3〉
transition. The time-delayed vc2 pulse in the c-channel is used to check the presence of the light storage
effect, while the pulses vp(t) and vc1(t) form the EIT structure.

The time dependences of the coupling fields are:

vp(t) = ap exp[−8/9π((t− tmax)/Ts)2] Θ(tp − t), (20)

vc1(t) = ac1 exp[−8/9π((t− t′max)/(Ts/2))2] Θ(tc1 − t), (21)

vc2(t) = ac2 exp[−8/9π((t− t′′max)/(Ts/2))2] Θ(t− tc2) (22)

where the amplitudes ap = 0.5 and ac1 = ac2 = 1. The initial and finial times are t0 = 0 and
tf = 100, respectively. The positions of the fields maxima are tmax = t

′
max = 20 and t

′′
max = 70

for the delayed component of the field vc2(t). The other parameters take the values as Ts = 5, tc1 = 35

and tc2 = 45, where Θ(t) is the Heaviside function. The initial pulses have dimensionless energies as∫
v2
α(t)dt = {0.94, 7.5, 7.5}, where α = {vp, vc1 , vc2}, respectively. Thermal equilibrium among lower

hf states is assumed. Therefore, at the entrance boundary z = 0, the density matrix components satisfy√
3ρ1(0, t0) = 3/8,

√
5ρ2(0, t0) = 5/8 and ρi(0, t0) = 0, i = 3, ..., 28. It is also assumed that the fields

detuning are ∆p = ωp − ω3,1 = 1 and ∆c = ωc − ω3,2 = 1. The propagation of the radiation fields are
governed by the reduced Maxwell equations as:

∂

∂z
vp(z, t) =

1√
6

(ρ6(z, t)−
√

5ρ8(z, t)), (23)

∂

∂z
vc(z, t) =

1√
2

(ρ10(z, t)− ρ12(z, t)). (24)

The time evolution of the density matrix equations is listed in Appendix. The energies of the
propagated fields are defined by the following relations:

Eα(z) =

∫
Tα

‖vα(z, t)‖2dt , (25)

where α = {p, r, c1, c2}. The time section of the fields is determined by Tα. The vp and vc1 fields overlap
on the same period Tp = Tc1 . In addition, the restoring field has a time section Tr = Tc2 . Thus, Er(z)

gives the efficiency of restoring.
Shannon entropy at instant t, over the whole time T = Tc1 ∪ Tc2 , can be formulated with

ñi(t) = ni(t)/T representing the weighed populations over the whole time section T . It is instructive to
look at the probability for a specific transition as:

P3→1(t) =
1

6
ñ3(t), P3→2(t) =

5

6
ñ3(t), (26)

P4→1(t) =
1

2
ñ4(t), P4→2(t) =

1

2
ñ4(t) . (27)

In terms of these weighed probabilities, one can obtain Shannon entropy with explicit dependence on
the transition probability branching. Decomposing the double-Λ system into Vp and Vc subsystems, the
first subsystem contains the p pulses with the transitions |1〉 ↔ |3〉, |4〉. The second one contains the c
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pulses with the transitions |2〉 ↔ |3〉, |4〉. The population at instant t within Vp and Vc subsystems are
given by combinations of ñi(t); therefore:

Ñp(t) = ñ1(t) +
1

6
ñ3(t) +

1

2
ñ4(t) , (28)

and:
Ñc(t) = ñ2(t) +

5

6
ñ3(t) +

1

2
ñ4(t) . (29)

Thus, the probability distribution within each subsystem has been constructed. The basic functions
associated with Vp and Vc subsystems read:

hp(z) =
∑
t∈T

−Ñp(z, t) log(Ñp(z, t)) , (30)

hc(z) =
∑
t∈T

−Ñc(z, t) log(Ñc(z, t)) (31)

One can choose Tp and Tc’s of different lengths, but the functions Ñp(t) and Ñc(t) should satisfy the
normalization condition:

4∑
i=1

∑
t∈T

ñi(t) = 1 (32)

Thus, one can define the entropy for the two V subsystems as:

hT (z) = hp(z) + hc(z) (33)

It will be instructive to expose the interrelation between the entropies associated with the storage and
the retrieval periods. The constructed Vs and Vr corresponding to the storage and the retrieval periods
are formulated by M̃Ts(t) = NTs(t)/Ts and M̃Tr(t) = NTr(t)/Tr, where:

