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Abstract: Multivariate nonlinear mixed-effects models (MNLMM) have received increasing
use due to their flexibility for analyzing multi-outcome longitudinal data following
possibly nonlinear profiles. This paper presents and compares five different iterative
algorithms for maximum likelihood estimation of the MNLMM. These algorithmic
schemes include the penalized nonlinear least squares coupled to the multivariate
linear mixed-effects (PNLS-MLME) procedure, Laplacian approximation, the pseudo-data
expectation conditional maximization (ECM) algorithm, the Monte Carlo EM algorithm
and the importance sampling EM algorithm. When fitting the MNLMM, it is rather
difficult to exactly evaluate the observed log-likelihood function in a closed-form expression,
because it involves complicated multiple integrals. To address this issue, the corresponding
approximations of the observed log-likelihood function under the five algorithms are
presented. An expected information matrix of parameters is also provided to calculate
the standard errors of model parameters. A comparison of computational performances is
investigated through simulation and a real data example from an AIDS clinical study.
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1. Introduction

Analysis of multi-outcome longitudinal data with various features has attracted considerable interest
in clinical trials, biological psychology, environmental science and medical research, to name a
few. The methodology of multivariate linear mixed-effects models (MLMM) [1] and multivariate
nonlinear mixed-effects models (MNLMM) [2] has been developed for related work. A comprehensive
study of the MLMM along with its applications can be found in [3–7], among others. Nonlinear
models for repeated-measures data rest on more complicated mathematical derivations and heavier
computational requirements than linear models, but they can offer flexibility in capturing a broader
range of data patterns. Several approaches to carrying out maximum likelihood (ML) estimation of
nonlinear mixed-effects models (NLMM) for single-outcome longitudinal data have been studied; see,
for example, [8–12]. Bayesian inference in NLMM via Markov chain Monte Carlo (MCMC) procedures
can be found, for instance, in [13–15]. Although the use of the NLMM, as well as its extensions
in other families of distributions have been pretty well established in the literature, to the best of our
knowledge, exploration of the inference on MNLMM is relatively rare so far. Analyzing each response
variable of the data by fitting the NLMM separately might be inappropriate and fail to take account of
the between-variable association, as well as its evolution.

For the general NLMM, the linearization method [8,16] that exploits a first-order Taylor expansion to
approximate the nonlinear function in terms of a linear pseudo-data model is by far the most widely-used
approach due to its numerical simplicity. Despite its popularity, [17] argued that the linearization method
may produce substantial bias in parameter estimation, as the number of observations per subject is too
small, and the variability of random effects tends to be large at the same time. Although computationally
much simpler, the Laplace approximation method [10] can also lead to considerably-biased parameter
estimates, depending on the quality of the mode. As an alternative to the pseudo-data and Laplace
approximation approaches, the integral approximation methods that use Monte Carlo integration [18]
or importance sampling [19] to approximate the observed likelihood may provide more accurate
estimates than the linearization method. However, the numerical integration methods are generally
inefficient to implement and become computationally prohibitive when the dimension of random effects
increases [20]. Over the past few decades, several estimation algorithms for NLMM have been developed
and implemented in different software. For example, the linearization methods using the first-order
Taylor expansion [21] or the first-order conditional estimation (FOCE) [8,16] are embedded in R function
nlme, while the Laplace approximation method is implemented in NONMEM [22] and the SAS macro
NLIMIX [23]. A new SAS macro NLMIXED incorporating adaptive Gaussian quadrature has shown
considerable improvement [24]. The other improved procedure based on the stochastic approximation
expectation maximization [25] was implemented in MONOLIX [26], NONMEM [27] and R package
saemix [28]. Multivariate nonlinear mixed-effects models can be fitted using ad hoc manipulation
by expanding the design matrix with extra columns of dummy covariates flagging each element of the
original multivariate responses.

Consider the multiple repeated measures {(Y i,X i), i = 1, . . . , N}, where Y i is a si × r response
matrix composed of r response vectors yij = (yij,1, . . . , yij,si)

T, j = 1, . . . , r, and X i is the covariate
matrix for the i-th subject. Let Ei = [ei1 : ei2 : · · · : eir] be the si × r matrix of within-subject errors
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associated with Y i, where eij = (eij,1, . . . , eij,si). Let yi = vec(Y i) and ei = vec(Ei) denote the
stacked sir × 1 vectors of all responses and within-subject errors, respectively.

In general, the MNLMM takes the form of:

yi = µi(ηi,X i) + ei, i = 1, . . . , N (1)

where µi = µi(ηi,X i) is a nonlinearly-differentiable function of a subject-specific parameter
ηi governing the within-profile behaviors and ei is a vector containing normally-distributed error
components. Moreover, the fixed effects β and the random effects bi can be incorporated into the model
by letting:

ηi = Aiβ +Bibi, (2)

where Ai and Bi are design matrices of size s × p and s × q, respectively. We assume that bi
follows a multivariate normal distribution with mean vector 0 and q × q variance-covariance matrix
D, denoted by bi ∼ Nq(0,D), and independent of ei ∼ Nsir(0,Ri). The joint distributions
of (bTi , e

T
i )T for distinct subjects are independent. To reduce the number of parameters in Ri,

we assume that the k-th row of Ei, say ei·k, follows Nr(0,Σ), and the j-th column of Ei, say
eij·, follows Nsi(0,Ci), such that Ri = Σ ⊗ Ci. This specification implies that within-subject
errors for all responses measured at the same occasion have variance-covariance Σ. To capture the
extra autocorrelation of a given response among irregularly-observed occasions, some parsimonious
dependence structures can be made on Ci, such as the compound symmetry, the p-order autoregressive
model [29,30] and the damped exponential correlation [31]. For simplicity, we write Ci = Ci(φ),
which depends on subject i according to its dimension si with each entry being a function of a small
set of parameters φ describing within-subject autocorrelation.

Let θ = (β,D,Σ,φ) be the entire model parameters. According to Model Equation (1) with
Assumption Equation (2), the marginal density of yi is:

f(yi|θ) =

∫
φsir

(
yi|µi,Ri

)
φq(bi|0,D)dbi, (3)

where φd(·|µ,Ω) denotes the probability density function (pdf) of a d-variate normal distribution with
mean vector µ and variance-covariance matrix Ω. Typically, this integral cannot yield a closed-form
expression when the vector-valued function µi = µi(ηi,X i) is nonlinear in random effects bi. Thus,
the log-likelihood function of θ for y = {y1, . . . ,yN} is given by:

`(θ|y) =
N∑
i=1

log
{∫

(2π)−(sir+q)/2|Σ|−si/2|Ci|−r/2|D|−1/2

× exp
{
− 1

2

[(
yi − µi

)T
R−1i

(
yi − µi

)
+ bTi D

−1bi
]}
dbi

}
. (4)

The purpose of this article is to consider five different methods for carrying out ML estimation of
the MNLMM described in Equation (1) along with Equation (2) and for approximating the observed
log-likelihood Function Equation (4). The methods include the penalized nonlinear least squares coupled
to multivariate linear mixed effects (PNLS-MLME) approximation [8], Laplacian approximation [32],
a pseudo-data version of the expectation conditional maximization (ECM) algorithm [33], the Monte
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Carlo EM (MCEM) algorithm [34] and the importance sampling EM (ISEM) algorithm [35]. The
approximation to the observed log-likelihood is based on the standard Taylor expansion and is easy
to calculate within the algorithms. A simple way of computing standard errors of parameters via the
information-based method is provided.

The article is organized as follows. In Section 2, we describe the five computational procedures
for ML estimation of the MNLMM together with the calculation of standard errors of parameters.
In Section 3, the proposed methodology is illustrated with the analysis of HIV-AIDS data. Section 4
presents a comparison of the five approximation methods through simulation studies. We summarize
and discuss implications in Section 5. The technical derivations are collected in the Appendix.

2. Five Approximate ML Procedures

From Model Equation (1), the j-th column (outcome) of Y i, say yij = (yij,1, . . . , yij,si)
T, can be

formulated as:
yij = µij(ηi,xij) + eij,

where µij(ηi,xij) = (µj(ηi,xij,1), . . . , µj(ηi,xij,si))
T and eij = (eij,1, . . . , eij,si)

T. Analogously, the
model for the k-th row (occasion) can be expressed as:

yi,k = µk
i (ηi,xik) + ei,k,

where yi,k = (yi1,k, . . . , yir,k)T, µk
i (ηi,xik) = (µ1(ηi,xi1,k), . . . , µr(ηi,xir,k))T and ei,k =

(ei1,k, . . . , eir,k)T. We present five algorithms for employing ML estimation of Model Equation (1).
The approximation to the observed log-likelihood Function Equation (4) and the calculation of standard
errors of parameters are discussed, as well.

