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Abstract: Renewal processes are broadly used to model stochastic behavior consisting
of isolated events separated by periods of quiescence, whose durations are specified by a
given probability law. Here, we identify the minimal sufficient statistic for their prediction
(the set of causal states), calculate the historical memory capacity required to store those
states (statistical complexity), delineate what information is predictable (excess entropy), and
decompose the entropy of a single measurement into that shared with the past, future, or both.
The causal state equivalence relation defines a new subclass of renewal processes with a finite
number of causal states despite having an unbounded interevent count distribution. We use
the resulting formulae to analyze the output of the parametrized Simple Nonunifilar Source,
generated by a simple two-state hidden Markov model, but with an infinite-state ε-machine
presentation. All in all, the results lay the groundwork for analyzing more complex processes
with infinite statistical complexity and infinite excess entropy.
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1. Introduction

Stationary renewal processes are widely used, analytically tractable, compact models of an important
class of point processes [1–4]. Realizations consist of sequences of events, e.g., neuronal spikes or
earthquakes, separated by epochs of quiescence, the lengths of which are drawn independently from
the same interevent distribution. Renewal processes on their own have a long history and, due to
their offering a parsimonious mechanism, often are implicated in highly complex behavior [5–10].
Additionally, understanding more complicated processes [11–14] requires fully analyzing renewal
processes and their generalizations.

As done here and elsewhere [15], analyzing them in-depth from a structural information viewpoint
yields new statistical signatures of apparent high complexity: long-range statistical dependence, memory,
and internal structure. To that end, we derive the causal-state minimal sufficient statistics, the ε-machine,
for renewal processes and then derive new formulae for their various information measures in terms
of the interevent count distribution. The result is a thorough-going analysis of their information
architecture, a shorthand referring to a collection of measures that together quantify key process
properties: predictability, difficulty of prediction, inherent randomness, memory, Markovity, and the
like. The measures include:

– the statistical complexity Cµ, which quantifies the historical memory that must be stored in order
to predict a process’s future;

– the entropy rate hµ, which quantifies a process’ inherent randomness as the uncertainty in the next
observation, even given that we can predict as well as possible;

– the excess entropy E, which quantifies how much of a process’s future is predictable in terms of
the mutual information between its past and future;

– the bound information bµ, which identifies the portion of the inherent randomness (hµ) that affects
a process’s future in terms of the information in the next observation shared with the future, above
and beyond that of the entire past; and

– the elusive information σµ, which quantifies a process’s deviation from Markovity as the mutual
information between the past and future conditioned on the present.

Analyzing a process in this way gives a more detailed understanding of its structure and stochasticity.
Beyond this, these information measures are key to finding limits to a process’s optimal lossy predictive
features [16–19], designing action policies for intelligent autonomous agents [20], and quantifying
whether or not a given process has one or another kind of infinite memory [21–23].

While it is certainly possible to numerically estimate information measures directly from trajectory
data, statistical methods generally encounter a curse of dimensionality when a renewal process has
long-range temporal correlations, since the number of typical trajectories grows exponentially (at entropy
rate hµ). Alternatively, we gain substantial advantages by first building a maximally-predictive model
of a process (e.g., using Bayesian inference [24]) and then using that model to calculate information
measures (e.g., using recently-available closed-form expressions when the model is finite [25]).
Mathematicians have known for over a half century [26] that alternative models that are not maximally
predictive are inadequate for such calculations. Thus, maximally-predictive models are critical. Figure 1
depicts the overall procedure just outlined, highlighting its important role. Here, extending the benefits
of this procedure, we determine formulae for the information measures mentioned above and the
appropriate structures for a class of processes that require countably infinite models: the ubiquitous
renewal processes.
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Figure 1. The role of maximally-predictive (prescient) models: Estimating information
measures directly from trajectory data encounters a curse of dimensionality or, in other
words, severe undersampling. Instead, one can calculate information measures in
closed-form from (inferred) maximally-predictive models [25]. Alternate generative models
that are not maximally predictive cannot be used directly, as Blackwell showed in the
1950s [26].

