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Abstract: The minimum error entropy (MEE) criterion is an important learning criterion in 

information theoretical learning (ITL). However, the MEE solution cannot be obtained in 

closed form even for a simple linear regression problem, and one has to search it, usually, 

in an iterative manner. The fixed-point iteration is an efficient way to solve the MEE 

solution. In this work, we study a fixed-point MEE algorithm for linear regression, and our 

focus is mainly on the convergence issue. We provide a sufficient condition (although a 

little loose) that guarantees the convergence of the fixed-point MEE algorithm. An 

illustrative example is also presented. 
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1. Introduction 

In recent years, information theoretic measures, such as entropy and mutual information, have been 

widely applied in domains of machine learning (so called information theoretic learning (ITL) [1]) and 
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signal processing [1,2]. A possible main reason for the success of ITL is that information theoretic 

quantities can capture higher-order statistics of the data and offer potentially significant performance 

improvement in machine learning applications [1]. Based on the Parzen window method [3], the 

smooth and nonparametric information theoretic estimators can be applied directly to the data without 

imposing any a priori assumptions (say the Gaussian assumption) about the underlying probability 

density functions (PDFs). In particular, Renyi’s quadratic entropy estimator can be easily calculated by 

a double sum over samples [4–7]. The entropy in supervised learning serves as a measure of similarity 

and follows a similar framework of the well-known mean square error (MSE) [1,2]. An adaptive 

system can be trained by minimizing the entropy of the error over the training dataset [4]. This 

learning criterion is called the minimum error entropy (MEE) criterion [1,2,8–10]. MEE may achieve 

much better performance than MSE especially when data are heavy-tailed or multimodal  

non-Gaussian [1,2,10].  

However, the MEE solution cannot be obtained in closed form even when the system is a simple 

linear model such as a finite impulse response (FIR) filter. A practical approach is to search the 

solution over performance surface by an iterative algorithm. Usually, a simple gradient based search 

algorithm is adopted. With a gradient based learning algorithm, however, one has to select a proper 

learning rate (or step-size) to ensure the stability and achieve a better tradeoff between misadjustment 

and convergence speed [4–7]. Another more promising search algorithm is the fixed-point iterative 

algorithm, which is step-size free and is often much faster than gradient based methods [11]. The 

fixed-point algorithms have received considerable attention in machine learning and signal processing 

due to their desirable properties of low computational requirement and fast convergence speed [12–17]. 

The convergence is a key issue for an iterative learning algorithm. For the gradient based MEE 

algorithms, the convergence problem has already been studied and some theoretical results have been 

obtained [6,7]. For the fixed-point MEE algorithms, up to now there is still no study concerning the 

convergence. The goal of this paper is to study the convergence of a fixed-point MEE algorithm and 

provide a sufficient condition that ensures the convergence to a unique solution (the fixed point). It is 

worth noting that the convergence of a fixed-point maximum correntropy criterion (MCC) algorithm 

has been studied in [18]. The remainder of the paper is organized as follows. In Section 2, we derive a  

fixed-point MEE algorithm. In Section 3, we prove a sufficient condition to guarantee the convergence. 

In Section 4, we present an illustrative example. Finally in Section 5, we give the conclusion.  

2. Fixed-Point MEE Algorithm 

Consider a simple linear regression (filtering) case where the error signal is 

( ) ( ) ( ) ( ) ( )Te i d i y i d i W X i= − = −  (1)

with ( )d i ∈  being a desired value at time i , ( ) ( )Ty i W X i=  the output of the linear model, 

[ ]1 2, , ,
T m

mW w w w= ∈   the weight vector, and [ ]1 2( ) ( ), ( ), , ( )
T m

mX i x i x i x i= ∈   the input vector 

(i.e., the regressor). The goal is to find a weight vector such that the error signal is as small as possible. 

Under the MEE criterion, the optimal weight vector is obtained by minimizing the error entropy [1,2]. 

