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Abstract: A path analysis method for causal systems based on generalized linear models is 

proposed by using entropy. A practical example is introduced, and a brief explanation of the 

entropy coefficient of determination is given. Direct and indirect effects of explanatory 

variables are discussed as log odds ratios, i.e., relative information, and a method for 

summarizing the effects is proposed. The example dataset is re-analyzed by using the method. 
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1. Introduction 

Path analysis [1] is often applied to causal systems of continuous variables through the linear 

structural equations model (LISREL) [2,3]. In the LISREL approach, causal relationships among 

variables are described by a path diagram and translated into linear equations of the variables. Causal 

effects can then be calculated by regression and correlation coefficients obtained for the linear equations. 
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In contrast, path analysis of categorical variables is more complex than that of continuous variables 

because the causal system under consideration cannot be described by linear regression equations. 

Goodman [4–7] considered path analysis of binary variables by using logit models and discussed the 

effects of explanatory variables, though without discussing direct and indirect effects. Hagenaars [8] 

discussed path analysis of categorical variables by using a log-linear model, but here as well without 

discussion of direct and indirect effects. Eshima et al. [9] proposed a path analysis method for categorical 

variables in logit models. Kuha and Goldthorpe [10] gave a two-stage path analysis method for 

generalized linear models (GLMs) that uses log odds ratios. In their approach, first the total, direct and 

indirect effects are defined for mean differences of response variables, and then the method is applied to 

measuring the effects on the basis of log odds ratios. However, additive decomposition of the total effect 

into the direct and indirect effects only approximately reflects reality, and assessing effects in categorical 

(polytomous) variable systems become more complicated as the numbers of variable categories are 

increased [10]. Albert and Nelson [11] proposed a path analysis method to calculate pathway effects for 

causal systems on the basis of GLMs, but not all pathway effects are identifiable. As in the two-stage 

cases, when factors, intermediate variables, and response variables are categorical, pathway  

effects become very complicated because the variable effects are defined for mean differences of 

response variables. 

There are many examples of response variables in practical data that are not normally distributed in 

various fields of study. There is need for a method of path analysis with responses that are not normally 

distributed, especially categorical responses, and it is useful to discuss a path analysis approach for causal 

systems of GLMs [12,13]. When describing causal systems of the variables by GLMs, regression 

parameters or coefficients are related to log odds ratios [14–16], and so it is natural to consider the effects 

of factors (explanatory variables) according to odds or log odds ratios. However results become more 

complicated as the number of categories of the variables increases. In such cases, it is suitable to 

summarize the effects of factors in GLMs. For this purpose, we use the entropy coefficient of 

determination (ECD), one of the entropy-based measures of predictive power for GLMs [15,16]. 

The remainder of this paper is organized as follows: Section 2 presents a practical example of causal 

systems—British mobility data [10]—and re-analyzes them by a new method of path analysis. Section 3 

considers the relation between the log odds ratio and entropy, and ECD is briefly reviewed. Section 4 

introduces a path analysis method for causal systems described by GLMs, and in Section 5 a method for 

testing effects of variables is given. The British mobility data are re-analyzed by the proposed approach 

in Section 6. Finally, Section 7 provides some discussion and conclusions for the present approach. 

2. Practical Example 

British mobility data describe the effects of education on social class mobility [10]. There are three 

variables, which are causally ordered as shown in Figure 1: parents’ social class, X; individual social 

class, Y; and education, Z, which intermediates between X and Y. The three variables are discrete. Social 

classes X and Y have three categories, “salariat and employers”, “middle class”, and “working class”; 

education Z has seven levels. While the effects of X and Z on Y can be discussed through log odds ratios, 

the results are complicated because the number of variable categories is large. It is important to 
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summarize causal effects measured with log odds ratios, especially in such practical examples, to assess 

the intermediate effect of education on social class mobility. 

 

Figure 1. Path diagram of social class mobility. 

3. Log Odds Ratio and Information 

Let X  and Y be a p × 1 explanatory-variable vector and a response variable, respectively, and let 
( )x|yf  be the conditional probability or probability density function of Y given that xX = .  