Our development requires familiarity with computational mechanics [27]. Those disinterested in its
methods, but who wish to use the results, can skip to Figure 3a–d and Table 1. A pedagogical example
is provided in Section 5. Two sequels will use the results to examine the limit of infinitesimal time
resolution for information in neural spike trains [28] and the conditions under which renewal processes
have infinite excess entropy [29].

The development is organized as follows. Section 2 provides a quick introduction to computational
mechanics and prediction-related information measures of stationary time series. Section 3 identifies
the causal states (in both forward and reverse time), the statistical complexity, and the ε-machine
of discrete-time stationary renewal processes. Section 4 calculates the information architecture and
predictable information of a discrete-time stationary renewal process in terms of the interevent count
distribution. Section 5 calculates these information-theoretic measures for the parametrized simple
nonunifilar source, a simple two-state hidden Markov model with a countable infinity of causal states.
Finally, Section 6 summarizes the results and lessons, giving a view toward future directions and
mathematical and empirical challenges.

2. Background

We first describe renewal processes, then introduce a small piece of information theory, review the
definition of process structure, and, finally, recall several information-theoretic measures designed to
capture organization in structured processes.
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2.1. Renewal Processes

We are interested in a system’s immanent, possibly emergent, properties. To this end, we focus
on behaviors and not, for example, particular equations of motion or particular forms of stochastic
differential or difference equations. The latter are important in applications, because they are generators
of behavior, as we will see shortly in Section 2.3. As Figure 1 explains, for a given process, some of its
generators facilitate calculating key properties. Others lead to complicated calculations, and others still
cannot be used at all.

As a result, our main object of study is a process P: the list of all of a system’s behaviors or
realizations {. . . , x−2, x−1, x0, x1, . . .} as specified by their measure µ(. . . , X−2, X−1, X0, X1, . . .). We
denote a contiguous chain of random variables as X0:L = X0X1 · · ·XL−1. Left indices are inclusive;
right, exclusive. We suppress indices that are infinite. In this setting, the present X0 is the random
variable measured at t = 0; the past is the chain X:0 = · · ·X−2X−1 leading up the present; and the
future is the chain following the present X1: = X1X2 · · · . The joint probabilities Pr(X0:N) of sequences
are determined by the measure of the corresponding cylinder sets: Pr(X0:N = x0x1 . . . xN−1) =

µ(. . . , x0, x1, . . . , xN−1, . . .). Finally, we assume that a process is ergodic and stationary (Pr(X0:L) =

Pr(Xt:L+t) for all t, L ∈ Z) and that the observation values xt range over a finite alphabet: x ∈ A. In
short, we work with hidden Markov processes [30].

Discrete-time stationary renewal processes here have binary observation alphabets A = {0, 1}.
Observation of the binary symbol 1 is called an event. The event count is the number of 0’s between
successive 1’s. Counts n are i.i.d. random variables drawn from an interevent distribution F (n), n ≥ 0.
We restrict ourselves to persistent renewal processes, such that the probability distribution function is
normalized:

∑∞
n=0 F (n) = 1. This translates into the processes being ergodic and stationary. We also

define the survival function by w(n) =
∑∞

n′=n F (n′), and the expected interevent count is given by
µ =

∑∞
n=0 nF (n). We assume also that µ <∞. It is straightforward to check that

∑∞
n=0w(n) = µ+ 1.

Note the dual use of µ. On the one hand, it denotes the measure over sequences and, since it
determines probabilities, it appears in names for informational quantities. On the other hand, it is
commonplace in renewal process theory and denotes mean interevent counts. Fortunately, context easily
distinguishes the meaning through the very different uses.