NTs(t) = n1(t) +
1

6
n3(t) +

1

2
n4(t); N c

Ts(t) = 1−NTs(t), t ∈ Ts (34)

NTr(t) = n2(t) +
5

6
n3(t) +

1

2
n4(t); N c

Tr(t) = 1−NTr(t), t ∈ Tr, (35)

and Ts ∪ Tr = T . In addition, Ts and Tr time sections are of equal lengths, i.e., subdivisions. The
constructed entropies for Vs and Vr systems to obtain differential entropy are given by:

hTs(z) =
∑
t∈Ts

−M̃Ts(t) log(M̃Ts(t)), (36)

hTr(z) =
∑
t∈Tr

−M̃Tr(t) log(M̃Tr(t)) (37)

The continuous and dashed lines in Figure 4 represent hTs(z) and hTr(z), respectively, where the
inset shows hT (z) with a slight entropy reduction. At small and moderate distances, hTr(z) is bigger
than hTs(z). This is because the first period Ts includes the first coupling and probe fields. In addition,
the second period Tr includes the second coupling and a small restoring field. Therefore, the reason
hTr(z) > hTs(z) is accounted for by the excitation done by the probe and first coupling pulses, lifting
populations n1(t) and n2(t) at a value that is slightly different from equality on the storage period and,
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so, in the reading period. The entropy transfer (Figure 4) is associated with population transfer among
the two sectional periods Ts and Tp, as well as due to the light storage effect. The drop of hTs at z = 55

is attributed to the drop in n1(55, t) leading to a storage level, after the excitation period, with higher
populations in n2(z, t) and n3(z, t). The process is reversed in the reading period where hTs is increased.

Let the time-dependent energy Ep(z, t) = ‖vp(z, t) + vr(z, t)‖2 be the energy distributed in time and
associated with the p-transitions |1〉 ↔ |3〉, where vr is the generated restoring field in the p-transition.
Similarly, the energy Ec(z, t) = ‖vc,1(z, t) + vc,2(z, t)‖2 is the energy contained in the c-transition
|2〉 ↔ |3〉. The probability of finding energy in each transition can be obtained as Qp(z, t) and Qc(z, t):

Qp(z, t) =
Ep(z, t)∑
tEp(z, t)

(38)

Qc(z, t) =
Ec(z, t)∑
tEc(z, t)

. (39)

The entropy associated with the probability distribution of energy in each transition can be written as:

Hp(z) = −
∑
t

Qp(z, t) log(Qp(z, t)) (40)

Hc(z) = −
∑
t

Qc(z, t) log(Qc(z, t)) (41)
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Figure 4. Space dependence of the relative Shannon entropy associated with Vs and Vr

subsystems. The inset shows the space dependence of relative Shannon entropy for the
period T = Ts ∪ Tr .

Figure 5 shows an entropy exchange among the two transitions in the course of distance. The increase
of Hp for a moderate distance manifests the generation of the restoring field and the depletion of the
coupling fields. For a big distance, the second coupling field entropy rises where the first coupling has
been diminished. In order to confirm that, let us consider the space-dependent pulse entropy in what
follows. Let us construct the probability distribution at a fixed position z from:

Pe(z) =
Ee(z)∫ L

0
Ee(z′)dz′

, e = {vp, vr, vc1 , vc2}. (42)
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where L is the space length, Te is the time period for every field and:

Ee(z) =

∫
Te

v2
e(z, t)dt. (43)

The cumulative sum Se(z) of Shannon entropy He associated with the probability distribution Pe(z)

is given as:

Se(z) = −
z∑

z′∈[0,z]

Pe(z
′) log(Pe(z

′)), (44)

He = Se(L) (45)
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Figure 5. The space dependence of the relative entropies Hp and Hc. The probability is
defined as the ratio of energy of the fields in the transitions |1〉 ↔ |3〉 and |2〉 ↔ |3〉 to the
corresponding total field energy in each transition, respectively.

The cumulative sums Sp(z), Sr(z), Sc1(z) and Sc2(z) are shown in Figure 6. The light storage effect
is shown as an entropy production in the time section Tc,2 revealed by the restoring field vr(z). Figure 6
shows that the production of entropy is accounted for by the entropy reduction for the first coupling.
The first coupling approaches its asymptotic value of relative entropy quicker than that of other fields,
showing the high gradation flow [44] of its entropy.

