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Abstract: A common statistical situation concerns inferring an unknown distribution Q(x) 

from a known distribution P(y), where X (dimension n), and Y (dimension m) have a 

known functional relationship. Most commonly, n ≤ m, and the task is relatively 

straightforward for well-defined functional relationships. For example, if Y1 and Y2 are 

independent random variables, each uniform on [0, 1], one can determine the distribution 

of X = Y1 + Y2; here m = 2 and n = 1. However, biological and physical situations can 

arise where n > m and the functional relation Y→X is non-unique. In general, in the 

absence of additional information, there is no unique solution to Q in those cases. 

Nevertheless, one may still want to draw some inferences about Q. To this end, we propose 

a novel maximum entropy (MaxEnt) approach that estimates Q(x) based only on the 

available data, namely, P(y). The method has the additional advantage that one does not 

need to explicitly calculate the Lagrange multipliers. In this paper we develop the 

approach, for both discrete and continuous probability distributions, and demonstrate its 

validity. We give an intuitive justification as well, and we illustrate with examples. 
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1. Introduction 

We are often interested in quantitative details about quantities that are difficult or even impossible 

to measure directly. In many cases we may be fortunate enough to find measureable quantities that are 

related to our variables of interest. Such examples are abundant in nature. Consider a community of 

microbes coexisting in humans or other metazoan species [1,2]. It is possible to measure the relative 

abundances of different species in the microbial community in individual hosts, but it could be difficult 

to directly measure parameters that regulate interspecies interactions in these diverse communities. 

Knowing the quantitative values of the parameters representing microbial interactions is of great 

interest, both because of their role in development of therapeutic strategies against diseases such as 
colitis and for basic understanding, as we have discussed in [3].  

Inference of these unknown variables from the available data is a subject of a vast literature in 

diverse disciplines including statistics, information theory, and, machine learning [4–7]. In this paper 

we will be interested in a specific problem where the unknown variables in a large dimension are 

related to a smaller number of variables whose joint probability distribution is known from 

measurements.  

In the above example, parameters describing microbial interactions could represent such unknown 

variables, and their number could be substantially larger than the number of measurable variables, such 

as abundances of distinct microbial species. The distribution of abundances of microbial species in a 

host population can be calculated from measurements performed on a large number of individual 

subjects. The challenge is to estimate the distribution of microbial interaction parameters using the 

distribution of microbial abundances.  

These inference problems can be dealt with by Maximum Entropy (MaxEnt)-based methods that 

maximize an entropy function subject to constraints provided by the expectation values calculated 

from measured data [4,5,7,8]. In standard applications of MaxEnt, usually, averages, covariances, and, 

sometimes, higher-order moments calculated from the data are used to infer such distributions [4,5,7]. 

Including larger number of constraints in the MaxEnt formalism involves calculating a large number of 

Lagrange multipliers by solving an equal number of nonlinear equations, which can pose a great 

computational challenge [9]. Here we propose a novel MaxEnt-based method to infer the distribution of 

the unknown variables. Our method uses the distribution of the measured variables and provides an elegant 

MaxEnt solution that bypasses direct calculation of the Lagrange multipliers. Instead, the inferred 

distribution is described in terms of a degeneracy factor, described by a closed form expression, which 

depends only on the symmetry properties of the relation between the measured and the unknown variables. 

More generally, the above problem relates to the issue of calculating a probability function of X 

from the probability function of Y, where X and Y are both random variables, and Y and X have a 

functional relationship. This could involve either discrete or continuous random variables. Standard 

textbooks [10] in probability theory usually deal with cases where (a) variables X are related to 

variables of Y by a well-defined functional relationship (x = g(y)), with the distribution of the Y 

variables (y) known, and (b) X resides in a manifold (dimension n) of lower dimension than the Y 

manifold (dimension m). However, it is not clear how to extend the standard calculations pertaining to 

the above well-defined case when multiple values of X variables are associated with the same Y 

variable. This situation easily arises when n is greater than m. We address this problem here, where we 

,
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estimate Q(x) from P(y) when n > m. i.e., we infer the higher-dimension variable from the  

lower-dimension one. We show that when the variables are discrete, no unique solution exists for Q(x), 

as the system is underdetermined. However, the MaxEnt-based method can provide a MaxEnt solution 

in this situation that is constrained only by the available information (P(y) in this case) and is free from 

any additional assumptions. We then extend the results for continuous variables. 