2.2. Process Unpredictability

The information or uncertainty in a process is often defined as the Shannon entropy H[X0] of a single
symbol X0 [31]:

H[X0] = −
∑
x∈A

Pr(X0 = x) log2 Pr(X0 = x) . (1)

However, since we are interested in general complex processes, those with arbitrary dependence
structure, we employ the block entropy to monitor information in long sequences:

H(L) = H[X0:L]

= −
∑
w∈AL

Pr(X0:L = w) log2 Pr(X0:L = w) .
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To measure a process’s asymptotic per-symbol uncertainty, one then uses the Shannon entropy rate:

hµ = lim
L→∞

H(L)

L
,

when the limit exists. (Here and elsewhere, µ reminds us that information quantities depend on the
process’s measure µ over sequences.) hµ quantifies the rate at which a stochastic process generates
information. Using standard informational identities, one sees that the entropy rate is also given by the
conditional entropy:

hµ = lim
L→∞

H[X0|X−L:0] . (2)

This form makes transparent its interpretation as the residual uncertainty in a measurement given the
infinite past. As such, it is often employed as a measure of a process’s degree of unpredictability.

2.3. Maximally Predictive Models

Forward-time causal states S+ are minimal sufficient statistics for predicting a process’s
future [32,33]. This follows from their definition: a causal state σ+ ∈ S+ is a set of pasts grouped
by the equivalence relation ∼+:

x:0 ∼+ x′:0 ⇔ Pr(X0:|X:0 = x:0) = Pr(X0:|X:0 = x′:0) . (3)

Therefore, S+ is a set of classes, a coarse-graining of the uncountably infinite set of all pasts. At time
t, we have the random variable S+

t that takes values σ+ ∈ S+ and describes the causal-state process
. . . ,S+

−1,S+
0 ,S+

1 , . . .. S+
t is a partition of pasts X:t that, according to the indexing convention, does not

include the present observation Xt. In addition to the set of pasts leading to it, a causal state σ+
t has

an associated future morph: the conditional measure µ(Xt:|σ+
t ) of futures that can be generated from it.

Moreover, each state σ+
t inherits a probability π(σ+

t ) from the process’s measure over pasts µ(X:t). The
forward-time statistical complexity is defined as the Shannon entropy of the probability distribution over
forward-time causal states [32]:

C+
µ = H[S+

0 ] . (4)

A generative model is constructed out of the causal states by endowing the causal-state process
with transitions:

T
(x)
σσ′ = Pr(S+

t+1 = σ′, Xt = x|S+
t = σ) ,

that give the probability of generating the next symbol x and ending in the next state σ′, if starting in
state σ. (Residing in a state and generating a symbol do not occur simultaneously. Since symbols are
generated during transitions there is, in effect, a half time step difference in the indexes of the random
variables Xt and S+

t . We suppress notating this.) To summarize, a process’s forward-time ε-machine is
the tuple {A,S+, {T (x) : x ∈ A}}.

For a discrete-time, discrete-alphabet process, the ε-machine is its minimal unifilar hidden Markov
model (HMM) [32,33]. (For a general background on HMMs, see [34–36].) Note that the causal state
set can be finite, countable, or uncountable; the latter two cases can occur even for processes generated
by finite-state HMMs. Minimality can be defined by either the smallest number of states or the smallest
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entropy over states [33]. Unifilarity is a constraint on the transition matrices T (x), such that the next state
σ′ is determined by knowing the current state σ and the next symbol x. That is, if the transition exists,
then Pr(S+

t+1|Xt = x,S+
t = σ) has support on a single causal state.

While the ε-machine is a process’s minimal, maximally-predictive model, there can be alternative
HMMs that are as predictive, but are not minimal. We refer to the maximally-predictive property by
referring to the ε-machine and these alternatives as prescient. The state and transition structure of a
prescient model allow one to immediately calculate the entropy rate hµ, for example. More generally,
any statistic that gives the same (optimal) level of predictability we call a prescient statistic.