2.1. PNLS-MLME Procedure

Following the linear mixed-effects (LME) approximation method suggested by [8], the first procedure
consists of two steps: a penalized nonlinear least squares (PNLS) step and a multivariate LME (MLME)
step. The basic idea behind this procedure is that we estimate the unobservable random effects bi via the
PNLS step and then update the ML estimates of parameters θ based on the formulation of MLMM for
the pseudo-data. Specifically, the proposed PNLS-MLME procedure is sketched below.

In the PNLS step, first define:

g(yi, bi,θ) =
(
yi − µi(β, bi)

)T
(Σ⊗Ci)

−1(yi − µi(β, bi)
)

+ bTi D
−1bi, (5)

where µi(β, bi) = µi(ηi,X i), for i = 1, 2, · · · , N , is a function of fixed effects β and random

effects bi. Fixing the current estimates of parameters θ̂
(h)

= (β̂
(h)
, D̂

(h)
, Σ̂

(h)
, φ̂

(h)
), the conditional

modes of random effects bi are obtained through minimizing a penalized nonlinear least-squares
objective function:

{b̂
(h)

i }Ni=1 = arg min
N∑
i=1

g(yi, bi, θ̂
(h)

). (6)
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The joint distributions (bTi , e
T
i )T for distinct subjects are independent, and thus, all yi are independent

of each other. In practice, solving over b̂
(h)

i for each subject can be implemented by minimizing

g(yi, bi, θ̂
(h)

) with respect to q-dimensional random effects of one subject at a time, rather than finding
the solutions with respect to those of all subjects simultaneously.

In the MLME step, which allows updating the parameter estimates, we utilize the first-order Taylor
expansion of Model Equation (1) around the current estimates η̂(h)

i = Aiβ̂
(h)

+Bib̂
(h)

i , that is,

yij,k − µj(η̂
(h)
i ,xij,k) + µ̇j(η̂

(h)
i ,xij,k)Tη̂

(h)
i = µ̇j(η̂

(h)
i ,xij,k)Tηi + eij,k,

where µ̇j , j = 1, . . . , r, are the first partial derivatives of µj with respect to ηi and β and bi are replaced

by β̂
(h)

and {b̂
(h)

i }Ni=1, respectively. Denote the pseudo-data by:

ỹij,k = yij,k − µj(η̂
(h)
i ,xij,k) + x̃ijkβ̂

(h)
+ z̃ij,kb̂

(h)

i , (7)

where x̃ijk = µ̇j(η̂
(h)
i ,xij,k)TAi and z̃ijk = µ̇j(η̂

(h)
i ,xij,k)TBi. Consequently, Model Equation (1) can

be rewritten as:
ỹij,k = x̃ijkβ + z̃ijkbi + eij,k.

The model for the super vector of the pseudo-data for the i-th subject is:

ỹi = X̃ iβ + Z̃ibi + ei, (8)

where ỹi is a sir × 1 vector composed of r pseudo-response vectors ỹij = (ỹij,1, · · · , ỹij,si)T, X̃ i is a
sir × p matrix with rows made up of p× 1 vector x̃ijk and Z̃i is a sir × q matrix with rows made up of
q×1 vector z̃ijk. Obviously, Model Equation (8) for the pseudo-data is shown in an LME representation,
so the estimation procedure becomes much simpler.

Therefore, the log-likelihood function of θ according to Model Equation (8) can be approximated by:

`PD(θ|y) ∼= −1

2

N∑
i=1

{
sir log(2π) + log

∣∣Z̃iDZ̃
T

i + Σ⊗Ci

∣∣
+
(
ỹi − X̃ iβ

)T(
Z̃iDZ̃

T

i + Σ⊗Ci

)−1(
ỹi − X̃ iβ

)}
. (9)

In the MLME step, we update β̂
(h)

by a generalized least-squares approach, which yields:

β̂
(h+1)

=

( N∑
i=1

X̃
T

i

(
Z̃iD̂

(h)
Z̃

T

i + Σ̂
(h)
⊗ Ĉ

(h)

i

)−1
X̃ i

)−1
×

N∑
i=1

X̃
T

i

(
Z̃iD̂

(h)
Z̃

T

i + Σ̂
(h)
⊗ Ĉ

(h)

i

)−1
ỹi. (10)

Denote the half-vectorization operator by vech(·), which represents a column vector obtained by

vectorizing only the lower triangular entries of a symmetric matrix. Given the current estimate β̂
(h+1)

,
we update α̂(h) = (vech(D̂

(h)
), vech(Σ̂

(h)
), φ̂

(h)
) by the Newton–Raphson method:

α̂(h+1) = α̂(h) − Ĥ(h+1/2)−1

αα ŝ(h+1/2)
α , (11)
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where ŝ
(h+1/2)
α and Ĥ

(h+1/2)
αα are the score vector sα and Hessian matrix Hαα evaluated at β = β̂

(h+1)

and α = α̂(h). Explicit expressions for elements in sα and Hαα are given in Appendix.
Iterations of Equations (6), (10) and (11) continue until either the maximum number of iterations or

the user-specified convergence tolerance has been achieved.

2.2. Laplacian Procedure

From Function Equation (3) and Definition Equation (5), we have the joint density of (yi, bi), denoted
by f(yi, bi|θ) = φsir

(
yi|µi,Ri

)
φq(bi|0,D), and the marginal density of yi, given by:

f(yi|θ) =

∫
(2π)−(sir+q)/2|Ri|−1/2|D|−1/2 exp

{
− 1

2
g(yi, bi,θ)

}
dbi. (12)

Laplacian approximation [32,36] is an alternative technique to estimate the marginal densities or
posterior predictive densities, which involve integrating out all non-target variables. We next discuss
how to adopt the Laplacian approximation to evaluate Equation (12) and develop the corresponding
estimation algorithm.

Set an initial guess of random effects bi to be:

b̂i = b̂i(yi,θ) = arg max
bi

f(yi, bi|θ) = arg min
bi

g(yi, bi,θ).

Consider the second-order Taylor expansion of g(yi, bi,θ) around b̂i. It yields:

g(yi, bi,θ) ≈ g(yi, b̂i,θ)− ġ(yi, b̂i,θ)(bi − b̂i) +
1

2
(bi − b̂i)Tg̈(yi, b̂i,θ)(bi − b̂i)

≈ g(yi, b̂i,θ) +
1

2
(bi − b̂i)Tg̈(yi, b̂i,θ)(bi − b̂i),

because ġ(yi, b̂i,θ) = 0, where the first two partial derivatives of g(yi, bi,θ) with respect to bi are:

ġ(yi, bi,θ) = −2

(
∂µi(β, bi)

∂bTi

∣∣∣
bi=b̂i

R−1i

(
yi − µi(β, b̂i)

)
−D−1bi

)
,

and:

g̈(yi, bi,θ) = −2

(
∂2µi

∂bi∂b
T
i

∣∣∣
bi=b̂i

R−1i

(
yi − µi

)
− ∂µi

∂bTi

∣∣∣
bi=b̂i

R−1i

∂µi

∂bi

∣∣∣
bi=b̂i

−D−1
)
,

respectively. Notice that the contribution of the term involving the second derivative of µi in g̈(yi, bi,θ)

is usually negligible compared to that involving the product of the first derivative of µi at bi = b̂i [37].
We hereby define:

g̈(yi, b̂i,θ) ∼= G(yi,θ) = 2

(
∂µi(β, bi)

∂bTi

∣∣∣∣T
bi=b̂i

R−1i

∂µi(β, bi)

∂bi

∣∣∣∣
bi=b̂i

+D−1

)
. (13)
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Consequently, the Laplacian approximation to log-likelihood Equation (4) is:

`LA(θ|y) ∼= log
{ N∏

i=1

(2π)−
sir+q

2 |Ri|−
1
2 |D|−

1
2 exp

{
− 1

2
g(yi, b̂i,θ)

}
×
∫

exp
{
− 1

4
(bi − b̂i)Tg̈(yi, b̂i,θ)(bi − b̂i)

}
dbi

}
(14)

= −1

2

N∑
i=1

{
sir log(2π) + log |Ri|+ log |D|+ log

∣∣∣1
2
G(yi,θ)

∣∣∣
+
(
yi − µi(β, b̂i)

)T
R−1i

(
yi − µi(β, b̂i)

)
+ b̂

T

i D
−1b̂i

}
. (15)

with regard to ML estimation of θ, we can treat it as an optimization problem based on `LA(θ|y).
Subsequently, we estimate D by taking the first partial derivative of Equation (15) with respect to D−1

and setting it to zero, yielding:

D̂ = N−1
N∑
i=1

b̂ib̂
T

i .