2. The Problem 

We state the problem, illustrating in this section with discrete random variables. Consider a case 

when n different random variables, x1, .., xn, are related to m (n > m) different variables, y1, …, ym, as  
{Yi = fi(x1, ..., xn)} (f: Rn → Rm

). We know the probabilities for the y variables and want to reach 

some conclusion about the probabilities of the x variables. 

We introduce a few terms and notations borrowed from physics that we will use to simplify the 

mathematical description [11]. A state in the x (or y) space refers to a particular set of values in the 

variables x1, ..., xn (or y1, ..., ym). We denote the set of these states as {x1, ..., xn} or {y1, ..., ym}. The 
vector notations, 


x = (x1,, xn )  and 


y = (y1,, ym ) , will be used to compactly describe expressions 

when required. For the same reason, when we use f without a subscript, it will refer to a vector of f 
values, i.e., . In standard textbook examples in elementary probability 

theory and physics, we are provided with the probability distribution function , where X is related 

to Y by a well-defined function, . Such cases are common when Y resides in a higher or equal 

dimension (m ≥ n) than X. Then , with lower dimension n, is calculated using  

 (1a) 

The summation in Equation (1a) is performed over only those states {y1, .., ym} that correspond to the 

specified state . However, note that the above relation does not hold even when m ≥ n if multiple values 

of X variables are associated with the same values of the Y variables, e.g., x2 = y, where −∞ < x < ∞ and  
0 ≤ y < ∞. The MaxEnt formalism developed here can be used for estimating  using  in such 

cases (see Appendix A1). 

Here we are interested in the inverse problem: we are still provided with the probability distribution 

P(y1, ..., ym) and need to estimate the probability distribution Q(x1, ..., xn),but now m < n. In this 

situation, multiple values of the unknown variable X are associated with the same values of observable 

Y variables and no unique solution for Q(x1, ..., xn) exists as the system is underdetermined. Instead of 

Equation (1a), we use this equation: 

P(

y) = Q(


x)

x1,,xn |

f (

x )= y

 = Q(

x) δ yi , fi (


x )

i=1

m

∏
x1,,xn

 (1b) 

The constraints imposed on the summation in the last term by the relations (

y =


f (

x)) between the 

states in x and y are incorporated using the Kronecker delta function (δab, where, δa,b = 1 when a = b, 

and, δa,b = 0 when a ≠ b). For pedagogical reasons we elucidate the problem of non-uniqueness in the 

solutions using a simple example. This example can be easily generalized.  

Example 1. We start with a discrete random variable y, with known distribution P(y) = 1 / 3 for  

y = 0, 1, 2. Then assume that discrete random variables x1 and x2 are related to y, as,  
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y = f(x1,x2) = x1 + x2. We restrict x1 and x2 to being nonnegative integers; hence x1, and x2 can assume 

only three values, 0, 1, and 2.  

It follows that Q(x1,x2) are related to P(y) following Equation (1b) as, 

P(y) =
Q(0,0) for y = 0

Q(0,1) + Q(1,0) for y = 1

Q(0,2) + Q(1,1) + Q(2,0) for y = 2









 

Hence 

(0,0) 1/ 3Q =  

(0,1) (1,0) 1/ 3Q Q+ =  

(0, 2) (1,1) (2,0) 1/ 3Q Q Q+ + =
(2)

The above relation provides three independent linear equations for determining six unknown 

variables, Q(0,0), Q(1,0), Q(0,1), Q(1,1), Q(2,0), and, Q(0,2). Note, the condition of 

Q(x1, x2 ) = P(y) = 1
y


x1,x2

  is satisfied by the above linear equations, which also makes Q(1,2) = Q(2,1) 

= Q(2,2) = 0. Therefore, the linear system in Equation (2) is underdetermined and Q(x1,x2) cannot be 

found uniquely using these equations. (e.g., Q(0,1) and Q(1,0) could each equal 1/6; or Q(0,1) could 

equal 1/12, with Q(1,0) = 1/4; etc.)  