A similar equivalence relation can be applied to find minimal sufficient statistics for retrodiction [37].
Futures are grouped together if they have equivalent conditional probability distributions over pasts:

x0: ∼− x′0: ⇔ Pr(X:0|X0: = x0:) = Pr(X:0|X0: = x′0:) . (5)

A cluster of futures, a reverse-time causal state, defined by ∼−, is denoted σ− ∈ S−. Again, each
σ− inherits a probability π(σ−) from the measure over futures µ(X0:). Additionally, the reverse-time
statistical complexity is the Shannon entropy of the probability distribution over reverse-time causal
states:

C−µ = H[S−0 ] . (6)

In general, the forward and reverse-time statistical complexities are not equal [37,38]. That is,
different amounts of information must be stored from the past (future) to predict (retrodict). Their
difference Ξ = C+

µ − C−µ is a process’s causal irreversibility, and it reflects this statistical asymmetry.
Since we work with stationary processes in the following, the time origin is arbitrary and, so, we drop

the time index t when it is unnecessary.

2.4. Information Measures for Processes

Shannon’s various information quantities—entropy, conditional entropy, mutual information, and the
like—when applied to time series are functions of the joint distributions Pr(X0:L). Importantly, they
define an algebra of information measures for a given set of random variables [39]. The work in [40]
used this to show that the past and future partition the single-measurement entropy H(X0) into several
distinct measure-theoretic atoms. These include the ephemeral information:

rµ = H[X0|X:0, X1:] , (7)

which measures the uncertainty of the present knowing the past and future; the bound information:

bµ = I[X0;X1:|X:0] , (8)

which is the mutual information shared between present and future conditioned on the past; and the
enigmatic information:

qµ = I[X0;X:0;X1:] , (9)

which is the three-way mutual information between past, present and future. Multi-way mutual
information is sometimes referred to as co-information [40,41] and, compared to Shannon entropies
and two-way mutual information, can have counterintuitive properties, such as being negative.
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For a stationary time series, the bound information is also the shared information between present and
past conditioned on the future:

bµ = I[X0;X:0|X1:]. (10)

One can also consider the amount of predictable information not captured by the present:

σµ = I[X:0;X1:|X0] . (11)

This is called the elusive information [42]. It measures the amount of past-future correlation not
contained in the present. It is nonzero if the process necessarily has hidden states and is therefore quite
sensitive to how the state space is observed or coarse grained.

The maximum amount of information in the future predictable from the past (or vice versa) is the
excess entropy:

E = I[X:0;X0:] .

It is symmetric in time and a lower bound on the stored informations C+
µ and C−µ . It is directly given

by the information atoms above:

E = bµ + σµ + qµ . (12)

The process’s Shannon entropy rate hµ (recall the form of Equation (2)) can also be written as a sum
of atoms:

hµ = H[X0|X:0]

= rµ + bµ .

Thus, a portion of the information (hµ) a process spontaneously generates is thrown away (rµ), and a
portion is actively stored (bµ). Putting these observations together gives the information architecture of
a single measurement (Equation (1)):

H[X0] = qµ + 2bµ + rµ . (13)

These identities can be used to determine rµ, qµ, and E from H[X0], bµ, and σµ, for example.
We have a particular interest in when Cµ and E are infinite and, so, will investigate finite-time variants

of causal states and finite-time estimates of statistical complexity and E. For example, the latter is
given by:

E(M,N) = I[X−M :0;X0:N ] . (14)

If E is finite, then E = limM,N→∞E(M,N). When E is infinite, then the way in which
E(M,N) diverges is one measure of a process’ complexity [21,43,44]. Analogous, finite past-future
(M,N)-parametrized equivalence relations lead to finite-time forward and reverse causal states and
statistical complexities C+

µ (M,N) and C−µ (M,N).
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3. Causal Architecture of Renewal Processes

It will be helpful pedagogically to anchor our theory in the contrast between two different, but
still simple, renewal processes. One is the familiar “memoryless” Poisson process with rate λ. Its
HMM generator, a biased coin, is shown at the left of Figure 2. It has an interevent count distribution
F (n) = (1 − λ)λn; a distribution with unbounded support. However, we notice in Figure 2 that it
is a unifilar model with a minimal number of states. Therefore, in fact, this one-state machine is the
ε-machine of a Poisson process. The rate at which it generates information is given by the entropy rate:
hµ = H(λ) bits per output symbol. (Here, H(p) is the binary entropy function.) It also has a vanishing
statistical complexity C+

µ = 0 and, so, stores no historical information.