By maximizing Equation (15), the estimates of β, Σ and φ react with one another, and thus, we
perform an iterative algorithm that proceeds as follows. Given D̂ and the current estimates β̂

(h)
and

φ̂
(h)

, we update the diagonal elements in Σ̂
(h)

by:

σ̂
(h+1)
jj =

( N∑
i=1

si

)−1 N∑
i=1

tr
(
Ci(φ̂

(h)
)−1
(
yij − µ̂

(h+1)
ij

)(
yij − µ̂

(h+1)
ij

)T)
,

and the off-diagonal elements by:

σ̂
(h+1)
jl =

(
2

N∑
i=1

si

)−1 N∑
i=1

tr
(
Ci(φ̂

(h)
)−1
[(
yij − µ̂

(h+1)
ij

)(
yil − µ̂

(h+1)
il

)T
+
(
yil − µ̂

(h+1)
il

)(
yij − µ̂

(h+1)
ij

)T])
,

for j, l = 1, . . . , r, where µ̂(h+1)
ij is an si× 1 subvector consisting of the ((j− 1)si + 1)-th to the (jsi)-th

entries of µ̂(h+1)
i = µi(β̂

(h+1)
, b̂i). Unfortunately, equating the first partial derivatives of Equation (15)

with respect to β and φ, respectively, to zero cannot deduce the updated estimators in closed form.
Therefore, we use the nlminb routine [38] to perform a numerical search for updating β̂

(h)
and φ̂

(h)

sequentially. Specifically,

β̂
(h+1)

= arg min
β

{ N∑
i=1

(
yi − µi(β, b̂i)

)T
(Σ̂

(h+1)
⊗Ci(φ̂

(h)
))−1

(
yi − µi(β, b̂i)

)}
,

and:

φ̂
(h+1)

= arg min
φ

{ N∑
i=1

[
log
∣∣∣1
2
G(yi, θ̂

(h+1)

(−φ) )
∣∣∣+ r log

∣∣Ci(φ)
∣∣

+(yi − µ̂
(h+1)
i )T(Σ̂

(h+1)
⊗Ci(φ))−1(yi − µ̂

(h+1)
i )

]}
.
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2.3. Pseudo-ECM Algorithm

According to the pseudo-data model specified in Equation (8), treating the random effects {bi}Ni=1 as
latent data, we establish a complete-data framework of the model:

ỹi|bi ∼ Nsir(X̃ iβ + Z̃ibi,Ri), bi ∼ Nq(0,D), i = 1, . . . , N.

Given the pseudo-complete data ỹ = {ỹi}Ni=1 and b = {bi}Ni=1, the log-likelihood function of θ is:

`Pc (θ|ỹ, b) =
N∑
i=1

log
(
φsir(ỹi|X̃ iβ + Z̃ibi,Ri)φq(bi|0,D)

)
. (16)

To carry out ML estimation for the MNLMM, we develop an ECM algorithm [33], which is a variant
of EM [39], replacing its M steps by several computationally-simpler conditional maximization (CM)
steps. It has several appealing features, such as stability of monotone convergence and simplicity of
implementation. Hereafter, the procedure is referred to as the pseudo-ECM algorithm, because it is
developed under the pseudo-data defined in Equation (7). The proposed implementation approach is
outlined below.

E step: Evaluate the expected complete-data log-likelihood Function Equation (16) conditioning on
the current estimates θ̂

(h)
and the pseudo-responses ỹ = ỹ(β̂

(h)
, b̂

(h−1)
i ), which linearize the

regression function around the previous estimates of mixed effects (β̂
(h)
, b̂

(h−1)
i ) and should be

updated at each iteration. This gives rise to the so-called Q-function:

Q(θ|θ̂
(h)

) = −1

2

N∑
i=1

{
log |Σ⊗Ci|+ log |D|+ tr

(
(Σ⊗Ci)

−1Ω̂
(h)

i

)
+tr(D−1Ψ̂

(h)

i )
}
, (17)

where:

Ψ̂
(h)

i = E[bib
T
i |ỹi, θ̂

(h)
] = b̃

(h)

i b̃
(h)T

i + (D̂
(h)−1

+ Z̃
T

i R̂
(h)−1

i Z̃i)
−1,

Ω̂
(h)

i = E[ẽiẽ
T
i |ỹi, θ̂

(h)
] = ẽ

(h)
i ẽ

(h)T

i + Z̃i(D̂
(h)−1

+ Z̃
T

i R̂
(h)−1

i Z̃i)
−1Z̃

T

i

with R̂
(h)

i = Σ̂
(h)
⊗ Ci(φ̂

(h)
), b̃

(h)

i = E[bi|ỹi, θ̂
(h)

] = D̂
(h)
Z̃

T

i (Z̃iD̂
(h)
Z̃

T

i + R̂
(h)

i )−1(ỹi −
X̃ iβ̂

(h)
), and ẽ(h)i = E[ẽi|ỹi, θ̂

(h)
] = ỹi − X̃ iβ − Z̃ib̃

(h)

i , where ỹi = ỹi(β̂
(h)
, b̂

(h−1)
i ) represents

the updated pseudo-responses.
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CM step: Update the current estimates β̂
(h)

, D̂
(h)

, Σ̂
(h)

and φ̂
(h)

by maximizing the Q-function
Equation (17). We obtain:

β̂
(h+1)

=
( N∑

i=1

X̃
T

i R̂
(h)−1

i X̃ i

)−1( N∑
i=1

X̃
T

i R̂
(h)−1

i (ỹi − Z̃ib̃
(h)

i )
)
,

D̂
(h+1)

= N−1
N∑
i=1

Ψ̂
(h)

i ,

σ̂
(h+1)
jl =


(∑N

i=1 si

)−1∑N
i=1 tr

(
Ĉi(φ̂

(h)
)−1ω̂

(h+1/2)
ijl

)
, for j = l,(

2
∑N

j=1 si

)−1∑N
i=1 tr

(
Ĉi(φ̂

(h)
)−1
[
ω̂

(h+1/2)
ijl + ω̂

(h+1/2)
ilj

])
, for j 6= l,

φ̂
(h+1)

= arg min
φ

{
r

N∑
i=1

log |Ci|+
N∑
i=1

tr
(

(Σ̂
(h+1)

⊗Ci)
−1Ω̂

(h+1/2)

i

)}
,

where ω̂(h+1/2)
ijl is an si× si matrix consisting of the ((j− 1)si + 1)-th to the (jsi)-th columns and

rows of Ω̂
(h)

i in which β andD have been replaced by their updated estimates at the h+1 iteration.

Besides, Ω̂
(h+1/2)

i in the above optimization function for φ̂
(h+1)

is Ω̂
(h)

i evaluated at θ = θ̂
(h+1)

,
except for φ.

Given {b̂
(0)

i }Ni=1 and θ̂
(0)

, we implement the pseudo-ECM algorithm until the user’s specified
convergence criterion satisfies. Analogous to the PNLS-MLME method, this algorithm is established
under the pseudo-data scenario. Hence, the resulting approximate log-likelihood value can be obtained
by using Equation (9).

2.4. Monte Carlo EM Algorithm

We offer a Monte Carlo (MC) version of the EM algorithm [40] for ML estimation of Model
Equation (1) and evaluate the observed log-likelihood Equation (4) via the MC integration. The MCEM
is a modification of the EM algorithm in which the E step is computed numerically through a large
number of simulated samples.