This issue of non-uniqueness is general and will hold as long as the number of constraints imposed 

by P(y1, ..., ym) is smaller than that of the number of unknown Q(x1, ..., xn). For example, when each 

direction in y (or x) can take L (or L1) discrete values and all the states in x are mapped to all the states 

in y, then the system will be underdetermined as long as, Lm < L1
n. 

3. A MaxEnt Based Solution (Discrete) 

In this section we propose a solution of this problem using a Maximum Entropy based principle, for 

discrete variables. We can define Shannon’s entropy [4,5,7], S, given by 

 (3)

and then maximize S with the constraint that Q(

x) should generate the distribution P(


y) in Equation (1b).  

Equation (1b) describes the set of constraints spanning the distinct states in the y space. For 

example, when each element in the y vector assumes binary values (+1 or −1) there are in total 2m 

number of distinct states in the y space providing 2m number of equations of constraints. We can 

introduce a Lagrange multiplier for each of the constraint equations, which we denote compactly as a 
function, λ(y1, …, ym) or λ(


y)  describing a map from Rn → R . That is, every possible y vector is 

associated with a unique value of λ. Also note, when P(

y) is normalized, Q(


x)is normalized due to 

Equation (1b), therefore, we will not use any additional Lagrange multiplier for the normalization 

condition of Q(

x) . The distribution, Q̂(


x) , that optimizes S, subject to the constraints can be 

calculated as follows. Q(

x)  is slightly perturbed from Q̂(


x) , i.e., Q(


x) = Q̂(


x) +δQ(


x) . Then 

expanding S in Equation (3) and the constraints in Equation (1b) in terms of δQ(

x)  and setting the 
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terms proportional to δQ(

x)  zero (optimization condition) yields Q̂(


x)  in terms of the Lagrange 

multipliers, i.e.,  

 
(4)

One can indeed confirm that the terms in the expansion of S and the constraints proportional to 

(δQ)2 at Q(

x) = Q̂(


x) is −1/ Q̂(


x), thus, Q̂(


x)maximizes S. The method used here for maximizing S 

subject to the constraints is a standard one [4,11].  

The solution for Q̂(

x) from the above Equation (4) is given by,  

 (5)

Note the partition function (usually denoted as Z in textbooks [4,11]) does not arise in the above 

solution as the normalization condition for Q(x) is incorporated in the constraint equations in Equation 

(1b). We show the derivation of Equation (5) for Example 1 in Appendix A2 for pedagogical reasons. 

From the above solution (Equation (5)) we immediately observe the two main features that Q̂(

x) exhibits: 

(i) The values of Q̂(

x)for the states {x1, …, xn} that map to the same state y1, …, ym via { fi (


x)} are 

equal to each other. In the simple example above, this implies Q(1,0) = Q(0,1), and, Q(1,1) = Q(0,2) 

= Q(2,0).  

(ii)  contains all the symmetry properties present in the relation {yi = fi(x1, …, xn)}. In the 

simple example, the relation between y and x was symmetric in permutation of x1 and x2, 

implying, Q(x1,x2) = Q(x2,x1). 

We will take advantage of the above properties to avoid direct calculation of the Lagrange 
multipliers in Equation (4): For the states  in the x space that map to the same state, 

, in the y space, Equation (1b) can rewritten as 

 (6a)

 (6b)

where  gives the total number of distinct states  in the x space that correspond 

to the state,  or y


. Since, all the states in  will have the same probability, in the 

second step in Equation (6a) we replace the summation with k( y

), multiplied by the probability of any 

state ( ′x1,, ′xn )  or ′x


 in . We designate k( y

) as the degeneracy factor, borrowing a similar 

terminology in physics. k( y

) can be expressed in terms of the Kronecker delta functions as, 

 (7)

Note, the degeneracy factor in Equation (7) only depends on the relationship between {

x} and {


y}, 

and, does not depend on the probability distributions, P and Q. In our simple example above, since  
y = x1 + x2, Q(0,1) and Q(1,0) both correspond to y = 1, therefore k( y = 1) = 2. Equation (6b) is the 

