
X - 8 DELGADO-BONAL ET AL.: DISEQUILIBRIUM ON MARS

Appendix A: Derivation of the chemical
potential equation

The expression that is commonly used in planetary at-
mospheres is usually written as (Kodepudi and Prigogine
[1998], Eq. 5.3.6):

µ(p, T ) = µ(p0, T ) +RT ln(p/p0) (A1)

where µ0 is the chemical potential at unit pressure (1
atm), p0 is the pressure at standard conditions and R the
gas constant.

In order to calculate the chemical potential for arbitrary
p and T, the knowledge of the chemical potential at (p0,T)
is needed. This previous step, usually omitted, can be per-
formed as (Eq. (5.3.3) in (Kodepudi and Prigogine [1998])):

µ(p0, T ) =
T

T0
µ(p0, T0) + T ·

∫ T

T0

−Hm(p0, T
′)

T ′2
dT ′ (A2)

where T0 is the temperature at standard conditions and
Hm is the molar enthalpy of the compound.

Therefore, the most complete equation to determine the
chemical potential for a compound at a particular pressure
and temperature is the expression:

µ(p, T ) =
T

T0
µ(p0, T0)+T ·

∫ T

T0

−Hm(p0, T
′)

T ′2
dT ′+RT ln(p/p0)

(A3)
The molar enthalpy Hm(p0, T ) at an arbitrary tempera-

ture T can be obtained from the values of the heat capacity
at constant pressure, Cp(T ), and the tabulated values of
enthalpy at a standard temperature H(p0,T0):

Hm(p0, T ) = Hm(p0, T0) +

∫ T

T0

Cp(T )dT (A4)

Using this last relation, the enthalpy integral can be sim-
plified to:

∫ T

T0

−Hm(p0, T
′)

T ′2
dT ′ = −

∫ T

T0

Hm(p0, T0) +
∫ T ′

T0
Cp(T ∗)dT ∗

T ′2
dT ′

(A5)
For the case of Mars, we can consider the heat capacity

as a constant, Cp = Cp(T ), being able to extract it from the
integral and obtaining (see the discussion for hot exoplanets
later):

−
∫ T

T0

Hm(p0, T0) + Cp(T ′ − T0)

T ′2
dT ′ =

−
∫ T

T0

Hm(p0, T0) − CpT0 + CpT
′

T ′2
dT ′ =

−(Hm(p0, T0) − CpT0)

∫ T

T0

1

T ′2
dT ′ − Cp

∫ T

T0

1

T ′
dT ′ =

+(Hm(p0, T0) − CpT0)

[
1

T
− 1

T0

]
− Cp ln

T

T0
(A6)

Using (A6) and (A3), we obtain an useful approximation
for the calculation of the chemical potential at the Martian
environment

µ(p, T ) =
T

T0
µ(p0, T0) + T · (Hm(p0, T0) − CpT0)

[
1

T
− 1

T0

]

−CpT ln(
T

T0
) +RT ln(p/p0) (A7)

When the temperature is T=T0, the above expression is
reduced to the more familiar equation:

µ(p, T0) = µ(p0, T0) +RT0 ln(p/p0) (A8)

However, as has been explained in Section 2, this expres-
sion is only useful for situations where the temperature is
close to the standard temperature of reference (usually 298
K), i.e., the Earth environment. When the temperatures are
different, the complete expression for the chemical potential
is needed.

The temperature dependence of the heat capacity is usu-
ally expressed as a polynomial function with tabulated con-
stants:

Cp(T ) = a+ bT + cT 2 (A9)

If the coefficients b and c are much smaller than a, as usu-
ally happens, Equation A7 represents an useful approxima-
tion, useful for those environments where the temperature
variations are not large and the heat capacity can be con-
sidered as constant. For Venus and hot exoplanets a more
detailed expression might be needed.