The function ( )x|yf  is assumed to belong to the following family of exponential distributions: 

( ) ( )
( ) ( ) ,,exp|







 +−= ϕ

ϕ
θθ

yc
a

by
yf x  (1)

where θ and φ are parameters, and ( )ϕa  (>0), ( )θb , and ( )ϕ,yc  are known functions. Let 

( )T
p

T βββ ,...,, 21=β . The function θ is a function of xβη T=  through a link function ( )uh . 

Remark 1. In general, the systematic component can be extended to be a function of explanatory 

variable vector x. Then, the model is referred to as a generalized nonlinear model. For the sake of 
simplicity, the function is denoted by ( )xθθ = . The discussion below is applicable to this case. 

Let Xμ  and Yμ  be the means of X  and Y , respectively. Then, let us consider the following log odds 

ratio: 
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The first and second terms of the right hand side of the above equation are the relative information 

with respect to response variable Y , so the log odds ratio is the change of the relative information in 

explanatory variable vector X . In GLMs, taking the expectation of the above log odds ratio with  

respect to X  and Y, it is reduced to 
( )
( )ϕ
θ

a

Y,cov
. The quantity 

( )
( )ϕ
θ

a

Y,cov
 can be expressed as a symmetric 

type of the Kullback–Leibler (KL) information between a GLM based on (1) and the null model with 

0β =T  [15]; thus, we denote 
( )
( )ϕ
θ

a

Y,cov
 by ( )YKL ,X  in this paper. Let ( )yf  be the density or 

probability function for null model 0β =T  and let ( )xg  be that of X . Then: 
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( ) ( ) ( ) ( )
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If the variables in the above are discrete, the related integrals are replaced by the summations.  

The ECD is then defined as: 

( ) ( )
( ) ( ) .

,cov

,cov
,

ϕθ
θ

aY

Y
YECD

+
=X  

Then, ECD can also be expressed as: 
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The measure is interpreted as the proportion of the variation in entropy of Y that is explained by  

X  [15,16]. As shown above, GLMs explain the entropy of response variables, so it is suitable to measure 

the effects of explanatory variables based on entropy. 

Remark 2. Applying ECD to the linear regression model, ECD is the usual coefficient of  

determination 2R . 

4. Measuring the Total, Direct, and Indirect Effects in Recursive GLM Systems 

For simplicity, in the recursive case with iX  ( )3,2,1=i , where iX  precedes 1+iX  ( )2,1=i ,  

we discuss the effects of 1X  and 2X  on 3X . Let iμ  be the expectation of iX  ( )3,2,1=i . Then, for a 

GLM with the conditional density or probability function of 3X  when ( ) ( )2121 ,, xxXX =  given by (1), 

the total effect of ( ) ( )2121 ,, xxXX =  on 33 xX =  can be defined by using the following log odds ratio:  

( ) ( )
( ) ( )

( ) ( ) ( )( )
( ) .

,,

,|,|

,|,|
log 212133

213213

213213

ϕ
μμθθμ

μμμ
μμμ

a

xxx

xfxxf

fxxxf −−=  

Taking the expectation of the above effect with respect to 1X , 2X  and 3X , we have: 

( )( )
( ) ( )( ).,,

,,cov
321

321 XXXKL
a

XXX =
ϕ

θ
 

The above KL information is the (summary) total effect of explanatory variables ( )21, XX  on 

response variable 3X . Let ( )12 xμ  and ( )13 xμ  be the conditional expectations for 2X  and 3X , 

respectively, given that 11 xX = . The log odds ratio with respect to 2x  and 3x  for a given 1x  is: 

( ) ( ) ( )( )
( )( ) ( )( )

( )( ) ( ) ( )( )( )
( ) .

,,

,|,|

,|,|
log 12121133

12132113

12113213

ϕ
μθθμ

μμ
μμ

a

xxxxxx

xxxfxxxf

xxxfxxxf −−=  

The total effect of 22 xX =  on 33 xX =  when 11 xX =  is defined by the above log odds ratio because 

the effect expresses the total effect of 22 xX =  on 33 xX =  when the effect of the preceding variable 

11 xX =  is excluded. From this, the total effect of 11 xX =  on 33 xX =  is defined by 
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By taking the expectation of the above information with respect to 1X , 2X  and 3X , the (summary) 

total effect of 1X  on 3X  is given by 

( )( )
( )

( )( )
( ) ( )( ) ( ),|,,,

|,,cov,,cov
132321

1321321 XXXKLXXXKL
a

XXXX

a

XXX −=−
ϕ

θ
ϕ

θ
 

where ( )132 |, XXXKL  is given by 

( ) ( ) ( ) ( )
( )

( ) ( ) ( )
( ) ,.