With Renyi’s quadratic entropy, the MEE solution can be expressed as 
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2 2arg min log ( ) arg max ( )
m m

e e
W W

W p x dx p x dx
∈ ∈

= − = 
 

 (2)

where (.)ep  denotes the PDF of the error signal. In ITL the quantity 2 ( )ep x dx  is also called the 

quadratic information potential (QIP) [1]. In a practical situation, however, the error distribution is 
usually unknown, and one has to estimate it from the error samples { }(1), (2), , ( )e e e N , where N  

denotes the sample number. Based on the Parzen window approach [3], the estimated PDF takes  

the form  

1

1
ˆ ( ) ( ( ))

N

e
i

p x x e i
N

κ
=

= −  (3)

where (.)κ  stands for a kernel function (not necessarily a Mercer kernel), satisfying ( ) 0xκ ≥  and 

( ) 1x dxκ
∞

−∞
= . Without mentioned otherwise, the kernel function is selected as a Gaussian kernel, 

given by 

2

2

1
( ) exp( )

22

x
xσκ

σσ π
= −  (4)

whereσ denotes the kernel bandwidth. With Gaussian kernel, the QIP can be simply estimated as [1] 
2

2
2 2

1 1 1

1 1
ˆ ( ) ( ( )) = ( ( ) ( ))

N N N

e
i i j

p x dx x e i dx e i e j
N Nσ σκ κ

= = =

 = − − 
 
    (5)

Therefore, in practical situations, the MEE solution of (2) becomes 

2 2
1 1

1
arg max ( ( ) ( ))

m

N N

W i j

W e i e j
N σκ

∈ = =

= −


 (6)

Unfortunately, there is no closed form solution of (6). One can apply a gradient based iterative 

algorithm to search the solution, starting from an initial point. Below we derive a fixed-point iterative 

algorithm, which is, in general, much faster than a gradient based method (although a gradient method 

can be viewed as a special case of the fixed-point methods, it involves a step-size parameter). Let’s 

take the following first order derivative: 

( )[ ]

( )[ ]

[ ][ ]

2 2
1 1

2 2 2
1 1

2 2 2
1 1

2 2 2
1 1

2

1
   ( ( ) ( ))

1
= ( ( ) ( )) ( ) ( ) ( ) ( )

2

1
= ( ( ) ( )) ( ) ( ) ( ) ( )

2

1
  ( ( ) ( )) ( ) ( ) ( ) ( )

2

1

2

N N

i j

N N

i j

N N

i j

N N
T

i j

MEE M
dX XX

e i e j
W N

e i e j e i e j X i X j
N

e i e j d i d j X i X j
N

e i e j X i X j X i X j W
N

σ

σ

σ

σ

κ

κ
σ

κ
σ

κ
σ

σ

= =

= =

= =

= =

∂ −
∂

− − −

− − −

− − − −

= −









P R{ }EEW

 (7)

where  
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[ ][ ]

( )[ ]

2 2
1 1

2 2
1 1

1
( ( ) ( )) ( ) ( ) ( ) ( )

1
( ( ) ( )) ( ) ( ) ( ) ( )

N N
TMEE

XX
i j

N N
MEE
dX

i j

e i e j X i X j X i X j
N

e i e j d i d j X i X j
N

σ

σ

κ

κ

= =

= =

 = − − −


 = − − −






R

P

 (8)

Let 
2 2

1 1

1
( ( ) ( )) 0

N N

i j

e i e j
W N σκ

= =

∂ − =
∂  , and assume that the matrix MEE

XXR  is invertible. Then, we obtain 

the following solution [15]: 

( ) 1MEE MEE
XX dXW

−
= R P  (9)

The above solution is, in form, very similar to the well-known Wiener solution [19]. However, it is not 
a closed form solution, since both matrix MEE

XXR  and vector MEE
dXP  depend on the weight vector W  (note 

that ( )e i  depends on W ). Therefore, the solution of (9) is actually a fixed-point equation, which can 

also be expressed as ( )W W= f ,where 

( ) 1
( ) MEE MEE

XX dXW
−

= R Pf  (10)

The solution (fixed-point) of the equation ( )W W= f  can be found by the following iterative  

fixed-point algorithm:  

1 ( )k kW W+ = f  (11)

where kW  denotes the estimated weight vector at iteration k . This algorithm is called the fixed-point 

MEE algorithm [15]. An online fixed-point MEE algorithm was also derived in [15]. In the next 

section, we will prove a sufficient condition under which the algorithm (11) surely converges to a unique 

fixed-point. 