A

λ|0

1− λ|1

A

B

1
2 |0

1
2 |0

1
2 |0

1
2 |1

(a) (b)

Figure 2. (a) Minimal generative model for the Poisson process with rate λ; (b) a generator
for the Simple Nonunifilar Source (SNS). Both generate a stationary renewal process.
Transition labels p|s denote the probability p of taking a transition and emitting symbol
s.

The second example is the Simple Nonunifilar Source (SNS) [45]; its HMM generator is shown in
Figure 2b. Transitions from state B are unifilar, but transitions from state A are not. In fact, a little
reflection shows that the time series produced by the SNS is a discrete-time renewal process. Once we
observe the “event” xt = 1, we know the internal model state to be σt+1 = A, so successive interevent
counts are completely uncorrelated.

This SNS generator is not an ε-machine and, moreover, cannot be used to calculate the process’s
information per output symbol (entropy rate). If we can only see 0’s and 1’s, we will usually be uncertain
as to whether we are in state A or state B, so this generative model is not maximally predictive. How
can we calculate this basic quantity? Additionally, if we cannot use the two-state generator, how many
states are required, and what is their transition dynamic? The following uses computational mechanics
to answer these and a number of related questions. To aid readability, though, we sequester most of the
detailed calculations and proofs to Appendix A.

We start with a simple Lemma that follows directly from the definitions of a renewal process and the
causal states. It allows us to introduce notation that simplifies the development.

Lemma 1. The count since last event is a prescient statistic of a discrete-time stationary renewal process.
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That is, if we remember only the number of counts since the last event and nothing prior, we can
predict the future as well as if we had memorized the entire past. Specifically, a prescient state R is a
function of the past such that:

H[X0:|X:0] = H[X0:|R] .

Causal states can be written as unions of prescient states [33]. We start with a definition that helps to
characterize the converse; i.e., when the prescient states of Lemma 1 are also causal states.

To ground our intuition, recall that Poisson processes are “memoryless”. This may seem
counterintuitive, if viewed from a parameter estimation point of view. After all, if observing longer
pasts, one makes better and better estimates of the Poisson rate. However, finite data fluctuations in
estimating model parameters are irrelevant to the present mathematical setting unless the parameters are
themselves random variables, as in the nonergodic processes of [44]. This is not our setting here: the
parameters are fixed. In fact, we restrict ourselves to studying ergodic processes, in which the conditional
probability distributions of futures given pasts of a Poisson process are independent of the past.
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Figure 3. ε-Machine architectures for discrete-time stationary renewal processes: (a) not
eventually ∆-Poisson with unbounded-support interevent distribution; (b) not eventually
∆-Poisson with bounded-support interevent distribution; (c) eventually ∆-Poisson with
characteristic (ñ,∆ = 1) in Definition 2; (d) eventually ∆-Poisson with characteristic
(ñ,∆ > 1) in Definition 2; (e) for comparison, a Poisson process ε-machine.

We therefore expect the prescient states in Lemma 1 to fail to be causal states precisely when the
interevent distribution is similar to that of a Poisson renewal process. This intuition is made precise by
Definition 2.

Definition 1. A ∆-Poisson process has an interevent distribution:

F (n) = F (n mod ∆) λbn/∆c ,
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for all n and some λ > 0. If this statement holds for multiple ∆ ≥ 1, then we choose the smallest
possible ∆.