,|

|
log,|                             

.
|
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log,,||,
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2113
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=
 (2)

The second term implies the effect of 2X  by itself, that is, the effect of 2X  on 3X  when the effect of 

1X  is excluded, and is defined as the (summary) total effect of 2X  on 3X . The direct effect of 11 xX =  

on 33 xX =  can be understood according to the following odds ratio: 

( ) ( ) ( )( )
( )( ) ( )( )

( )( ) ( ) ( )( )( )
( ) .
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The above effect is derived by excluding the effect of 22 xX = , so it is defined as the direct effect of 

11 xX =  on 33 xX = . Taking the expectation of the above effect, we have the (summary) direct effect of 

1X  on 3X , expressed as follows: 

( )( )
( ) ( ),|,

|,,cov
231

2321 XXXKL
a

XXXX
=

ϕ
θ

 

where ( )231 |, XXXKL  is defined as in (2). The above quantity is the amount of entropy of 3X  

explained by 1X  alone, that is, excluding the effect of 2X . By subtracting the direct effect of 11 xX =  

on 33 xX =  from the total effect, we have the indirect effect of 11 xX =  on 33 xX = : 

( ) ( )
( ) ( )

( ) ( ) ( )( )
( )( ) ( )( )

( ) ( ) ( )( )
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Taking the expectation of the above effect, the (summary) indirect effect is given by 

( )( ) ( ) ( ).|,|,,, 231132321 XXXKLXXXKLXXXKL −−  (4)

As in the previous section, to standardize the above effects by ECD, we define the standardized total, 
direct, and indirect effects of 1X  and 2X  on 3X  as follows: 

The total effect of 1X  and 2X  on 3X  is: 

( )( ) ( )( )
( )( ) ( )
( )( )

( )( ) .
1,,

,,
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,
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=
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XXXeT ϕθ

θ

 

The total effect of 1X  on 3X : 
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The direct effect of 1X  on 3X : 

( ) ( )( )
( )( ) ( )
( )

( )( )

1 2 3 2

1 3
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1 3 2
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cov , , |
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, |
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The indirect effect of 1X  on 3X : 

( ) ( ) ( )1 3 1 3 1 3 . I T De X X e X X e X X→ = → − →  

The total (direct) effect of 2X  on 3X : 

( ) ( ) ( )( )
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+

=
+

 

In this case: 

( )( ) ( ) ( )., 3231321 XXeXXeXXXe TTT →+→=→  

A general approach based on the above discussion is given below. Let iX  ( )Ki ,..,2,1=  be variables 

such that the parents of kX  are ( )121)(pa ,..., −= kk XXXX  ( )Kk ,..,3,2= , that is, iX  precedes 1+iX  

( )1,..,2,1 −= Ki . Let ( )121 ,...,,| −KK xxxxf  be the conditional density or probability of KX  given 

( )121)(pa ,..., −= KK XXXX  such that: 
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ϕ
θθ
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KK xc
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Explaining response variable KX  in a GLM framework by explanatory variables )(pa KX , the effects 

of the explanatory variables on the response variable can be treated in terms of entropy as discussed 
above. From this the standardized (summary) total effect of 1X  on KX  is defined by: 

( ) ( )( ) ( )( )
( )( ) .

1,

|,,

pa

1papa
1 +

−
=→

KK

KKKK
KT XKL

XXKLXKL
XXe

X
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Second, the total effect of 2X  is defined as: 

( ) ( )( ) ( )( )
( )( ) .

1,

,|,|,
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21pa1pa
2 +

−
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KT XKL

XXXKLXXKL
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Then, we can find the total effects of iX  by induction, which yields: 

( ) ( ) ( )( ) ( ) ( )( )
( )( ) ( )pa pa pa pa 1

pa

, | , |
,    1 2 1 ,

, 1

K KK i K i

T i K
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e X X i , ,...,K

KL X
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→ = = −

+

X X

X
 

where ( ) ( )( )iKK XXXKL papa |,  and ( ) ( )( )1papa |, +iKK XXXKL  can be defined as in (2). In the above 

formulae, we have: 

( ) ( ).121  0 −=≥→ ,...,K,i XXe KiT  (5)

and: 

( )( ) ( ).1
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=
→=→ K

i KiTKKT XXeXe X  (6)

Remark 3. The total effect of ii xX =  on KK xX =  is given by:  
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where ( )( )ik paxμ  and ( )( )1pa +ik xμ  be the conditional expectations of kX  given ( ) ( )ii papa xX =  and 

( ) ( )1pa1pa ++ = ii xX , respectively. 