3. Convergence of the Fixed-Point MEE 

The convergence of a fixed-point algorithm can be proved by the well-known contraction mapping 

theorem (also known as the Banach fixed-point theorem) [11]. According to the contraction mapping 
theorem, the convergence of the fixed-point MEE algorithm (11) is guaranteed if 0β∃ >  and 0 1α< <  

such that the initial weight vector 0 p
W β≤ , and { }:m

p
W W W β∀ ∈ ∈ ≤ , it holds that  

( )

( )
( )

p

W Tp
p

W

W
W

W

β

α

 ≤

 ∂∇ = ≤ ∂

f

ff
 (12)

where .
p

 denotes an lp-norm of a vector or an induced norm of a matrix, defined by 

0
max

p
p p pX

A AX X
≠

= , with 1p ≥ , m mA ×∈ , 1mX ×∈ , and ( )W W∇ f  denotes the m m×  Jacobian 

matrix of ( )Wf  with respect to W , given by 

( ) ( ) ( )
1 2

( )W
m

W W W W
w w w

 ∂ ∂ ∂∇ =  ∂ ∂ ∂ 
f f f f  (13)
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where 

( )

( )[ ][ ] ( )

1

1 1 1

1 1
( ) ( ) ( ) ( ) ( ) ( )

2 21 1

   

    W
w

s

MEE MEE
XX dXw

s

MEE MEE MEE MEE MEE MEE
XX XX XX dX XX dXw w

s s

N NMEE Te i e j X i X j X i X j W
XX wN i j s

M
XX

κ
σ

∂

∂

−∂
=

∂

− − −∂ ∂
= − +

∂ ∂

− ∂
= − − − − 

∂= =

+

     

   
        
        

   
 

   
   

 

R P

R R R P R P

R

R

f

f

( )[ ][ ]

( )( ) ( )[ ][ ] ( )

( )( )

1 1
( ) ( ) ( ) ( ) ( ) ( )

2 21 1

1 1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2 22 1 1

1 1
   ( ) ( ) ( ) ( )

2 2 22

N NEE e i e j d i d j X i X j
wN i j s

N NMEE Te i e j x i x j e i e j X i X j X i X j W
XX s s

N i j

MEE e i e j x i x j e
XX s s

N

κ
σ

κ
σσ

κ
σσ

− ∂
− − − 

∂= =

−
= − − − − − − 

= =

−
+ − −

 
   
   

 
        

 
 

R

R

f

( )[ ][ ]( ) ( ) ( ) ( ) ( ) ( )
1 1

N N
i e j d i d j X i X j

i j
− − − 

= =

 
  
 

 

(14)

To obtain a sufficient condition to guarantee the convergence of the fixed-point MEE  

algorithm (11), we prove two theorems below. 

Theorem 1. If 

[ ][ ]

1
1 1

min
1 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

N N

i j

N N
T

i j

m d i d j X i X j

X i X j X i X j

β ξ
λ

= =

= =

− × −
> =

 
− − 

 




, 

and *σ σ≥ , where *σ  is the solution of equation ( )ϕ σ β= , where 

( ) [ ][ ]
( )

1
1 1

2

1
min 2

1 1

( ) ( ) ( ) ( )

( ) , 0,
( ) ( ) ( ) ( )

exp ( ) ( ) ( ) ( )
4

N N

i j

N N
T

i j

m d i d j X i X j

X i X j d i d j
X i X j X i X j

ϕ σ σ
β

λ
σ

= =

= =

− × −
= ∈ ∞

  − + −  − − −
  

  





 
(15)

Then 
1

( )W β≤f  for all { }1
:mW W W β∈ ∈ ≤ . 

Proof. The induced matrix norm is compatible with the corresponding vector lp-norm, hence  

1 1

1 11 1
( ) MEE MEE MEE MEE

XX dX XX dXW
− −

   = ≤   R P R Pf  (16)

where 
1

1

MEE
XX

−
  R  is the 1-norm (also referred to as the column-sum norm) of the inverse matrix 

1MEE
XX

−
  R , which is simply the maximum absolute column sum of the matrix. According to the matrix 

theory, the following inequality holds: 
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1 1 1

max
1 2

MEE MEE MEE
XX XX XXm mλ

− − −      ≤ =       
R R R  

(17)

where 
1

2

MEE
XX

−
  R  is the 2-norm (also referred to as the spectral norm) of 

1MEE
XX

−
  R , which equals the 

maximum eigenvalue of the matrix. Further, we have 

( )

( )[ ][ ]

( )[ ][ ]

1

max

min

2

min 2
1 1

2( )

min 2 1
1 1

1

                         

( ) ( ) ( ) ( ) ( ) ( )

                         

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

MEE
XX MEE

XX

N N
T

i j

a

N N
T

i j

N

e i e j X i X j X i X j

N

X i X j d i d j X i X j X i X j

σ

σ

λ
λ

λ κ

λ κ β

−

= =

= =

  =     

=
 

− − − 
 

≤
− + − − −





R
R

 
 
 


 