Given the complete data (y, b), the log-likelihood function of θ for the MNLMM can be expressed as:

`c(θ|y, b) =
N∑
i=1

log
(
φsir

(
yi|µi(β, bi),Ri

)
φq

(
bi|0,D

))
. (18)

In the E step, we compute the expectation of complete data log-likelihood Function Equation (18) to
yield the Q-function:

Q(θ|θ̂
(h)

) =
N∑
i=1

∫
log φsir

(
yi|µi(β, bi),Ri

)
P (bi|yi, θ̂

(h)
)dbi

+
N∑
i=1

∫
log φq(bi|0,D)P (bi|yi, θ̂

(h)
)dbi. (19)

Obviously, Equation (19) cannot be written in closed form, since the conditional distribution of bi
given yi:

P (bi|yi,θ) ∝ exp
{
− 1

2

[(
yi − µi(β, bi)

)T
R−1i

(
yi − µi(β, bi)

)
+ bTi D

−1bi
]}

(20)
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has no standard form. To simulate random samples from Equation (20), we perform the
Metropolis–Hastings (M-H) algorithm [41] with the proposal distribution:

b
(m+1)
i ∼ Nq

(
b
(m)
i ,G−1

(
yi, θ̂

(h)))
, (21)

where G−1(yi, θ̂
(h)

) is the inverse matrix of G(yi,θ) given in Equation (13) and evaluated at θ = θ̂
(h)

.
Note that the idea of considering such a proposal distribution comes from the integration of Equation (14)
over bi, which is, up to a multiplicative constant, approximately equal to a N (b̂i,G

−1(yi,θ
)
). We have

the probability min
{

1, P (b
(m+1)
i |yi, θ̂

(h)
)/P (b

(m)
i |yi, θ̂

(h)
)
}

to accept the new generation b(m+1)
i , but

otherwise to set b(m+1)
i = b

(m)
i . After having a set of converged MC samples {b(m)

i }Mm=1, the random

effects bi, as well as their function f(bi) in Equation (19) can be estimated by b̂
(h)

i =
∑M

m=1 b
(m)
i /M and

E[f(bi)|yi,θ] =
∑M

m=1 f(b
(m)
i )/M , respectively, at each iteration.

In the M step, we find the limited value of the obtained Q-function Equation (19) by equating the
following functions:

∂Q(θ|θ̂
(h)

)

∂D
=

N∑
i=1

∂

∂D
E
[

log φq(bi|0,D)|yi, θ̂
(h)]

(22)

and:
∂Q(θ|θ̂

(h)
)

∂α
=

N∑
i=1

∂

∂α
E
[

log φsir

(
yi|µi(β, bi),Ri

)
|yi, θ̂

(h)]
(23)

to zeros, where α = {β,Σ,φ}. By allowing differentiation under the integral sign for Equation (22),
we update the estimate ofD by:

D̂
(h+1)

=
1

N

N∑
i=1

E
[
bib

T
i |yi, θ̂

(h)] ∼= 1

N

N∑
i=1

{ 1

M

M∑
i=1

b
(m)
i b

(m)T

i

}
.

Since solving Equation (23) is analytically intractable, we perform a profile approximate Q-function
approach, which updates β̂

h
, Σ̂

(h)
and φ̂

(h)
by a sequential optimization procedure as the Laplacian

method described in Section 2.2. It gives:

β̂
(h+1)

= arg max
β

N∑
i=1

E
[

log φsir

(
yi|µi(β, bi), R̂

(h)

i

)
|yi, θ̂

(h)]
, (24)

Σ̂
(h+1)

= arg max
Σ

N∑
i=1

E
[

log φsir

(
yi|µi(β̂

(h+1)
, bi),Σ⊗ Ĉ

(h)

i

)
|yi, θ̂

(h)]
, (25)

and:

φ̂
(h+1)

= arg max
φ

N∑
i=1

E
[

log φsir

(
yi|µi(β̂

(h+1)
, bi), Σ̂

(h+1)
⊗Ci(φ)

)
|yi, θ̂

(h)]
. (26)

Consequently, the marginal log-likelihood can be approximated as:

`MC(θ|y) = −1

2

N∑
i=1

{
(sir + q) log(2π) + si log |Σ|+ r log |Ci|+ log |D|

}
− 1

2M

N∑
i=1

M∑
m=1

g(yi, b
(m)
i ,θ).
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According to an alternative hierarchy of the MNLMM,

yi|ηi ∼ Nsir(µi(ηi,xi),Ri), ηi ∼ Ns(Aiβ,BiDB
T
i ), for i = 1, . . . , N,

the MCEM algorithm that deals with Monte Carlo integration directly on the individual parameters
ηi rather than subject-specific random effects bi can yield an explicit estimator for the fixed effects β.
However, such an implementation may not be feasible in the framework of MNLMMs due to the possible
singularity ofBiDB

T
i .

2.5. Importance Sampling EM Algorithm

Importance sampling (IS) is an alternative way of performing MC integration. We provide an ISEM
algorithm, which modifies MC approximation of Equation (19) in the E step of the MCEM algorithm
by using the IS method. To implement the ISEM algorithm, we first choose an appropriate envelope
distribution from which the samples are simulated and the importance weights calculated. Like that used
in the M-H algorithm, Equation (21) is a natural consideration for the envelop distribution. As suggested
by [35], an envelop distribution could be a mixture of two multivariate normal distributions with pdf:

λ(bi) = P0φq(bi|0, D̂
(h)

) + (1− P0)φq

(
bi|b̂

(h)

i ,G−1(yi, θ̂
(h)

)
)
, (27)

where the mixing proportion 0 ≤ P0 ≤ 1 is a pre-specified value.
Notably, ISEM can be performed to evaluate the expected values of any functions of unobservable

{bi}Ni=1, e.g., f(bi) = bi and f(bi) = bib
T
i . It follows that:

E
[
f(bi)|yi,θ

]
=

∫
f(bi)f(bi|yi,θ)dbi =

∫
f(bi)f(yi|bi,θ)f(bi|D)dbi∫
f(yi|bi,θ)f(bi|D)dbi

. (28)

Having obtained a sufficient number of random effects, denoted by {b(m)
i }Ni=1, m = 1, . . . ,M , we

adopt the ratio of two MC approximations using IS from Equation (27) to estimate Equation (28),
given by:

E
[
f(bi)|yi,θ

] ∼= ∑M
m=1 f(b

(m)
i )f(yi|b

(m)
i ,θ)f(b

(m)
i |D)/λ(b

(m)
i )∑M

m=1 f(yi|b
(m)
i ,θ)f(b

(m)
i |D)/λ(b

(m)
i )

. (29)

In the E step, given the current estimates of parameters θ̂
(h)

, we compute Equation (19) in which
the required conditional moments of latent data b can be approximated based on Equation (29). In the
M step, we update each entry of θ̂

(h)
by maximizing the Q-function. Indeed, the ISEM procedure

works conceptually similarly to that of MCEM: only D̂
(h+1)

shows an explicit solution, while β̂
(h+1)

,
Σ̂

(h+1)
and φ̂

(h+1)
are obtained through sequential optimization solutions via Equations (24)–(26). The

IS approximation to the marginal log-likelihood is:

`IS(θ|y) ∼= −1

2

N∑
i=1

{
si log |Σ|+ r log |Ci|+ log |D|

}
+

N∑
i=1

log
{ 1

M

M∑
m=1

[
exp

{
− 1

2
g(yi, b

(m)
i ,θ)

}
f(b

(m)
i |D)/λ(b

(m)
i )

]}
.



Entropy 2015, 17 5364

2.6. Expected Information Matrix

For Model Equation (8), denoting by θ = (β,α) with α = (vech(D), vech(Σ),φ), the expected
information matrix of θ obtained by taking the expectation of the negative Hessian matrix can be
expressed as:

Jθθ =

[
Jββ Jβα

JT
βα Jαα

]
, (30)

where Jββ =
∑N

i=1 X̃
T

i Λ̃
−1
i X̃ i, Jβα = 0, and Jαα is a g× g information matrix whose (l, s)-th entry is

[Jαα]ls = 2−1
∑N

i=1 tr(Λ̃
−1
i

˙̃ΛilΛ̃
−1
i

˙̃Λis), for l, s = 1, . . . , g, g = q(q+ 1)/2 + r(r+ 1)/2 + dim(φ), with
˙̃Λil being ˙̃Λ

(h)
il given in (A.1) with θ̂

(h)
replaced by θ. Consequently, the asymptotic variance-covariance

matrix of θ can be approximated by the inverse of information Matrix Equation (30), denoted by J−1θθ .
The resulting standard errors of parameters are the square roots of diagonal entries of J−1θθ evaluated at
θ = θ̂.

2.7. Initialization

When implementing iterative procedures, a common difficulty encountered in practice is that the
algorithm is painfully slow or even non-convergent. Such a computational problem may occur in
handling ML estimation of the MNLMM, especially when the data are too sparse or the dimension
of random effects is over-specified. To overcome this potential problem, a default procedure of
automatically creating a set of good initial values is summarized below.

(i) A direct way of obtaining the initial value for β is to fit the NLMMs to each outcome variable
separately by using the nlme R package [12].

(ii) Using the fitting results of NLMMs for each outcome, we take the initial value D̂
(0)

as a (block)
diagonal form with the diagonal entry being the variances (covariances) of random effects under
the fitted NLMMs.