Let ( ) ( )11121
\
pa ,...,,,...,, −+−= Kii
i

K XXXXXX  be parent variables of KX  excluding iX . The direct 

effect of iX  on KX  is defined by: 
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( )( ) ( ).121   
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\
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From this, we have the indirect effect of iX : 

( ) ( ) ( )
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\
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Remark 4. The direct effect of ii xX =  on KK xX =  is given by 
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where ( )( )i
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/
paxμ  is the conditional expectation of iX  given ( ) ( )

i
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i
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/
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/
pa xX = . 

For canonical links: 
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we have: 
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and: 
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From (5) we have: 
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The direct effect of iX  on KX  is given by: 

( ) ( )( )
( ) ( )( )( ) ,

1,

|,cov

pa

\
pa

+
=→

KK

i
KKii

KiD XKLa

XX
XXe

X

X

ϕ
β

 (9)

and the indirect effect is calculated by (8) minus (9). 

The present approach is different from the usual approach for linear equation models and from the 

approach in [10], because it is based on the log odds ratio and entropy by using all the variables concerned. 
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Remark 5. The total effects of variables by Kuha and Goldthorpe [10] are defined with the marginal 

distributions of response variables and explanatory variables. Meanwhile the present approach defines 

the total effects of explanatory variables based on a recursive structure of all the variables concerned 

and we have (6). 

Remark 6. Indirect effects are defined by the total effects minus the direct effects as (3), (4) and (7); 

however the interpretation can be done in terms of entropy. On the other hand, direct and indirect effects 

are defined in an approach by [10], though the sum of the effects does not equal to the total effect. 

Remark 7. Assessing the model identification and testing the goodness-of-fit of the model are based on 

the discussion of GLMs. 

5. Statistical Test for Effects 

Let ( ) ( )( ),|, papa iKK XLK XX


 ( ) ( )( ),|, 1papa +iKK XLK XX


 and ( ) ( )( )i
KKK XLK \

papa |, XX


 be the ML 

estimators of ( ) ( )( ),|, papa iKK XKL XX  ( ) ( )( ),|, 1papa +iKK XKL XX  and ( ) ( )( )i
KKK XKL \

papa |, XX , respectively. 

A similar result presented in Eshima & Tabata [16] can be used to show that: 

( ) ( )( ) ( ) ( )( )1papapapa |,|, +− iKKiKK XLKnXLKn XXXX


 (10)

is asymptotically distributed according to a chi-squared distribution with the degrees of freedom equal 
to the number of parameters in the conditional independent model with ( )ipaX  minus that with ( )1pa +iX . 

By using statistic (10), the total effects can be tested. Similarly, the statistic: 

( ) ( )( ) ( )( )i
KKi

i
KKK XXLKnXLKn \

pa
\
papa |,|, XXX


=  

is asymptotically distributed according to a chi-squared distribution with degrees of freedom equal to 
the number of regression coefficients (parameters) related to variable iX . 

The following statistic is asymptotically distributed according to a non-central chi-squared 

distribution with degree of non-centrality: 

( ) ( )( ) ( ) ( )( )1papapapa |,|, +−= iKKiKK XnKLXnKL XXXXλ  

and an appropriate degrees of freedom ν, found as the number of parameters in the conditional 
independent model with ( )ipaX  minus that with ( )1pa +iX . Let: 

( ) ( )( ) ( ) ( )( )1papapapa
2 |,|, +−= iKKiKKT XLKnXLKn XXXX


χ  

and let 
λν

λ
+

+= 1c  and 
λν

λνν
2

'
2

+
+= . The statistic 

c
T
2χ

 is asymptotically distributed according to 

the chi-squared distribution with 'ν  degrees of freedom. As 'ν  becomes large, the chi-squared 

distribution tends to a normal distribution with mean 'ν  and variance '2ν . From this, for sufficiently 

large sample sizes n , the statistic: 