(18)

where (a) comes from 

( )
1 1

1

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

Te i e j d i d j W X i X j

W X i X j d i d j

X i X j d i d jβ

− = − − −

≤ − + −

≤ − + −

 (19)

In addition, it holds that 

( )[ ][ ]

( )[ ][ ]

2 21
1 1 1

( )

2 2 1
1 1

( )

12
1 1

1
( ) ( ) ( ) ( ) ( ) ( )

1
            ( ) ( ) ( ) ( ) ( ) ( )

1
            ( ) ( ) ( ) ( )

2

N N
MEE
dX

i j

N Nb

i j

N Nc

i j

e i e j d i d j X i X j
N

e i e j d i d j X i X j
N

d i d j X i X j
N

σ

σ

κ

κ

σ π

= =

= =

= =

= − − −

≤ − − −

≤ − × −







P

 (20)

where (b) follows from the convexity of the vector l1-norm, and (c) is because 
2

1
( )

2
xσκ

σ π
≤  for any 

x .Combining (16)–(18) and (20), we derive 

( )[ ][ ]

( ) [ ]

1
1 1

1

min 2 1
1 1

1
1 1

2

1
min 2

1
( ) ( ) ( ) ( )

2
( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

             
( ) ( ) ( ) ( )

exp ( ) ( )
4

N N

i j

N N
T

i j

N N

i j

m
d i d j X i X j

W

X i X j d i d j X i X j X i X j

m d i d j X i X j

X i X j d i d j
X i X j X

σ

σ π

λ κ β

β
λ

σ

= =

= =

= =

− × −
≤

 
− + − − − 

 

− × −
=

 − + − − −
 
 







f

[ ]
1 1

( ) ( )

             ( )

N N
T

i j

i X j

ϕ σ

= =

 
 −
 
 

=



 
(21)
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Clearly, the function ( )ϕ σ  is a continuous and monotonically decreasing function of σ  over ( )0,∞ , 

satisfying 
0

lim ( )
σ

ϕ σ
→ +

= ∞ , and lim ( )
σ

ϕ σ ξ
→∞

= . Therefore, if β ξ> , the equation ( )ϕ σ β=  will have a 

unique solution *σ  over ( )0,∞ , and if *σ σ≥ , we have ( )ϕ σ β≤ , which completes the proof. □ 

Theorem 2. If 

[ ][ ]

1
1 1

min
1 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

N N

i j

N N
T

i j

m d i d j X i X j

X i X j X i X j

β ξ
λ

= =

= =

− × −
> =

 
− − 

 




, 

and { }†max ,σ σ σ∗≥ , where *σ  is the solution of the equation ( )ϕ σ β= , and †σ  is the solution of 

equation ( )ψ σ α=  (0 1α< < ), where 

( )
( )

2

12
min 2

1 1

( ) , 0,
( ) ( ) ( ) ( )

2 exp ( ) ( ) ( ) ( )
4

N N
T

i j

m

X i X j d i d j
X i X j X i X j

γψ σ σ
β

σ λ
σ= =

  
               

= ∈ ∞
− + −

− − −

 

(22)

in which  

( ) [ ][ ](
)

1 1 11 1

1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

N N
T

i j

X i X j d i d j X i X j X i X j X i X j

d i d j X i X j

γ β β
= =

= − + − − − − +

− × −

  (23)

then it holds that 
1

( )W β≤f , and 
1

( )W W α∇ ≤f  for all { }1
:mW W W β∈ ∈ ≤ . 

Proof. By Theorem 1, we have 
1

( )W β≤f . To prove 
1

( )W W α∇ ≤f , it suffices to prove

( )
1

,  
s

s W
w

α∂∀ ≤
∂

f . By (14), we have 

( )

( )( ) ( )[ ][ ] ( )

( ) ( ) ( )[ ][ ]

1

1

2 2 2
1 1

1

2 2 2
1 1

1

   

1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2

1
       ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2

s

N N
TMEE

XX s s
i j

N N
MEE
XX s s

i j

MEE
XX

W
w

e i e j x i x j e i e j X i X j X i X j W
N

e i e j x i x j e i e j d i d j X i X j
N

σ

σ

κ
σ

κ
σ

−

= =

−

= =

∂
∂

 
 − − − − − −  

 =
 

 + − − − − −  
 

≤





R

R

R

f

f

( )( ) ( )[ ][ ] ( )

( )( ) ( )[ ][ ]