Definition 2. A (ñ,∆) eventually ∆-Poisson process has an interevent distribution that is ∆-Poisson for
all n ≥ ñ:

F (ñ+ k∆ +m) = λkF (ñ+m) ,

for all 0 ≤ m < ∆, for all k ≥ 0, and for some λ > 0. If this statement holds for multiple ∆ ≥ 1 and
multiple ñ, then we choose the smallest possible ∆ and the smallest possible ñ.

If this statement holds for multiple ∆ ≥ 1 and multiple n, first, we choose the smallest possible ∆

and, then, select the smallest possible n for that ∆. Order matters here.
Thus, a Poisson process is a ∆-Poisson process with ∆ = 1 and an eventually ∆-Poisson process

with ∆ = 1 and ñ = 0. Moreover, we will now show that at some finite ñ, any renewal process is either:
(i) Poisson, if ∆ = 1; or (ii) a combination of several Poisson processes, if ∆ > 1.

Why identify new classes of renewal process? In short, renewal processes that are similar to, but not
the same as, the Poisson process do not have an infinite number of causal states. The particular condition
for when they do not is given by the eventually ∆-Poisson definition. Notably, this new class is what
emerged, rather unexpectedly, by applying the causal-state equivalence relation∼+ to renewal processes.
The resulting insight is that general renewal processes, after some number of counts (the “eventually”
part) and after some coarse-graining of counts (the ∆ part), behave like a Poisson process.

With these definitions in hand, we can proceed to identify the causal architecture of discrete-time
stationary renewal processes.

Theorem 1. (a) The forward-time causal states of a discrete-time stationary renewal process that is
not eventually ∆-Poisson are groupings of pasts with the same count since the last event; (b) the
forward-time causal states of a discrete-time eventually ∆-Poisson stationary renewal process are
groupings of pasts with the same count since the last event up until ñ and pasts whose count n since
the last event are in the same equivalence class as ñ modulo ∆.

The Poisson process, as an eventually ∆-Poisson with ñ = 0 and ∆ = 1, is represented by the
one-state ε-machine despite the unbounded support of its interevent count distribution. Unlike most
processes, the Poisson process’ ε-machine is the same as its generative model shown in Figure 2a.

The SNS, on the other hand, has an interevent count distribution that is not eventually ∆-Poisson.
According to Theorem 1, then, the SNS has a countable infinity of causal states despite its simple
two-state generative model in Figure 2b. Compare Figure 3a. Each causal state corresponds to a different
probability distribution over the internal states A and B. These internal state distributions are the mixed
states of [46]. Observing more 0’s, one becomes increasingly convinced that the internal state is B. For
maximal predictive power, however, we must track the probability that the process is still in state A.
Both Figure 3a and Figure 2b are “minimally complex” models of the same process, but with different
definitions of model complexity. We return to this point in Section 5.

Appendix A makes the statements in Theorem 1 precisely. The main result is that causal states are
sensitive to two features: (i) eventually ∆-Poisson structure in the interevent distribution and (ii) the
boundedness of F (n)’s support. If the support is bounded, then there are a finite number of causal states
rather than a countable infinity of causal states. Similarly, if F (n) has ∆-Poisson tails, then there are a
finite number of causal states despite the support of F (n) having no bound. Nonetheless, one can say
that the generic discrete-time stationary renewal process has a countable infinity of causal states.
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Finding the probability distribution over these causal states is straightforwardly related to the
survival-time distribution w(n) and the mean interevent interval µ, since the probability of observing at
least n counts since the last event is w(n). Hence, the probability of seeing n counts since the last event
is simply the normalized survival function w(n)/(µ + 1). Appendix A derives the statistical complexity
using this and Theorem 1. The resulting formulae are given in Table 1 for the various cases.

As described in Section 2, we can also endow the causal state space with a transition dynamic in
order to construct the renewal process ε-machine: the process’s minimal unifilar hidden Markov model.
The transition dynamic is sensitive to F (n)’s support and not only its boundedness. For instance, the
probability of observing an event given that it has been n counts since the last event is F (n)/w(n). For
the generic discrete-time renewal process, this is exactly the transition probability from causal state n
to causal state 0. If F (n) = 0, then there is no probability of transition from σ = n to σ = 0. See
Appendix A for details.