The molar enthalpy at an arbitrary temperature reads
now:

H(p0, T ) = H(p0, T0) +

∫ T

T0

a+ bT + cT 2dT

H(p0, T ) = H(p0, T0)−(aT0+
b

2
T 2
0 +

c

3
T 3
0 )+(aT ′+

b

2
T ′2+

c

3
T ′3)

(A10)
The enthalpy integral in Eq. A3 becomes:

∫ T

T0

−Hm(p0, T
′)

T ′2
dT ′ =

−
(
H(p0, T0) − (aT0 +

b

2
T 2
0 +

c

3
T 3
0 )

)∫ T

T0

1

T ′2
dT ′

−
∫ T

T0

(aT ′ + b
2
T ′2 + c

3
T ′3)

T ′2
dT ′ =

+

(
H(p0, T0) − (aT0 +

b

2
T 2
0 +

c

3
T 3
0 )

)[
1

T
− 1

T0

]
− a ln

(
T

T0

)
− b

2
(T − T0) − c

6
(T 2 − T 2

0 )

(A11)

Note that when we consider the coefficients b and c =
zero, i.e., Cp is not temperature dependent, then Cp = a
and the expression A11 is reduced to A6.

We can use A11 into the chemical potential formula de-
tailed in A3 and obtain a general equation for the chemical
potential for an arbitrary pressure and temperature, useful
for any planetary atmosphere:

µ(p, T ) =
T

T0
µ(p0, T0)+T ·

∫ T

T0

−Hm(p0, T
′)

T ′2
dT ′+RT ln(p/p0)

µ(p, T ) =
T

T0
µ(p0, T0) +RT ln(p/p0)+

− T

(
H(p0, T0) − (aT0 +

b

2
T 2
0 +

c

3
T 3
0 )

)[
1

T
− 1

T0

]
− aT ln

(
T

T0

)
− b

2
T (T − T0) − c

6
T (T 2 − T 2

0 )

(A12)
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Although these equations have been obtained by direct
integration of the chemical potential equation, it is impor-
tant to remark that it is possible to obtain the same equa-
tions by Legendre transformations. By definition, the Gibbs
potential function is given as:

G = H − TS (A13)

The G function is called chemical potential in the case of
one mol, and including the proper dependence of pressure
and temperature in the equation, we can write:

µ(p, T ) = h(p, T ) − T · s(p, T ) (A14)

The determination of the enthalpy and entropy at differ-
ent (p,T) can be done using:

h(p, T ) = h(p0, T0) +

[∫ T

T0

CpdT

]
p0

+

[∫ p

p0

−µJTCpdp

]
T

s(p0, T ) = s(p0, T0) +

[∫ T

T0

Cp

T
dT

]
p0

−

[∫ p

p0

(
∂V

∂T

)
p

dp

]
T

where µJT is the Joule-Thompson coefficient

µJT =

(
∂T

∂P

)
H

=
V

Cp
(αT − 1)

and α is the volumetric thermal expansion coefficient,
1
V

(
∂V
∂T

)
p

; for an ideal gas is easy to prove that α = 1
T

,
and therefore µJT = 0.

If we consider the first step in Figure 1, i.e., the variation
in temperature without any changes in the pressure, and
knowing the enthalpy and entropy variations on tempera-
ture (considering Cp as constant):

µ(p0, T ) = h(p0, T0)+Cp(T−T0)−T ·s(p0, T0)−CpT ln(
T

T0
)

(A15)
We consider now the second step in Figure 1, the pres-

sure variation. The Joule-Thompson coefficient is zero for
an ideal gas and therefore the pressure term in the enthalpy
becomes zero, being the pressure dependence due to the en-
tropy expression. The final equation for the chemical poten-
tial reads:

µ(p, T ) = h(p0, T0)−T ·s(p0, T0)+Cp(T−T0)−CpT ln(
T

T0
)+RT ln(

p

p0
)

(A16)
It is trivial to prove that Equation A8 and Equation A16

are in fact the same equation where µ(p0, T0) = h(p0, T0) −
T0 · s(p0, T0).