( ) ( )( ) ( ) ( )( )1papapapa

2

|,|, +−= iKKiKK
T XLKXLK

n
XXXX

χ
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is asymptotically normally distributed with mean 
n

c 'ν
 and variance 

2

2 '2

n

c ν
 [17]. For sufficiently large n , 

we have that: 

( ) ( )( ) ( ) ( )( )1papapapa |,|,
'

+−≈ iKKiKK XKLXKL
n

c
XXXX

ν
 

( ) ( )( ) ( ) ( )( )( ) .
4

|,|,
4'2 2

21papapapa

2

TiKKiKK n
XKLXKL

nn

c χν ≈−≈ +XXXX  

From this, the asymptotic standard error (ASE) of 
n

T
2χ

 is 
n

T
22 χ

. Similarly, the asymptotic standard 

error of: 

( ) ( )( )i
KKK

D XLK
n

\
papa

2

|, XX


=χ
 

is 
n

D
22 χ

. Moreover: 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )i
KKKiKKiKK

DT XLKXLKXLK
nn

\
papa1papapapa

22

|,|,|, XXXXXX


−−=− +
χχ

 

is asymptotically equal to a normal distribution with mean: 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )i
KKKiKKiKK XKLXKLXKL \

papa1papapapa |,|,|, XXXXXX −− +  

and variance ( )22
2

4
DTn

χχ − . By using the above results, ASEs of the estimates of the summary total and 

direct effects can be calculated. 

6. Path Analysis of the British Morbility Data 

The British mobility data described in Section 2 were analyzed in detail by using log odds ratios [10]. 

Here, the proposed path analysis method is applied to summarize the effects of parental class X  and 

education Z  on destination class Y, measured by log odds ratios as in the previous section, and to give 

a simple interpretation from the summary effects of X  and Z  on Y . The three variables are random, 

and the GLM system can be composed of logit models. In this example, the employed logistic model 

can be expressed as follows. Let X  be a categorical factor; Z  a score that take levels {1,2,3} and 

{1,2,…,7}, respectively, and let Y  be a categorical response variable with levels {1,2,3}. Let: 

( )
( )

( )
( )




≠
=

=




≠
=

=
jX

jX
Y

iX

iX
X ji 0

1
 and  

0

1
 

Then, dummy variable vectors ( )TXXX 321 ,,=X  and ( )TYYY 321 ,,=Y  are identified with 

categorical variables X  and response Y , respectively. From this, the systematic component of the 

above model can be expressed as follows: 

,)2()1( ZβXΒαθ ++=  

where: 
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


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)1(

3

2

1

 and , ,

β
β
β

βββ
βββ
βββ

α
α
α

βΒα  

Then, the logit model is described as: 

( ) ( )
( )

( )
( ) ++

++
===

uu
zβuxΒuαu

zβyxΒyαy

θu

θy
zxyY

)2()1(

)2()1(

exp

exp

exp

exp
,|Pr

TTT

TTT

T

T

 

where u
 implies the summation over all u. Then, from Table 4 in [10], the estimated regression 

parameters for men are calculated as follows:  

















−
−=
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
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


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−−
−−

=
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













=
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07.0

32.0

 and ,

36.006.030.0

11.016.005.0

25.010.035.0

 ,
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60.0

)2()1( βΒα
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Similarly, we have the estimated parameters for women as follows:  

















−
−=

















−−
−
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

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





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


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03.0
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24.003.022.0

03.000.004.0

21.003.018.0

 ,

01.3

20.2

04.1

)2()1( βΒα


 

From Tables 1 and 5 in [10], the joint distributions of parental class X and education Z  for men and 

women are calculated, respectively, in Table 1. 

Table 1. The estimated joint distributions of parental class X  and education level Z . 