Q̂(

x)
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main result of this section, which describes the inferred distribution Q̂(

x)  in terms of the known 

probability distribution , and, , which can be calculated from the given relation between y 

and x. Thus, the calculation of Q̂(

x), as shown in Equation (6b), does not involve direct evaluation of 

the Lagrange multipliers, . These two quantities are related to P(

y) , and, , following 

Equations (5), (6b) and (7), as, 

 (8)

Example 1, continued. We provide a solution for Example 1 presented above. By simple counting, we 

see the degeneracy factors are  

Thus following Equation (2), Q(0,0) = P(0) = 1/3, Q(0,1) = Q(1,0) = P(1)/2 = 1/6, and, Q(2,0) = Q(1,1) 

= Q(0,2) = P(2)/3 = 1/9. For more complex problems, the degeneracy factors can be calculated 

numerically. Maximizing the entropy, S, is what made all the Qs be equal for any one y value.  

4. Results for Continuous Variables 

The above results can be extended when {Xi} and {Yi} are continuous variables. However, there is 

an issue that makes a straightforward extension of the calculations shown in the discrete case in the 

continuum limit difficult. The issue is related to the continuum limit of the entropy function S in  

Equation (3). Replacing the summation in Equation (3) with an integral in the limit of large number of 

states as the step size separating the adjacent states is decreased to zero creates an entropy expression 

which is negative and unbounded [12]. This problem can be ameliorated by defining a relative entropy, 

RE, defined as, 

 
(9)

where, u is a uniform probability density function defined on the same domain as q. RE always 

remains positive with a lower bound at zero. The results obtained by maximizing S in the previous 

section can be derived by minimizing a relative entropy (RE) defined above with the discrete 

distributions, Q and a uniform distribution, U, where the integral in Equation (9) is replaced by a 

summation over the states in the x space. RE in Equation (9) quantifies the difference between the 

distribution q(x1, …, xn) and the corresponding uniform distribution.  

The definition of RE in Equation (9) still has an issue of defining the uniform distribution when the 

x variables are unbounded. In some cases, it may be possible to solve the problem by introducing finite 

upper and lower bounds and then analyzing the results in the limit where the upper (or lower) bound 

approaches ∞ (or −∞). We will illustrate this approach in Example 4, below. Also, see Example 3 for a 

comparison. 
In the continuum limit, the constraints on q(x1, ..., xn) or q(


x), imposed by the probability density 

function (pdf)
 
p(y1,..,ym) or

 
p(

y)  are given by, 
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 (10)

The Dirac delta function for a single variable x is defined as,  

( ) 1D

R

dx xδ =
 

(11)

where the region R contains the point x = 0 . 
Since, the pdf p(


y)  resides in a lower dimension compared to q(


x), estimation of q(


x) in terms of 

p(

y)  requires solution of an underdetermined system.

  For continuous variables we can proceed with minimizing the relative entropy using functional 

calculus [13,14]. The calculation follows the same logic as in the discrete case, we show the steps 

explicitly for clarity and pedagogy. 
The relative entropy (RE) in Equation (9) is a functional of q(


x). As in the discrete case, if p(


y)  is 

normalized, i.e.,  dy1 dym p(

y) = 1, then Equations (10) and (11) imply q(


x) is normalized as well, i.e., 

 (12) 

We introduce a Lagrange multiplier function, λ(

y) , and generate a functional, Sλ[q], that we need to 

minimize in order to minimize Equation (9) along with the constraints in Equation (10). Since, the 

normalization condition in Equation (12) follows from Equation (10) we do not treat Equation (12) as a 

separate constraint.  

Sλ[q] is given by, 

 (13)

We can take the functional derivative to minimize S as, 

 (14)

In deriving Equation (14) we used the standard relation 
δ f [x]

δ f [ ′x ]
= δ D (x − ′x ) . For multiple 

dimensions this generalizes to, 
δ f [


x]

δ f [ ′x


]
= δ D (x j − ′x j )

j=1

n

∏ . The chain rule for derivatives of functions can 

be easily generalized for functional derivatives [14].
 