(iii) For the initial value for Σ, we use the sample variance-covariance matrix of the data. That is,
take Σ̂

(0)
=
∑N

i=1

∑si
t=1(yi·t − ȳ)(yi·t − ȳ)T/(

∑N
i=1 si − 1), where yi·t = (yi1t, · · · , yirt)T and

ȳ = (
∑N

i=1 si)
−1(
∑N

i=1

∑si
t=1 yi1t, · · · ,

∑N
i=1

∑si
t=1 yirt)

T.
(iv) The initial values forφ, depending on the structure, are simply chosen to give a condition of nearly

uncorrelated errors.

3. Application: ACTG 315 Data

We present a comparison of the five algorithms via a real data example from the AIDS Clinical Trial
Group protocol 315 (ACTG 315) study developed by the Immunology Research Agenda Committee
of the U.S. National Institute of Allergy and Infectious Disease, the ACTG sponsor. The study
design and recruitment of participants (patients) were conducted by University Hospitals of Cleveland,
Rush-Presbyterian-St. Luke’s Medical Center and University of Colorado Health Science Center.
In the study, 53 human immunodeficiency virus type 1 (HIV-1)-infected patients were recruited, and
their plasma HIV-1 RNA (viral load) copies and CD4+ T cell counts were repeatedly measured at Days
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0, 2, 7, 10, 14, 28, 56, 84, 168 and 196 after the start of treatment. A more detailed description of the
study can be found in [42,43].

HIV-1 infection is associated with progressive and profound loss of immune function that places
infected persons at enhanced risk for opportunistic infections, and even death. A reaction in
HIV-1-related immune deficiency can be characterized by decreases in the numbers of circulating CD4+

T helper lymphocytes. CD4+ T cells in blood decline to a lower level after HIV-1 infection and may
recover to a high level after antiviral therapies suppress viral load. Generally, there is a negative
correlation between the virologic marker (measured by HIV-1 RNA) and the immunologic marker
(measured by CD4+ T cells) during antiviral treatments. As a consequence, a joint analysis of HIV-1
RNA and CD4+ counts is helpful to take the evolution of the correlation among responses over time into
account. The data have been analyzed by [44–47] using different modeling approaches.

As a part of the clinical trial on 53 patients, a total of 48 patients were recruited in our analysis
after excluding four early drop-out patients and one due to a plasma HIV-1 RNA pattern that suggested
intermittent adherence to study therapy. To stabilize the variances and to reduce the strong skewness
among the two makers, a base-10 logarithmic transformation is made for HIV-1 RNA and a square-root
transformation for CD4+ T cells. Both transformations are widely used in HIV-AIDS clinical trials.
Let yi1,k and yi2,k be log10 RNA and CD40.5 markers, respectively, at the k-th time point for patient i.
We consider the following bivariate nonlinear mixed-effects model for yi1,k and yi2,k:

yi1,k = log10

(
exp{(β1 + bi1) + β2tik}+ exp{β3rnai}

)
+ ei1,k,

yi2,k = (β4 + bi2)/(1 + exp{(β5 − tik)/β6}) + ei2,k, (31)

where tik = dayik/7 is the k-th visited time point (week) for patient i; rnai is the log10 RNA levels
for patient i at the start of the study; (bi1, bi2) are the bivariate normally-distributed random effects; and
(eTi1, e

T
i2) = (ei1,1, . . . , ei1,si , ei2,1, . . . , ei2,si) are the within-subject errors following a multivariate normal

distribution with zero mean and variance-covariance matrix Σ ⊗ Ci. Because the baseline RNA is a
significant covariate in the ACTG 315 study [47], it should be incorporated into the analysis. To account
for the extra autocorrelation caused by within-patient dependence among unequally-spaced occasions,
we employ a continuous order-one autoregressive structure, i.e.,Ci = [φ|tik−tik′ |], for the across-occasion
covariance matrix of within-subject errors.

According to the standard formulation in Equation (2), we specify:

A =

I2 0 0
0 rnai 0
0 0 I3

 , B =

[
1 0 0 0 0 0

0 0 0 1 0 0

]T
, β = (β1, β2, β3, β4, β5, β6)

T,

and bi = (bi1, bi2)
T, where Id is a diagonal matrix of order d. Define:

ξ1 = (exp{η1 + η2t}+ exp{η3})−1/ log(10), and ξ2 = (1 + exp{(η5 − t)/η6})−1, (32)
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where η1 = β1 + bi1, η2 = β2, η3 = β3rnai, η4 = β4 + bi2, η5 = β5 and η6 = β6. The first derivatives of
µ1 and µ2 specified in Equation (31) with respect to η are:

µ̇1 =
∂µ1

∂η
=



ξ1 exp{η1 + η2t}
ξ1t exp{η1 + η2t}

ξ1 exp{η3}
0

0

0


, and µ̇2 =

∂µ2

∂η
=



0

0

0

ξ2

−µ2 exp{(η5 − t)/η6}ξ2/η6
µ2 exp{(η5 − t)/η6}(η5 − t)ξ2/η26


.

The first derivative of mean function µi(β, bi) = (µ1, µ2) with respect to bi is:

µi(β, bi)

∂bi
=

[
ξ1 exp{(β1 + bi1) + (β2 + bi2)ti} 0si

0si ξ2

]
,

where ξ1 and ξ2 are si × 1 vectors composed of ξ1 and ξ2 given by Equation (32) with t replaced by a
si × 1 occasion vector ti of the i-th patient.

Table 1 presents the parameter estimates and their standard deviations (in parentheses) from the five
computational methods, namely PNLS-MLMM, Laplacian, pseudo-ECM, MCEM with 500 Monte Carlo
samples and ISEM with mixing proportion P0 = 0.5. When employing the ISEM algorithm, several
choices of the mixing proportion P0, ranging from 0–1 with and increment of 0.1, are considered.
To save space, we reported only the result for P0 = 0.5, as it yields the maximized log-likelihood
value. The results indicate that the five methods can give very similar estimates and the significance of
model parameters. According to the estimates of Σ = [σjl], the estimated correlation of log10RNA and
CD40.5 ranges from −0.13–−0.18 (around), confirming a negative relationship between the virologic
and immunologic markers. The between-patient correlations of the two responses have no statistical
significance based on the estimates of D. The estimate of autoregressive parameter φ is significantly
different from zero, revealing an existence of autocorrelation among the within-patient variability.
Figure 1 displays the observations and estimated mean curves in which the covariate is set to be the
average of baseline RNA values of all patients for the five computational methods. Judging from
the figure, the considered logarithmic and logistic curves in Equation (31) are reasonable functions to
describe the evolutions of RNA in the log10 scale and CD4 in the square-root scale over time. The trend of
log10RNA decreases at the beginning due to the rapid growth of CD40.5 cells in the early days of antiviral
therapies. After nearly four weeks, the decline pattern on log10RNA and the growth pattern on CD40.5

become slow and smooth. As an illustration, the fitted values obtained by the five methods together
with the observations for seven randomly-selected patients are displayed in Figure 2. As anticipated,
the fitted trajectories for each patient show the slight difference among the five estimating procedures.
Generally, they adapt the trend along observed repeated measures, but some of configurations are not
ideally captured. It is known that the viral load (RNA copies) and CD4 counts are highly variable
immune system markers, making them difficult to fit.
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Figure 1. The log10(RNA) and CD40.5 observations (◦) with the estimated mean curves
against time (in days) from ML estimation using the five proposed procedures.

Figure 2. The fitted values obtained by the five proposed procedures together with the
observations (•) of log10(RNA) and CD40.5 for seven randomly-selected patients.
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Table 1. Estimation results for AIDS Clinical Trial Group protocol 315 (ACTG 315)
data. PNLS, penalized nonlinear least squares; MLME, multivariate linear mixed-effects;
ECM, expectation conditional maximization; MCEM, Monte Carlo EM; ISEM, importance
sampling EM.