Sex 
Parental 
Class X  

Education Level Z  

1 2 3 4 5 6 7 

Men 
S 0.038 0.015 0.009 0.053 0.050 0.047 0.082 
I 0.069 0.017 0.015 0.051 0.032 0.037 0.025 

W 0.189 0.018 0.037 0.088 0.055 0.051 0.028 

Women 
S 0.040 0.014 0.020 0.079 0.034 0.048 0.048 
I 0.072 0.013 0.023 0.075 0.021 0.034 0.021 

W 0.216 0.018 0.046 0.110 0.023 0.032 0.009 

On the basis of the estimated parameters shown above and the estimated joint distribution of X  and 

Z in Table 1, the joint distributions of X, Y, and Z by sex can be estimated. The effects of X and Z on Y 

for men are shown in Tables 2–4, for example, the effects of S=X  and 5=Z  on S=Y  illustrated in 

Table 2 are as follows: 

the total effect of S=X  and 5=Z  on S=Y  is calculated as follows: 0.51; 

the total effect of 5=Z  is 0.04; 

the total effect of S=X  is 0.47 when 5=Z ; 

the direct effect of S=X  is 0.16 when 5=Z ; 

the indirect effect of S=X  is 0.31 when 5=Z . 
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Similarly, the effects of X and Z on Y for women can be calculated. The results are omitted to avoid 

redundancy of the discussion. 

Table 2. The effects of X and Y on S=Y . 

X Z 
Effect on S=Y  

(X,Z) (total) Z (total) X (total) X (direct) X (indirect) 

S 

1 −0.79 −0.89 0.10 0.22 −0.12 
2 −0.49 −0.65 0.19 0.23 −0.04 
3 −0.14 −0.42 0.29 0.24 0.04 
4 0.19 −0.19 0.38 0.17 0.21 
5 0.51 0.04 0.47 0.16 0.31 
6 0.84 0.28 0.56 0.16 0.40 
7 1.16 0.51 0.65 0.11 0.55 

I 

1 −0.93 −0.89 −0.04 −0.04 −0.01 
2 −0.93 −0.57 −0.04 −0.05 0.01 
3 −0.28 −0.25 −0.03 −0.05 0.02 
4 0.04 0.07 −0.03 −0.04 0.02 
5 0.37 0.39 −0.02 −0.05 0.03 
6 0.69 0.71 −0.01 −0.05 0.03 
7 1.02 1.02 −0.01 −0.05 0.04 

W 

1 −0.99 −0.84 −0.15 0.17 −0.32 
2 −0.67 −0.45 −0.21 0.01 −0.23 
3 −0.34 −0.07 −0.23 0.03 −0.30 
4 −0.02 0.32 −0.34 0.06 −0.39 
5 0.31 0.71 −0.40 0.03 −0.43 
6 0.63 1.09 −0.46 0.03 −0.49 
7 0.96 1.48 −0.52 0.01 −0.53 

Table 3. The effects of X and Y on I=Y . 

X Z 
Effect on I=Y  

(X,Z) (Total) Z (Total) X (Total) X (Direct) X (Indirect) 

S 

1 0.07 0.60 −0.52 −0.07 −0.45 

2 0.01 0.44 −0.43 −0.09 −0.34 

3 −0.06 0.28 −0.34 −0.09 −0.25 

4 −0.12 0.13 −0.25 −0.10 −0.15 

5 −0.19 −0.03 −0.16 −0.11 −0.04 

6 −0.25 −0.19 −0.06 −0.12 0.06 

7 −0.32 −0.34 0.03 −0.12 0.15 

I 

1 0.15 0.24 −0.09 0.06 −0.16 
2 0.08 0.17 −0.09 0.10 −0.18 
3 0.02 0.10 −0.08 0.10 −0.18 
4 −0.05 0.03 −0.07 0.07 −0.15 
5 −0.11 −0.05 −0.07 0.09 −0.15 
6 −0.18 −0.12 −0.06 0.08 −0.14 
7 −0.24 −0.19 −0.05 0.09 −0.15 
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Table 3. Cont. 

X Z 
Effect on I=Y  

(X,Z) (Total) Z (Total) X (Total) X (Direct) X (Indirect) 

W 

1 0.32 0.01 0.31 0.07 0.24 
2 0.25 0.00 0.25 0.00 0.25 
3 0.19 0.00 0.19 0.01 0.18 
4 0.12 0.00 0.13 0.01 0.12 
5 0.06 −0.01 0.07 0.00 0.06 
6 −0.01 −0.01 0.00 0.00 0.00 
7 −0.07 −0.01 −0.06 0.00 −0.05 

Table 4. The effects of X and Y on WY = . 