Equation (14) provides us with the solution that 

minimizes Equation (13): 

 (15) 
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where, u0 is a constant related to the density of the uniform distribution. Note the {xi} dependence in 

the solution, q̂(

x), arises only though . 

Substituting Equation (15) in Equation (10), 

1
1

1
1

ˆ( ) ( ) ( ( ))

         = ( ( )) ( ( ))

        ( ) ( )

( )
( )   

( )

m

n D k k
k

m

n D k k
k

p y dx dx q x y f x

dx dx q f x y f x

q y y

p y
q y

y

δ

δ

κ

κ

=

=

= −

−

=

 =

∏

∏

  

 
 
 

 (16)

where, 

 (17)

The second derivative gives, 

 (18)

The second derivative of Sλ in Equation (18) is always positive, since q is positive. Therefore, q̂(

x), 

minimizes the relative entropy in Equation (9). Equations (16) and (17) are the main results of this 

section, which are the counterparts for the Equations (6b) and (7) in discrete case. 

We apply the above results for two examples below. 

Example 2. 
 
Consider a linear relationship between y and x, e.g., y = x1 + x2, where, 0 ≤ y ≤ ∞ and 0 ≤ 

x1 ≤ ∞, 0 ≤ x2 ≤ ∞. If the pdf in y is known as, p(y) = 1/μ exp(−y/μ), we would like to know the pdf 

corresponding q(x1,x2), where, the pdfs p and q are related by Equation (10), i.e., 

p(y) = dx1 dx2

0

∞


0

∞

 q(x1, x2 )δ D (y − x1 − x2 ) 

The degeneracy factor in the continuous case, according to Equation (17), in this case is, 

κ (y) = dx1 dx2δ D (y − x1 − x2 )
0

∞


0

∞

 = dx1 dx2δ D (y − x1 − x2 )
0

y


0

y



       = dx1 dx2δ D (x2 − (y − x1)) =
0

y


0

y

 dx1

0

y

 = y

 

The second equality results from the fact that the Dirac delta function is zero outside that region. The 

fourth equality uses the property of the Delta function,  

2 2 1

0

( ) (where,  for this integration) = 1
y

Ddx x a a y x constδ − = − =  

Therefore, q̂(x1, x2 ) = e−(x1+x2 )/μ

μ(x1 + x2 )
. 
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Example 3. Let y = f (x1, x2 ) = x1
2 + x2

2 , 0 ≤ y ≤ ∞ and 0 ≤ (x1, x2) ≤ ∞ . Then κ(y), as given by  

Equation (17), is,  

2 2
1 2 1 2

0 0

/2
2

0 0

2 2

0

( ) ( )

       ( )

       ( ) ( )
4

4

D

D

D

y dx dx y x x

drr y r d

d r y r

π

κ δ

δ φ

πδ

π

∞ ∞

∞

∞

= − −

= −

= −

=

 

 


 

Therefore, according to Equation (17), 

1 2
1 2

4 ( ( , ))4 ( )
ˆ ˆ( ) ( , )

p f x xp y
q y q x x

π π
=  =  

In our final example, we illustrate solving the problem by taking the limit when the upper and/or 

lower bound(s) approach ± ∞, as mentioned near the beginning of this section of the paper. 

Example 4. Let y = x1
2 + x2

2 , 0 ≤ y ≤ 2L2 and 0 ≤ (x1, x2) ≤ L. First we calculate κ(y) as given in  

Equation (17). Therefore, we need to evaluate the integral,  

κ (y) = dx1 dx2

0

L

 δ D (y − x1
2 − x2

2 )
0

L

  

We divide the region of integration (0≤ (x1, x2) ≤ L) into two parts, region I (lighter shade) and II 

(darker shade) as shown in the Figure 1. Region I contains x1 and x2 values, where, x1
2 + x2

2 = y2 ≤ L2, 

and, region II contains the remaining of the part of the domain (0≤ (x1, x2) ≤ L) of integration. The 

integrals in these regions are given by the first and the second term after the second equality sign in the 

equation below. 