Parameter PNLS-MLME Laplacian Pseudo-ECM MCEM ISEM

β1 12.0477 12.9800 12.0485 12.0784 12.114
(0.2513) (0.2858) (0.2530) (0.2626) (0.2652)

β2 −2.6558 −2.6476 −2.6543 −2.6198 −2.6069
(0.1781) (0.1970) (0.1777) (0.1950) (0.1992)

β3 1.3039 1.3001 1.3039 1.3012 1.3000
(0.0274) (0.0248) (0.0273) (0.0253) (0.0249)

β4 16.8604 16.8577 16.8605 16.8875 16.9058
(0.3911) (0.3340) (0.3914) (0.3863) (0.3829)

β5 −1.7324 −1.7791 −1.7312 −1.7721 −1.7643
(0.4936) (0.4590) (0.4930) (0.4632) (0.4585)

β6 1.3081 1.3514 1.3078 1.3604 1.3463
(0.3262) (0.2899) (0.3259) (0.2972) (0.2896)

d11 0.0000 0.7457 0.0583 0.1183 0.1398
(0.4665) (0.5763) (0.4753) (0.4673) (0.4612)

d21 −0.0020 −0.1400 0.0144 −0.2386 0.0838
(0.5414) (0.5203) (0.5479) (0.5401) (0.5295)

d22 4.7425 3.8251 4.7585 5.4602 5.4894
(1.3803) (0.9953) (1.3826) (1.3561) (1.3361)

σ11 0.4655 0.4267 0.4622 0.4379 0.4329
(0.0458) (0.0411) (0.0455) (0.0420) (0.0414)

σ21 −0.2232 −0.1738 −0.2164 −0.2185 −0.2225
(0.0965) (0.0747) (0.0962) (0.0786) (0.0754)

σ22 5.7063 3.5558 5.6929 3.8956 3.6033
(0.5991) (0.3520) (0.5980) (0.3874) (0.3541)

φ 0.6824 0.5447 0.6818 0.5674 0.5343
(0.0311) (0.0422) (0.0312) (0.0400) (0.0425)

Furthermore, the approximate values of log-likelihood function for Model Equation (31) evaluated
at the ML estimates θ̂ obtained respectively by the five estimation procedures are reported in Table 2.
To assess the accuracy of the approximations of the log-likelihood function, we also perform the double
integral in log-likelihood Function Equation (4) by plugging the corresponding θ̂ into Equation (4) and
using the integrate routine in the R package to get the exact log-likelihoods. The exact log-likelihood
values together with the absolute differences (AD) between the approximate and exact values are also
listed in Table 2. Roughly, the log-likelihood values under the five approximation methods are similar
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and close to their corresponding exact values. In this example, the pseudo-ECM yields the most precise
evaluation, followed by Laplacian, MCEM, ISEM and PNLS-MLME.

Table 2. Approximate and exact log-likelihood functions for the fitted Model Equation (31)
under the five estimation methods. AD, absolute difference.

PNLS-MLME Laplacian Pseudo-ECM MCEM ISEM

Approximate −974.360 −986.794 −974.592 −966.763 −1010.370
Exact −1063.338 −991.754 −978.269 −981.384 −978.758
AD 88.978 4.96 3.677 14.621 31.612

Although the proposed five algorithms can provide quite similar estimates of model parameters,
as well as the fitted mean profiles shown in Figures 1 and 2, we should give the following remarks.
The PNLS-MLMM and Laplacian methods involve solving the fixed effects β and the modes of
random effects {bi}Ni=1 by implementing optimal iterative procedures. Thus, the two methods are very
sensitive to initial values and may suffer from slow or even non-convergence due to singularity of
variance-covariance matrices, especially when unnecessary random effects are included in the model.
The MCEM and ISEM methods spend more time in generating an adequate number of samples of
random effects to evaluate the required conditional expectations. Overall, the pseudo-ECM algorithm is
the best method in terms of computational efficiency in this study. However, all of the proposed methods
may get trapped in one of many local maxima of the log-likelihood function. To assess the stability of the
resulting estimates, a variety of initial values should be employed when implementing the algorithms.
The global optimal solution is obtained by choosing the one with the largest log-likelihood value.

4. Simulation Study

In this section, two simulation studies with data generated from two models with linear and nonlinear
profiles, respectively, are undertaken to compare the performance of the five algorithmic procedures for
fitting the MNLMM. The performance comparison includes the convergence efficiency in terms of the
number of iterations and consumed CPU time, the accuracy of parameter estimates and the precision
of log-likelihood approximation. All computations were carried out by R package 2.13.1 in a Win32
environment of a desktop PC machine with a 3.40-GHz/Intel Core(TM) i7-2600 CPU Processor and 4.0
GB RAM.

4.1. Bivariate Linear Case

To perform an evaluation of the exact log-likelihood values that is tractable, in this simulation, we
restrict ourselves to generating datasets from the following bivariate LMM:

yi1k = β1 + bi1 + β2tk + ei1k,

yi2k = β3 + (β4 + bi2)tk + ei2k, (33)
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for i = 1, . . . , N and k, tk = 1, . . . , 7. Following the standard notation for Model Equation (1) along

with Assumption Equation (2), we set Ai = I4, β = (β1,β2,β3,β4)
T, Bi =

[
1 0 0 0

0 0 0 1

]T
and

bi = (bi1, bi2)
T ∼ N2(0,D). The specific model parameters are:

β = (1, 2,−2, 4)T, D =

[
1 0.5

0.5 1

]
, Σ =

[
1 ρ

ρ 1

]
, and Ci = I7,

where the values of ρ are chosen as 0, 0.5 and 0.9 to reflect zero, middle and high correlations between
outcome variables, respectively. The sample sizes N are set to 25 and 50, and a total of 100 replications
are run for each combination of between-outcome correlation ρ and sample size N . Each simulated
dataset is fitted by the MNLMM using the five computational procedures, say the PNLS-MLME,
Laplacian, pseudo-ECM, MCEM and ISEM algorithms, described in Section 2. Initial values for the
parameters are chosen to be the true values of parameters plus a random draw from the standard normal
distribution. Note that the E step of the MCEM algorithm is undertaken with generating M = 1000 MC
samples. When implementing the ISEM algorithm, the envelop distribution was multivariate normal
mixtures with three different mixing proportions P0 = 0.1, 0.5 and 0.9. Because all converged estimates
are almost the same, we report only the result under P0 = 0.5 for the sake of conciseness. The
computational procedures achieve convergence when:

max
l=1,...,m

(∣∣(θ̂(h+1)
l − θ̂(h)l )/θ̂

(h)
l

∣∣) < 0.01,

where m is the number of unknown parameters.
Table 3 summarizes the averages of CPU time (Time), numbers of iterations (Iter), converged

log-likelihood values (`max), relative bias (RB) of log-likelihood functions and empirical sums of relative
mean squared errors (RMSE) of parameter estimates obtained by five approximation methods over
100 replicates under all considered scenarios. The relative bias of log-likelihood values calculated as
(`max − `true)/|`true| is used to evaluate the accuracy of the estimation of the log-likelihood function,
where `true is the true value of the log-likelihood function and `max is the converged maximized
log-likelihood value. The empirical sums of RMSE for each case are calculated as

∑m
l=1(θ̂l − θl)2/θ2l ,

where θl and θ̂l are each the entry of the true value of the parameter and its estimate, respectively.
Based on the results shown in Table 3, we first compare the convergence speed of the five estimation

procedures. Apparently, the pseudo-ECM method takes the least consumed CPU time, and it is followed
by the PNLS-MLME, Laplacian, ISEM and then the MCEM methods. The fewest number of iterations
is required by running the PNLS-MLME method followed by the pseudo-ECM, Laplacian, ISEM and
MCEM methods, while the last four methods show negligible differences, especially for a large sample
size and a high between-outcome correlation. Not surprisingly, the MCEM and ISEM methods require
heavier computational cost, because they need to generate a great number of random samples of random
effects to perform the MC integration in each iteration. We also find that the consumed CPU time and the
required number of iterations decrease when the between-outcome correlation ρ increases. We remark
that the PNLS-MLME method converges quickly, but it fails to converge unless the initial values are
good enough. When the chosen starting point is far from optimum, it may cause divergence of the
procedure, and thereby, another set of initial values should be reset.
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Table 3. Simulation results for the computational performance of five approximation
methods under each combination of correlations ρ and sample sizes N . Iter, iteration; RB,
relative bias.