X Z 
Effect on WY =  

(X,Z) (Total) Z (Total) X (Total) X (Direct) X (Indirect) 

S 

1 0.67 1.28 −0.62 −0.05 −0.57 
2 0.42 0.95 −0.52 −0.09 −0.44 
3 0.18 0.61 −0.43 −0.09 −0.34 
4 −0.07 0.27 −0.34 −0.07 −0.27 
5 −0.31 −0.06 −0.25 −0.09 −0.16 
6 −0.56 −0.40 −0.16 −0.10 −0.06 
7 −0.80 −0.74 −0.06 −0.08 0.01 

I 

1 0.74 0.65 0.09 −0.02 0.11 
2 0.49 0.39 0.10 −0.04 0.14 
3 0.25 0.14 0.11 −0.05 0.15 
4 0.00 −0.11 0.11 −0.03 0.14 
5 −0.24 −0.36 0.12 −0.04 0.16 
6 −0.49 −0.61 0.12 −0.04 0.16 
7 −0.73 −0.86 0.13 −0.04 0.17 

W 

1 0.64 0.40 0.24 −0.10 0.34 
2 0.39 0.21 0.18 −0.01 0.19 
3 0.15 0.03 0.12 −0.03 0.14 
4 −0.10 −0.15 0.06 −0.07 0.12 
5 −0.34 −0.34 −0.01 −0.05 0.04 
6 −0.59 −0.52 −0.07 −0.05 −0.02 
7 −0.83 −0.70 −0.13 −0.03 −0.10 

The standardized summary effects are shown in Table 5. For men, the total effect of X and Z on Y is 

0.276, and so 27.6% of the variation of Y’s entropy is explained by X and Z. The indirect effect of X is 

about twice the direct effect, and the total (direct) effect of Z on Y is about 1.5-fold that of X. Therefore, 

the effect of education Z on the destination class Y is large. For women, the total effect of X and Z on Y 

is 0.289, meaning that 28.9% of the variation of Y’s entropy is explained by X and Z.  

The indirect effect of X on Y is about 6-fold that of the direct effect, and the direct effect is small.  

The total effect of Z on Y is about 2.7-fold that of X. The effect of Z on Y is more pronounced for women 

than for men. 
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In a comparison of men and women, the effect of Z on Y for women is about 1.3-fold the effect for 

men, and, contrarily, the effect of X on Y for men is about 1.4-fold the effect for women. For both men 

and women, the direct effects of X on Y are mostly very small, and this decomposition of effects shows 

that education plays an important role in determining social class as an adult. 

Table 5. Summary Direct, Indirect, and Total Effects of X and Z on Y. 

Sex Explanatory Variables Direct Effect Indirect Effect Total Effect 

Men 
Parental Class X 0.033 (0.004) * 0.076 (0.07) 0.109 (0.008) 

Education Z 0.168 (0.010) --- 0.168 (0.010) 
(X,Z) --- --- 0.276 (0.013) 

Women 
Parental Class X 0.011 (0.002) 0.068 (0.06) 0.079 (0.007) 

Education Z 0.210 (0.011) --- 0.210 (0.011) 
(X,Z) --- --- 0.289 (0.012) 

* The numbers in parentheses are the standard errors. 

7. Discussion 

In the usual path analysis of continuous variable systems, use of the regression coefficients allows 

straightforward calculation of total, direct and indirect effects, and the total effect can be expressed by 

the sum of the direct and indirect effects. However such techniques cannot be applied to structural GLMs 

with categorical variables or variables that are not normally distributed. Moreover, multiple variable 

categories make the problem more complicated in comparison with linear equation models for 

continuous variables. In the present paper, a path analysis approach for structural GLM models was 

proposed, and calculation of the direct and indirect effects was discussed. Although the analysis of 

effects of explanatory variables on response variables can be discussed in detail by using log odds ratios, 

and the effects can be interpreted as changes of relative information, the results are generally quite 

complicated as demonstrated in Tables 2–4. The present path analysis summarizes the effects, as 

measured by log odds ratios, and the standardized summary total, direct, and indirect effects are 

interpreted in the framework of entropy. The present path analysis approach has potential for wide 

application in practical data analyses of causal systems represented as GLMs, and is particularly well 

suited to categorical data analysis. The present study has provided a basic idea for path analysis of 

recursive systems with GLMs, where all the variables concerned are causally ordered, and further studies 

are needed for performing path analysis of more complicated recursive GLM systems and assessing 

spurious effects. 
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