κ (y) = dx1 dx2δ D (y − x1
2 − x2

2 ) )
region I
 + dx1 dx2δ D (y − x1

2 − x2
2 ) )

region II


       = drr
0

L

 δ D (y − r2 ) dφ
0

π /2

 + drr
0

L

 dφ
cos−1(r /L )

π /2−cos−1(r /L )

 δ D (y − r2 )

 

In region I, where y ≤ L2,  

κ I (y) = drr
0

L

 δ D (y − r2 ) dφ
0

π /2

 = π
2

y

2 y
= π

4  

In region II, where L2 ≤ y ≤ 2L2, 
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1

1

/2 cos ( / )
2

0 cos ( / )

1 2

0

1

1

( ) ( )

         ( / 2 2cos ( / )) ( )

         ( / 2 2cos ( / ))
2

         cos ( / )
4

L rL

II D

L r

L

D

y drr d y r

drr L r y r

y
L y

y

L y

π

κ φδ

π δ

π

π

−

−

−

−

−

−

= −

= − −

= −

= −

 


 

1cos ( / )L y−  varies between 0 (on the line x1
2 + x2

2 = L2) and π/4 (at x1 = x2 = L). Note, κ(y) = 0 when 

x1 = x2 = L, which does have any degeneracy. Therefore, Equation (16) is not valid at this point. Thus, 

as in Example 2 and 3, 

( )( )

2 2 21 2
1 2

1 2 2 2 2 21 2
1 2

1 2 2
1 2

4 ( ( , ))
,              when, 

ˆ( , )  ( ( , ))
, when, 2

/ 4 cos /

p f x x
x x L

q x x p f x x
L x x L

L x x

π

π −

 + ≤
= 

≤ + <
− +



 

Limit L→∞: When y ≤ L2, κ(y) = π/4. Thus, as L→∞, as long as y remains in region I we correctly 

recover the result in example III. If y is in region II, then we can expand κ(y) in a series of a small 

parameter ε = (y − L2)/L2 as κ(y) = π/4 − ε  + O(ε3/2). This result follows from the expansion of 

/ 1L y <  in region II. We can write,  

L / y = 1 / 1+ ε = (1+ ε )−1/2 = 1− ε / 2 + O(ε 2 )  

where, 0 < ε[= (y − L2)/L2] ≤ 1. Using series expansion of cos−1(x) [15] we find, 

cos−1(L / y ) = sin−1( 1− (L / y )2 ) = sin−1( ε / (1+ ε )) = ε + O(ε 3/2 ) , and thus, κ(y) = π/4 − ε  + 

O(ε3/2).  

 

Figure 1. Shows the different regions used in calculating the integral for κ(y) in Example 4.  
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5. Discussion 

The problem we have attacked here arose from our work with microbial communities [3], but it also 

has broader statistical applications. For example, the responses of immune cells to external stimuli 

involve protein interaction networks, where protein-protein interactions, described by biochemical 

reaction rates, are not directly accessible for measurement in vivo. Recent developments in single cell 

measurement techniques allow for measuring many protein abundances in single cells, making it 

possible to evaluate distribution of protein abundances in a cell population [16]. However, it is a 

challenge to characterize protein-protein interactions underlying a cellular response because the 

number of these interactions could be substantially larger than the number of measured protein  

species [17]. These problems involve determining the distribution of a random variable x, where y is 

another random variable, and X and Y have a functional relationship. In the more common situation, x 

has dimensionality less than or equal to that of y, and there is often a unique solution. In contrast, we 

considered here the case where x’s dimensionality is greater than that of y, so there is no unique 

solution to the problem. 

Since there is no unique solution, we propose taking a MaxEnt approach, as a way of “spreading out 

the uncertainty” as evenly as possible. In the discrete case, intuition would suggest that if k values of Q 

sum to a given value of P, then the solution that makes the least additional assumptions is for each Q to 

equal P/k. This intuition is confirmed by our MaxEnt results for the discrete case. In the continuous 

case, the intuition is not as obvious. However, the MaxEnt solution does capture the same intuitive 

idea. Instead of dividing P by  (an integer), we divide p by , where κ (y) = d

xδ D y − f (


x)( )


x
  

when y has dimension 1, or more generally by Equation (17). This use of the Dirac delta function has 

the similar effect of spreading out the uncertainty evenly. 