N ρ PNLS-MLME Laplacian Pseudo-ECM MCEM ISEM

0

Time 4.077 25.954 1.970 8789.093 5862.499
Iter 2.150 12.140 9.800 138.440 58.390
`max −576.769 −610.274 −577.121 −556.914 −642.139
RB 0.008 −0.033 0.008 0.045 −0.100
RMSE 2.229 2.441 2.169 2.176 2.177
Time 4.370 30.803 2.045 2403.145 1680.319
Iter 2.120 11.430 9.930 35.650 15.750

25 0.5 `max −559.366 −582.622 −559.907 −536.608 −625.736
RB 0.009 −0.022 0.008 0.052 −0.103
RMSE 0.580 0.672 0.561 0.601 0.602
Time 3.646 25.006 1.749 1252.625 1158.028
Iter 2.000 8.940 8.570 18.330 10.760

0.9 `max −468.270 −474.786 −468.909 −423.555 −535.591
RB 0.011 −0.003 0.009 0.118 −0.120
RMSE 0.470 0.484 0.450 0.486 0.477
Time 8.365 41.545 8.927 6825.341 3967.824
Iter 2.240 10.050 9.260 56.240 20.170

0 `max −1159.337 −1177.863 −1159.675 −1120.721 −1292.848
RB 0.004 −0.010 0.004 0.039 −0.094
RMSE 1.688 1.747 1.685 1.692 1.689
Time 9.776 56.560 10.210 2112.857 1706.392
Iter 2.140 9.760 9.530 11.800 9.690

50 0.5 `max −1124.354 −1140.195 −1124.911 −1079.401 −1258.644
RB 0.004 −0.009 0.004 0.046 −0.098
RMSE 0.277 0.324 0.270 0.313 0.315
Time 8.185 34.382 6.666 1512.85 1091.661
Iter 2.000 6.070 6.210 7.320 6.850

0.9 `max −933.662 −943.973 −934.566 −843.025 −1069.55
RB 0.005 −0.006 0.004 0.113 −0.116
RMSE 0.226 0.229 0.226 0.237 0.234

When assessing the approximated log-likelihood functions, we find that all approximation methods
produce relative biases in log-likelihoods within ±0.12 (the range is not quite large). Because the
simulated datasets are generated from a linear scenario, i.e., bivariate LMM specified in Equation (33),
the pseudo-data model given in Equation (8) certainly satisfies the MLMM [1] framework. Therefore,
the ML estimates of model parameters, as well as the maximized log-likelihood value obtained by the
pseudo-ECM algorithm are exactly the same as those obtained by fitting the MLMM using the EM-based
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algorithm. Besides, the PNLS-MLME method uses the same approximation of the log-likelihood
function, say `PD(θ̂|y), with that of pseudo-ECM. Thus, the values of relative biases in log-likelihoods
obtained by the PNLS-MLME and pseudo-ECM algorithms are quite similar, and they are very close
to zero. Additionally, the Laplacian approximation gives near-zero, but slightly under-estimated
relative biases in log-likelihoods, and the relative biases are negligible when the sample size and
between-outcome correlation are large. The log-likelihood values could be slightly over-estimated by
using the MCEM method and slightly under-estimated by using the ISEM method. As anticipated, the
approximations of log-likelihood functions will get close to the exact log-likelihood value when the
sample size increases.

Figure 3. Scatter plots of fixed-effects estimates for PNLS-MLME, Laplacian, MCEM
and ISEM against pseudo-ECM methods for the multivariate nonlinear mixed-effects model
(MNLMM) under the case of N = 25, ρ = 0.9.
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Figure 4. Scatter plots of variance-covariance components estimates for PNLS-MLME,
Laplacian, MCEM and ISEM against pseudo-ECM methods for the MNLMM under the
case of N = 25, ρ = 0.9.

We now turn our attention to observing the estimation performance for model parameters under
the five computational methods. From the RMSE rows of Table 3, typically, the five methods give
comparable results for estimation accuracy due to negligible differences in RMSE scores. The RMSE
decreases as the sample size increases, confirming the good asymptotic properties of ML estimators, at
least for the setting of parameters used in this simulation. As mentioned above, the pseudo-ECM method
implemented for linear models produces the same results as the EM-type algorithm for MLMM. Judging
from Table 3, the pseudo-ECM method has the smallest RMSE among the five computational methods.
Furthermore, we compare the estimates of each parameter obtained by PNLS-MLME, Laplacian, MCEM
and ISEM against those obtained by pseudo-ECM one-by-one in detail. Figures 3 and 4 display the
scatter plots of the estimates of fixed effects (β) and variance-covariance components (D and Σ)
separately for the pseudo-ECM method (in the X-axes) versus the other four procedures (in the Y -axes).
The dashed lines indicate the true values of parameters. To save space, we present only the case of
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N = 25 and ρ = 0.9, because the other five cases exhibit almost a similar pattern. It can be seen from
the two figures that the estimates are all located in the neighborhood of the true values, indicating that
all five computational procedures yield very precise estimates of model parameters. In general, there is
a strong agreement in the estimates obtained through the five methods, because the point estimates fall
close to the 45-degree line. However, for the estimate of β4, PNLS-MLME appears to have a slightly
large variability. For the estimates of σ11, σ12 and σ22, the other four methods tend to give estimates
smaller than does the pseudo-ECM algorithm.

4.2. Bivariate Nonlinear Case

In the simulation, the data were generated from the MNLMM with nonlinear mean curves
Equation (31). The presumed model parameters are:

β = (12,−2.7, 1.3, 16.9,−1.7, 1.3)T, D =

[
1 0.5

0.5 4

]
, Σ =

[
0.5 −0.2

−0.2 5

]
, Ci = I10.

Each simulated dataset is fitted by the MNLMM using the five approximation methods described in
Section 2. To investigate the effect of the size of MC samples for MCEM and mixing proportions of the
envelope distribution for ISEM, we consider MC sample sizes M = 500, 1000, 2000 and the mixing
proportions P0 = 0.1, 0.5, 0.9. A total of 100 replications are run for each of sample sizes N = 25 and
50 across nine computational procedures. The convergence rule is the same as the previous simulation.
Note that numerical double-integration is performed to calculate the exact log-likelihood, such that the
evaluation of the accuracy of the approximate log-likelihood is tractable.

In this simulation study, there are 18 (10) and 12 (7) non-convergence cases out of 100 trials for the
PNLS-MLME and Laplacian methods, respectively, under sample size N = 25 (50). To ensure that
we are comparing estimates of different methods based on the same simulated data and initial values,
an additional dataset will be regenerated in the procedure if one of the methods did not converge for
a particular dataset. This can be done by using the R try() function to handle the error-recovery.
Table 4 reports the computing results, including the averages of CPU time (Time), numbers of iterations
(Iter), converged log-likelihood values (`max), RB of log-likelihood functions and empirical sums of
the RMSE of parameter estimates for each sample size and each algorithm. The results indicate
that the pseudo-ECM spent the least CPU time, followed by the PNLS-MLME, Laplacian, ISEM
with P0 = 0.1, 0.5, MCEM with M = 500, 1000, 2000 and, then, ISEM with P0 = 0.9. The
PNLS-MLME demands the fewest numbers of iterations, followed by Laplacian, pseudo-ECM, ISEM
with P0 = 0.1, 0.5, MCEM withM = 2000, 1000, 500 and, then, ISEM with P0 = 0.9. The performance
of the five methods under the bivariate nonlinear model is conceptually similar to that under the bivariate
linear model shown in Section 4.1. It makes sense that the consumed CPU time increases with the size
of MC samples M for MCEM, but the required iteration number decreases with MC sample size M .
Besides, for the ISEM method, when the proportion of importance samples of random effects drawing
from the posterior of bi increases (say P0 decreases), both the CPU time and iteration number decrease.

It can be seen from the RB column of Table 4 that all methods except for the three ISEM procedures
provide comparable accuracy for approximate observed log-likelihood values, while the ISEM method
tends to get a relatively large bias. Observing the empirical sums of RMSE, the PNLS-MLME and
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pseudo-ECM methods can yield more accurate estimates of model parameters as N = 25 and N = 50,
respectively, while the others show minor difference in RMSE scores. The MCEM method generally
offers better precision of the parameter estimates when the size of generated MC samples increases.
Although the MCEM spent much CPU time and had larger iteration numbers to achieve convergence, it
can produce relatively small bias for the approximation of observed log-likelihood and smaller RMSE for
estimates of model parameters, especially for large sizes of sampleN = 50 and MC samplesM = 2000.
Additionally, among the three settings of P0 for ISEM, the case of equal weights (say P0 = 0.5) gives
smaller RB and RMSE scores. If we want to obtain more accurate results of approximate log-likelihood
using the ISEM algorithm, probably a larger number of samples of random effects might be necessary,
but it seems inefficient. As expected, when the sample size N increases, the required CPU time and
iteration number increase, and the RB and RMSE decrease, confirming the large sample properties of ML
estimation. In addition, the RMSE (×102) for the estimates of each parameter under the nine considered
estimating procedures are listed in Table 5. It seems that the estimators for β5, β6, d11, d21, d22 and
σ21 show somewhat less precise point estimates as opposed to the other parameters in the setting of this
simulation. Observing the table, there are remarkable differences in the magnitude of RMSE values as
the precision of parameter estimates depends heavily on the specification of nonlinear mean functions.
Moreover, there are no consistent rankings of precision among the nine considered procedures for each
parameter. Although this is a limited study, it demonstrates that all five approximation methods can give
reasonable results for parameter estimation.

Table 4. Simulation results for nine estimating procedures under the bivariate nonlinear case.