Table 1. Structural measures and information architecture of a stationary renewal process
with interevent counts drawn from the distribution F (n), n ≥ 0, survival count distribution
w(n) =

∑∞
m=n F (m), and mean interevent count µ =

∑∞
n=0 nF (n) < ∞. The function

g(m,n) is defined by g(m,n) = F (m+ n+ 1) + F (m)F (n). Cases are needed for Cµ, but
not other quantities, such as block entropy and information architecture quantities, since the
latter can be calculated just as well from prescient machines. The quantities χ (crypticity)
and E(M,N) = I[X−M :0;X0:N ] are no less interesting than the others given here, but their
expressions are not compact; see Appendix B.

Quantity Expression

C+
µ = H[S+] −∑∞

n=0
w(n)
µ+1 log2

w(n)
µ+1 Not eventually ∆-Poisson

−
∑ñ−1
n=0

w(n)
µ+1

log2
w(n)
µ+1

−
∑∆−1
m=0

∑∞
k=0 w(ñ+k∆+m)

µ+1
log2

∑∞
k=0 w(ñ+k∆+m)

µ+1
Eventually ∆-Poisson

E = I[X:0;X0:] −2
∑∞
n=0

w(n)
µ+1 log2

w(n)
µ+1 +

∑∞
n=0(n+ 1)F (n)

µ+1 log2
F (n)
µ+1

hµ = H[X0|X:0] − 1
µ+1

∑∞
n=0 F (n) log2 F (n)

bµ = I[X1:;X0|X:0] 1
µ+1

{∑∞
n=0(n+ 1)F (n) log2 F (n)−∑∞

m,n=0 g(m,n) log2 g(m,n)
}

σµ = I[X1:;X:0|X0] 1
µ+1

{
µ log2 µ+

∑∞
n=0 nF (n) log2 F (n)− 2

∑∞
n=0 w(n) log2 w(n)

}
qµ = I[X1:;X0;X:0] 1

µ+1

{∑∞
m,n=0 g(m,n) log2 g(m,n)−∑∞

n=0 w(n) log2 w(n) + (µ+ 1) log2(µ+ 1)− µ log2 µ
}

rµ = H[X0|X1:, X:0] 1
µ+1

{∑∞
m,n=0 g(m,n) log2 g(m,n)−∑∞

n=0(n+ 2)F (n) log2 F (n)
}

H0 = H[X0] − 1
µ+1 log2

1
µ+1 −

(
1− 1

µ+1

)
log2

(
1− 1

µ+1

)

Figure 3a–d displays the causal state architectures, depicted as state-transition diagrams, for the
ε-machines in the various cases delineated. Figure 3a is the ε-machine of a generic renewal process
whose interevent interval can be arbitrarily large and whose interevent distribution never has exponential
tails. Figure 3b is the ε-machine of a renewal process whose interevent distribution never has exponential
tails, but cannot have arbitrarily large interevent counts. The ε-machine in Figure 3c looks quite similar to
the ε-machine in Figure 3b, but it has an additional transition that connects the last state ñ to itself. This
added transition changes our structural interpretation of the process. Interevent counts can be arbitrarily
large for this ε-machine, but past an interevent count of ñ, the interevent distribution is exponential.
Finally, the ε-machine in Figure 3d represents an eventually ∆-Poisson process with ∆ > 1 whose
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structure is conceptually most similar to that of the ε-machine in Figure 3c. (See Definition 2 for
the precise version of that statement.) If our renewal process disallows seeing interevent counts of a
particular length L, then this will be apparent from the ε-machine, since there will be no transition
between the causal state corresponding to an interevent count of L and causal state 0.

As described in Section 2, we can analytically characterize a process’ information architecture far
better once we characterize its statistical structure in reverse time.