1

2 2 2
1 1

1

1

2 2 2
1 1

1

1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2

1
   ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2

N N
T

s s
i j

N N
MEE
XX s s

i j

e i e j x i x j e i e j X i X j X i X j W
N

e i e j x i x j e i e j d i d j X i X j
N

σ

σ

κ
σ

κ
σ

−

= =

−

= =

 
 − − − − −  

 

 
 + − − − − −  

 



R

f

 (24)

  



Entropy 2015, 17 5556 

 

 

It is easy to derive 

( )( ) ( ) ( )

( )( ) ( ) ( )

1

2 2 2
1 1

1

1

2 2 2 11 1 1 1

( )

  
1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2

1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2

2

N N
TMEE

s sXX
i j

N N
TMEE

s sXX
i j

d

e i e j x i x j e i e j X i X j X i X j W
N

e i e j x i x j e i e j X i X j X i X j W
N

N

σ

σ

κ
σ

κ
σ

β

−

= =

−

= =

 
            

 

         

− − − − −

≤ − − − − −

≤





R

R

f

f

( )( ) ( )

( )

1

2 2 2 11 1 1

( ) 1

2 3 1 1 11 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
4

N N
TMEE

s sXX
i j

N Ne TMEE
XX

i j

e i e j x i x j e i e j X i X j X i X j

X i X j d i d j X i X j X i X j X i X j
N

σκ
σ

β β
σ π

−

= =

−

= =

               
               

− − − − −

≤ − + − − − −





R

R

 
(25)

where (d) follows from the convexity of the vector l1-norm and 
1

( )W β≤f , and (e) is due to the fact 

that ( )( ) ( )1 1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )s se i e j x i x j X i X j d i d j X i X jβ− − ≤ − + − −  and 

2

1
( )

2
xσκ

σ π
≤

for any x . In a similar way, one can derive 

( )( ) ( )[ ][ ]

( )( ) ( )[ ][ ]

1

2 2 2
1 1

1

1

2 2 2 11 1 1

1

2 3
1

1
   ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2

1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2

1
(

4

N N
MEE
XX s s

i j

N N
MEE
XX s s

i j

MEE
XX

e i e j x i x j e i e j d i d j X i X j
N

e i e j x i x j e i e j d i d j X i X j
N

X i
N

σ

σ

κ
σ

κ
σ

β
σ π

−

= =

−

= =

−

 
  − − − − −  

 

 
 ≤ − − − − −  

 

 ≤  





R

R

R ( ) 2

1 1
1 1

) ( ) ( ) ( ) ( ) ( ) ( ) ( )
N N

i j

X j d i d j d i d j X i X j
= =

 
− + − × − × − 

 


 (26)

Then, combining (24)–(26), (17) and (18), we have 

( )

( ) [ ][ ]

( )

1

1

2 3
1

1 1 11 1

1 2

1 12 3
1 1 1

3
min 2

4

  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1
  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

4

4 ( )

s

MEE
XX

N N
T

i j

N N
MEE
XX

i j

W
w

N

X i X j d i d j X i X j X i X j X i X j

X i X j d i d j d i d j X i X j
N

m

X iσ

β
σ π

β

β
σ π

γ π

σ λ κ β

−

= =

−

= =

∂
∂

 ≤  

 
× − + − − − − 
 

 
 + − + − × − × −  

 

≤
−





R

R

f

( )[ ][ ]

( ) [ ][ ]

1
1 1

2

2 1
min 2

1 1

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
2 exp ( ) ( ) ( ) ( )

4

( )

N N
T

i j

N N
T

i j

X j d i d j X i X j X i X j

m

X i X j d i d j
X i X j X i X j

γ

β
σ λ

σ

ψ σ

= =

= =

 
+ − − − 

 

=
  − + −  − − −
  

  
=




 

(27)
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Obviously, ( )ψ σ  is also a continuous and monotonically decreasing function of σ  over ( )0,∞ , and 

satisfies 
0

lim ( )
σ

ψ σ
→ +

= ∞ , lim ( ) 0
σ

ψ σ
→∞

= . Therefore, given 0 1α< < , the equation ( )ψ σ α=  has a unique 

solution †σ  over ( )0,∞ , and if †σ σ≥ , we have ( )ψ σ α≤ . This completes the proof. □ 

According to Theorem 2 and Banach Fixed-Point Theorem [11], given an initial weight vector 
satisfying 0 1

W β≤ , the fixed-point MEE algorithm (11) will surely converge to a unique fixed point 

in the range { }1
:mW W W β∈ ∈ ≤  provided that the kernel bandwidth σ  is larger than a certain 

value. Moreover, the value of α  ( 0 1α< < ) guarantees the convergence speed. It is worth noting that 

the derived sufficient condition will be, certainly, a little loose, due to the zooming out in the proof process. 