Sample SizeN Methods
Comparison Criteria

Time Iter `max RB RMSE

PNLS-MLME 5.071 3.533 −847.968 0.009 1.671
Laplacian 21.199 7.133 −860.383 −0.012 2.000
Pseudo-ECM 2.709 12.000 −847.994 0.009 1.967
MCEM (M = 500) 9062.743 380.000 −847.217 0.010 2.099

25 MCEM (M = 1000) 9569.619 213.733 −847.346 0.010 2.072
MCEM (M = 2000) 11,375.297 131.400 −847.896 0.009 2.029
ISEM (P0 = 0.9) 17,008.449 333.733 −887.996 −0.028 1.999
ISEM (P0 = 0.5) 4635.601 93.400 −881.169 −0.018 1.882
ISEM (P0 = 0.1) 1086.651 22.200 −862.842 −0.020 2.077

PNLS-MLME 14.149 3.940 −1710.123 0.007 1.119
Laplacian 53.066 7.690 −1763.046 −0.010 1.134
Pseudo-ECM 11.331 13.070 −1710.216 0.007 1.110
MCEM (M = 500) 15,860.866 392.595 −1713.939 0.005 1.184

50 MCEM (M = 1000) 24,077.335 238.470 −1714.151 0.005 1.157
MCEM (M = 2000) 26,328.930 134.750 −1714.447 0.004 1.151
ISEM (P0 = 0.9) 31,224.663 386.120 −1789.168 −0.021 1.255
ISEM (P0 = 0.5) 7065.363 106.350 −1780.396 −0.015 1.138
ISEM (P0 = 0.1) 2805.677 26.870 −1779.298 −0.018 1.153
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Table 5. Relative mean squared errors (×102) for the estimates of model parameters under
nine iterative procedures.

Sample
Methods

Parameter

SizeN β1 β2 β3 β4 β5 β6 d11 d21 d22 σ11 σ21 σ22

PNLS-MLME 0.046 0.960 0.046 0.041 18.505 11.559 21.698 87.774 4.565 0.998 20.003 0.909
Laplacian 0.045 0.965 0.046 0.033 18.600 11.766 20.875 120.340 4.609 1.412 20.013 1.325
Pseudo-ECM 0.043 0.964 0.046 0.026 18.501 11.570 20.066 118.786 4.759 0.988 20.010 0.909
MCEM (M = 500) 0.046 0.956 0.045 0.039 18.736 11.781 20.926 130.477 4.549 1.389 19.682 1.299

25 MCEM (M = 1000) 0.047 0.969 0.045 0.038 18.589 11.668 21.160 127.668 4.797 1.383 19.559 1.314
MCEM (M = 2000) 0.047 0.970 0.046 0.036 18.602 11.669 20.402 123.817 4.606 1.404 19.935 1.315
ISEM (P0 = 0.9) 0.046 0.960 0.046 0.028 18.590 11.666 20.510 120.740 4.609 1.400 20.013 1.315
ISEM (P0 = 0.5) 0.047 0.969 0.046 0.040 18.420 11.476 19.930 110.919 4.000 1.463 19.619 1.271
ISEM (P0 = 0.1) 0.043 0.993 0.045 0.021 18.785 11.899 26.451 122.587 4.407 1.631 19.474 1.377
PNLS-MLME 0.053 0.433 0.019 0.083 8.038 6.437 9.609 62.998 3.126 0.355 20.445 0.290
Laplacian 0.054 0.433 0.019 0.040 8.056 6.501 10.172 63.165 3.121 0.787 20.025 1.051
Pseudo-ECM 0.053 0.432 0.019 0.043 8.055 6.452 8.858 62.921 3.013 0.355 20.493 0.289
MCEM (M = 500) 0.052 0.420 0.019 0.087 8.117 6.505 10.334 67.836 3.055 0.875 20.054 1.033

50 MCEM (M = 1000) 0.054 0.420 0.019 0.085 8.149 6.508 10.099 65.263 3.113 0.881 20.003 1.063
MCEM (M = 2000) 0.054 0.418 0.019 0.075 8.120 6.494 10.185 64.350 3.120 0.892 20.274 1.070
ISEM (P0 = 0.9) 0.059 0.415 0.019 0.080 8.034 6.429 18.313 67.054 3.142 0.924 20.045 1.011
ISEM (P0 = 0.5) 0.055 0.429 0.019 0.053 8.131 6.508 9.040 64.614 3.143 0.861 19.819 1.080
ISEM (P0 = 0.1) 0.052 0.431 0.019 0.035 8.194 6.554 10.182 64.165 3.011 0.987 20.542 1.147

5. Discussion and Conclusions

In this article, we describe and compare five approximation methods to carry out ML estimation of
the MNLMM, as well as the evaluation of the observed log-likelihood function. The methods, namely
PNLS-MLME, Laplacian approximation, pseudo-ECM, MCEM and ISEM algorithms, depend on the
result of the first two order Taylor expansions. The PNLS-MLME and pseudo-ECM methods use a
linearization of nonlinear mean functions, while the other three methods rely on an approximation of the
observed likelihood. Numerical results indicate that the five methods can give comparable accuracy of
the estimation of model parameters, as well as approximation of the observed log-likelihood function of
the MNLMM.

In summary, the five algorithmic schemes preserve flexibility and simplicity in carrying out ML
estimation of the MNLMM. The pseudo-ECM method can offer relatively better efficiency compared
to the other four methods. For the PNLS-MLME and Laplacian methods, a poor initial guess of
θ can result in poor estimates of {bi}Ni=1, and thereby, the accuracy of parameter estimates and the
performance of convergence become worse. To overcome this weakness, the consideration of different
starting values for D̂

(0)
is recommended by specifying cD̂

(0)
, where c is a random draw from the

standard normal distribution and the original D̂
(0)

is given in Section 2.7. The MCEM and ISEM
methods appear to be less efficient, because both of them spend much time to generate MC samples for
evaluating the required conditional expectations in each iteration. For the implementation of the ISEM
algorithm, the specification of the mixing proportion P0 depends on the data at hand. We suggest trying
a variety of settings and choose the optimal P0 corresponding to the maximized approximate observed
log-likelihood. An R package for fitting MNLMM based on the proposed techniques will be released in
the near future.
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However, the multivariate normality assumption in the MNLMM might not provide robust
inference if the data, even after being transformed, and exhibit fat tails and/or skewness [48–50].
To alleviate such limitations, it is natural to replace the multivariate normally-distributed random
effects and within-subject errors of the MNLMM by a broader family, such as the multivariate
skew-normal distribution [51], the multivariate skew-t distribution [52], the multivariate skew-elliptical
distribution [53], or the multivariate skew-normal independent distribution [54,55]. The proposed
methods are readily extendable to carry out ML estimation of the multivariate version of skew-family
nonlinear mixed models. This leads to valuable further research on the issue of developing multivariate
skew-family nonlinear mixed models together with their ML inference.
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Appendix

A. Score Vector and Hessian Matrix

The score vector sα calculated as the first derivatives of `PD(θ|y) in Equation (9) with respect to each
entry of α can be expressed by:

[sα]l =
1

2

N∑
i=1

{(
ỹ
(h)
i − X̃

(h)

i β
)T

Λ̃
(h)−1

i
˙̃Λ
(h)
il Λ̃

(h)−1

i

(
ỹ
(h)
i − X̃

(h)

i β
)
− tr
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˙̃Λ
(h)
il

)}
,

for l = 1, . . . , g, g = q(q + 1)/2 + r(r + 1)/2 + dim(φ), where Λ̃
(h)

i = Z̃
(h)

i DZ̃
(h)T

i + Σ⊗Ci(φ),

˙̃Λ
(h)
il =

∂Λ̃
(h)

i

∂wl

=


Z̃

(h)

i
∂D
∂wl
Z̃

(h)T

i if wl = vech(D),
∂Σ
∂wl
⊗Ci(φ) if wl = vech(Σ),

Σ⊗ ∂C i(φ)

∂wl
if wl = φ.

(A.1)

Here, ∂D/∂ωl is one in the (j, l)-th and the (l, j)-th elements ofD as ωl = djl, say the distinct element
of D, and zero otherwise; similarly for ∂Σ/∂ωl when ωl = σjl. Besides, the Hessian matrix calculated
as the second derivatives of `PD(θ|y) with respect to each entry of α is:[

Hαα

]
lu

=
1

2

N∑
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{
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where:

¨̃Λ
(h)
ilu =

∂ ˙̃Λ
(h)
i

∂wl

=

{
∂Σ
∂wl
⊗ ∂C i(φ)

∂wu
if wl = vech(Σ), wu = φ,

0 otherwise.
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