Estimating the distribution Q(x) does not require explicit calculation of the Lagrange multipliers 

and the partition sum. Rather, Q(x) is directly evaluated following Equation (6b) (or Equation (17) in 

the continuous case), using the measured P(y) (or p(y)), and, k(y) (or κ(y)), which depends only on the 

relationship y = f(x). In standard MaxEnt applications, where constraints are imposed by the average 

values and other moments of the data, inference of probability distributions requires evaluation of the 

Lagrange multipliers and the partition sum Z. This involves solving a set of nonlinear equations and 

the relation between the Z and the Lagrange multipliers. Calculating these quantities, which is usually 

carried out numerically, can pose a technical challenge when the variables reside in large dimensions. 

In our case, we avoid these calculations and provide a solution for Q(x) in terms of a closed analytical 

expression, which is general and thus applicable to any well-behaved example. A limitation is that 

calculation of the degeneracy factor k(y) (or κ(y) in the continuous case) can present a challenge in 

higher dimensions and for complicated relations between y and x. Monte Carlo sampling 

techniques[18] and discretization schemes for Dirac delta functions[19] can be helpful in that regard. 
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Appendix  

A1. An example for MaxEnt for y = f(x) when n≤ m. 

Consider a relation, y = x2, where, y and x are integers, and, 0 ≤ y ≤ 1 and −1 ≤ x ≤ 1. Thus, both  

x = ± 1 are associated with y = 1. The pdf of X, Q(x), is related to the pdf of Y, P(y), as, 

P(y = 0) = Q(x = 0) (A1a) 

P(y = 1) = Q(x = +1) + Q(x = −1) (A1b) 

Therefore, if P(y) is known, Equation (A1) cannot be used to uniquely determine Q(x) as the above 

system is underdetermined. We can use the MaxEnt scheme developed here to estimate Q(x).  

Equation (1) determines Q(0) and using Equation (6): Q(1) = Q(−1) = P(1)/2. 

A2. Details of the MaxEnt Calculations for Example 1 

S = −Q(0,0)lnQ(0,0) − Q(0,1)lnQ(0,1) − Q(1,0)lnQ(1,0) − Q(0,2)lnQ(0,2)

− Q(1,1)lnQ(1,1) − Q(2,0)lnQ(2,0)
 

The three constraints corresponding to P(y) at y = 0, y = 1, and, y = 2, are denoted by λ1, λ2, and λ3, 

respectively. Therefore, Equation (4) in this case is given by, 

1

2 3

ˆ ˆ ˆ0 (0,0)(ln (0,0) 1) (0,1)(ln (0,1) 1) (1,0)(ln (1,0) 1)

ˆ ˆ ˆ         (0, 2)(ln (0, 2) 1) (1,1)(ln (1,1) 1) (2,0)(ln (2,0) 1) (0,0)

         ( (1,0) (0,1)) ( (2,0) (1,1)

S Q Q Q Q Q Q

Q Q Q Q Q Q Q

Q Q Q Q

δ δ δ δ
δ δ δ λ δ
λ δ δ λ δ δ δ

= = − + − + − +

− + − + − + +
+ + + + + (0, 2))Q

 

The solution for Q̂  can be found by equating the coefficients of each of the δQ to zero since δQ is 

arbitrary.  
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Q̂(0,0) = eλ1−1, Q̂(1,0) = Q̂(0,1) = eλ2 −1, Q̂(2,0) = Q̂(0,2) = Q̂(1,1) = eλ3−1 

Using the above solution and Equation (2) we can easily find 

Q̂(0,0) = 1/ 3, Q̂(1,0) = Q̂(0,1) = 1/ 6, Q̂(2,0) = Q̂(0,2) = Q̂(1,1) = 1 / 9  

Q̂  is normalized as expected. 
 Substituting the above equations in the constraint equation in Equation (2) (or Equation (8)) 

provides the values for the Lagrange multipliers, i.e.,  

31 2 11 1
1 2 31/ 3 ln(3) 1; 1/ 6 ln(6) 1; 1/ 9 ln(9) 1e e eλ −λ − λ −= λ = − + = λ = − + = λ = − +  
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