4. Illustrative Example 

In the following, we give an illustrative example to verify the derived sufficient condition that 

guarantees the convergence of the fixed-point MEE algorithm. Let us consider a simple linear model: 

( ) 2 ( ) ( )d i X i v i= +  (28)

where ( )X i  is a scalar input, and ( )v i  is an additive noise. Assume that ( )X i  is uniform distributed 

over 3, 3 −   and ( )v i  is zero-mean Gaussian with variance 0.01 . There are 100 training samples 

{ }100

1
( ), ( )

i
X i d i

=
 generated from the system (28). Based on these data we calculate  

100 100

1 1

100 100
2

1 1

( ) ( ) ( ) ( )

1.9714
( ) ( )

i j

i j

d i d j X i X j

X i X j
ξ = =

= =

− × −
= =

−




 (29)

We choose β ξ= >3  and α = <0.9938 1 . Then by solving the equations ( )ϕ σ β=  and ( )ψ σ α= , 

we obtain σ ∗ = 2.38  and σ =† 2.68 . Therefore, by Theorem 2, if σ ≥ 2.68  the fixed-point MEE 

algorithm will converge to a unique solution in the range 3 3W− ≤ ≤ . Figures 1–3 illustrate the curves 

of the functions W , ( ) 1
( ) MEE MEE

XX dXW
−

= R Pf , and 
( )d W

dW

f
 when 3.0σ = , 0.1 , 0.01 , respectively. 

From the Figures we observe: (i) when 3.0 2.68σ = > , we have ( ) 3W <f  and 
( )d W

dW
α<f

 for 

3 3W− ≤ ≤ ; (ii) when 0.1 2.68σ = < , we still have ( ) 3W <f  and 
( )d W

dW
α<f

 for 3 3W− ≤ ≤ . In this 

case, the algorithm still will converge to a unique solution in the range 3 3W− ≤ ≤ . This result 

confirms the fact that the derived sufficient condition is a little loose (i.e., far from being necessary). 

The main reason for this is that there is a lot of zooming out in the derivation process; (iii) however, 

when σ  is too small, say 0.01σ = , the condition 
( )d W

dW
α<f

 will not hold for some 

{ }3 3W W∈ − ≤ ≤ . In this case, the algorithm may diverge. 
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Figure 1. Plots of the functions W , ( )Wf  and 
( )d W

dW

f
 when 3.0σ = . 

 

Figure 2. Plots of the functions W , ( )Wf  and 
( )d W

dW

f
 when 0.1σ = . 

 

Figure 3. Plots of the functions W , ( )Wf  and 
( )d W

dW

f
 when 0.01σ = . 

Table 1 shows the numbers of iterations for convergence with different kernel bandwidths (3.0, 1.0, 
0.1, 0.05). The initial weight vector is set at 0 0.1W = , and the stop condition for the convergence is  

61

1

10k k

k

W W

W
−−

−

− <  (30)
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w
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As one can see, when { }†3.0 max ,σ σ σ∗= ≥ , the fixed-point MEE algorithm will surely converge to a 

solution with few iterations. When σ  becomes smaller, the algorithm may still converge, but the 

convergence speed will become much slower. Note that when σ  is too small (e.g., 0.01σ = ), the 

algorithm will diverge (the corresponding results are not shown in Table 1). 

Table 1. Numbers of iterations for convergence with different kernel bandwidthsσ . 

σ  3.0 1.0 0.1 0.05 

Iterations 3 4 16 43 

5. Conclusion 

The MEE criterion has received increasing attention in signal processing and machine learning due 

to its desirable performance in adaptive system training especially with non-Gaussian data. Many 

iterative optimization methods have been developed to minimize the error entropy for practical use. 

But the fixed-point algorithms have been seldom studied, and in particular, too little attention has been 

paid to the convergence issue of the fixed-point MEE algorithms. This paper presented a theoretical 

study of this problem, and proved a sufficient condition to guarantee the convergence of a fixed-point 

MEE algorithm. The results of this study may provide a possible range for choosing a kernel 

bandwidth for MEE learning. However, the derived sufficient condition may give a much larger kernel 

bandwidth than a desired one due to the zooming out in the formula derivation process. In the future 

study, we will try to derive a tighter sufficient condition that ensures the convergence of the 

fixed-point MEE algorithm.  
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