Our aim is to study the entropy as an identifier for quantum interferences in multilevel systems. It
seems to us that one could use the maximum or the minimum entropy [45] value reached in the atomic
system as a critical value for the breakup of the local stabilization of short optical pulses in the double-Λ
system. This is important, since the area theorem [46–50] does not hold in multilevel systems with
soliton-like solutions of the reduced Maxwell–Bloch equations [51]. In terms of entropy, we would be
able to find when the pulses in the multilevel system stabilize or collapse to fractional nπ pulses in area.
Finally, it is worth mentioning that the entropy of a system of solitons has been considered in [52].
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Figure 6. The space dependence of the cumulative sum Se(z) of the relative Shannon entropy
He associated with the probability distribution Pe(z), where e = {p, r, c1, c2} stand for the
p-field, restoring field, the first coupling field and the second coupling field, respectively.

5. Conclusions

A dynamical entropy approach is adopted to describe atomic entropy by irreducible tensor
components of the statistical operator. The constructed dynamical entropy for stationary illumination is
based on populations of hf levels, as well as the dipole operator. The projection of the dipole operator on
eigenvectors of the Liouvillian describes different processes. We introduced J0(ω) with zero eigenvalue
to obtain an entropy SRy(Ω, v) associated with the Rayleigh scattered light. For a coherent scattering
process in ω-space, we have used the imaginary part of the dipole operator as the generator for the
entropy Sπ(Ω, v). In addition, we introduced Jλ,λ̄(ω) as a generator for entropy associated with different
eigenvalues in ω-space. Generally, we express entropy as a relative entropy, i.e., with respect to the
entropy where all of the frequency window (Ω) components are equally probable.

The notion of entropy and its probability distribution functions seems to be useful in describing light
scattering, as well as quantum interference generated within the hyperfine structure. For weak fields, the
probability cross-section σπ(ω) for Sπ(Ω, v) shows good resemblance to the stationary spectrum with
exposed peaks due to the four resonances. The relative Shannon entropy Sn(Ω, v) shows the minimum
for moderate fields, indicating destructive interference where the upper hf is smeared out (Figure 3).

For two-color excitation, we have shown that the system division into subsystems seems to be hard,
since the atomic populations are continuously distributed over the hyperfine levels at the same instant.
Therefore, we have constructed three types of partitions that are based on the probability branching of
upper hf levels. The first one of these partitions is defined on the population of the whole interaction
period with two probability distributions that are complementary to each other. Its corresponding entropy
is hT (z). It is shown to be reduced in the course of propagation (Figure 4).
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We have constructed entropy associated with Vs and Vr subsystems corresponding to the storage and
the retrieval periods, respectively as hTp(z) and hTc(z). Both of them are less than unity, with reduction
up to moderate distances and enhancement at big distances. The two time sections Tp and Tc clearly
identify two two-level atom equivalents for the four-level system. The first of these two-level atoms is
based on n1(z, t) and the mixing of n3(z, t) and n4(z, t). The second two-level atom is based on n2(z, t),
as well as the mixing of hf upper levels.

In the forging analysis, the diversity function of entropy depended on the population. We have
constructed entropy with diversity functions depending on the local energy of the time-dependent pulse.
Figure 5 shows an entropy exchange among the two optical transitions in the course of propagation.
Finally, we have considered the commutative sum of the Shannon entropy (Figure 6) for the energy
distribution in space, which emphasizes the entropy flow and its attenuation, as well as its generation.

In summary, we have described quantum correlations generated by or within the D1 manifold of
sodium atoms. Multilevel structures result in information channelization, which is characterized by
entropy transfer within and out of the total system by relaxations.

Conflicts of Interest

The author declares no conflict of interest.

Appendix: The Time Evolution of the Density Matrix Equations
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where for two-fold excitation, we have used δl = ∆ωl − (∆p −∆c) = 0, which implies the two-photon
resonance condition. The collisional relaxation rates are discussed in [35].

For one-beam excitation, the time of evolution of the density matrix equations can be obtained from
the previous equations by setting vp = vc = v. In addition, the detuning for coherences ρ5, ρ7, ρ9 and ρ11

are redefined as ∆5 = ω−ω3,1, ∆7 = ω−ω4,1, ∆9 = ω−ω3,2 and ∆11 = ω−ω4,2, respectively. For upper
and lower Raman coherences, we have ∆l = ω2,1 and ∆u = ω4,3, respectively. Where ωj,i = ωj − ωi.
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