Lemma 2. Groupings of futures with the same counts to the next event are reverse-time prescient
statistics for discrete-time stationary renewal processes.

Theorem 2. (a) The reverse-time causal states of a discrete-time stationary renewal process that is not
eventually ∆-Poisson are groupings of futures with the same count to the next event; (b) the reverse-time
causal states of a discrete-time eventually ∆-Poisson stationary renewal process are groupings of futures
with the same count to the next event up until ñ plus groupings of futures whose count since the last event
n are in the same equivalence class as ñ modulo ∆.

As a result, in reverse time, a stationary renewal process is effectively the same stationary renewal
process: counts between events are still independently drawn from F (n). Thus, the causal irreversibility
vanishes: Ξ = 0.

Moreover, these results taken together indicate that we can straightforwardly build a renewal process’s
bidirectional machine from these forward and reverse-time causal states, as described in [37,38,46].
Additional properties can then be deduced from the bidirectional machine, but we leave this for the
future.

In closing, we note a parallel in [47]: their At is the forward-time prescient statistic and Et is the
reverse-time prescient statistic. They call these the backward and forward recurrence times, respectively.
They address continuous-time processes, however, and so, the setting differs somewhat.

4. Information Architecture of Renewal Processes

As Section 2 described, many quantities that capture a process’s predictability and randomness can
be calculated from knowing the block entropy function H(L). Often, the block entropy is estimated
by generating samples of a process and estimating the entropy of a trajectory distribution. This method
has the obvious disadvantage that at large L, there are |A|L possible trajectories and |A|hµL typical
trajectories. Therefore, one easily runs into the problem of severe undersampling, previously referred
to as the curse of dimensionality. This matters most when the underlying process has long-range
temporal correlations.

Nor can one calculate the block entropy and other such information measures exactly from generative
models that are not maximally predictive (prescient). Then, the model states do not shield the past
from the future. For instance, as noted above, one cannot calculate the SNS’s entropy rate from its
simple two-state generative HMM. The entropy of the next symbol given the generative model’s current
state (A or B) actually underestimates the true entropy rate by assuming that we can almost always
precisely determine the underlying model state from the past. For a sense of the fundamental challenge,
see [26,48].

However, we can calculate the block entropy and various other information measures in closed-form
from a maximally-predictive model. In other words, finding an ε-machine allows one to avoid the
curse of dimensionality inherently involved in calculating the entropy rate, excess entropy, or the other
information measures discussed here.
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Figure 1 summarizes the above points. This section makes good on the procedure outlined there by
providing analytic formulae for various information measures of renewal processes. The formulae for
the entropy rate of a renewal process is already well known, but all others are new.

Prescient HMMs built from the prescient statistics of Lemma 1 are maximally predictive models and
correspond to the unifilar hidden Markov model shown in Figure 3a. The prescient machines make no
distinction between eventually ∆-Poisson renewal processes and ones that are not, but they do contain
information about the support of F (n) through their transition dynamics (see Appendix A). Appendix B
describes how a prescient machine can be used to calculate all information architecture quantities: rµ,
bµ, σµ, qµ, and the more familiar Shannon entropy rate hµ and excess entropy E. A general strategy for
calculating these quantities, as described in Section 2 and [19,40], is to calculate bµ, hµ, E and H[X0]

and then to derive the other quantities using the information-theoretic identities given in Section 2.
Table 1 gives the results of these calculations. It helps one’s interpretation to consider two base cases.

For a Poisson process, we gain no predictive power by remembering specific pasts, and we would expect
the statistical complexity, excess entropy, and bound information rate to vanish. The entropy rate and
ephemeral information, though, are nonzero. One can check that this is, indeed, the case. For a periodic
process with period T , in contrast, one can check that µ + 1 = T , since the period is the length of the
string of 0’s (mean interevent interval µ) concatenated with the subsequent event x = 1. The statistical
complexity and excess entropy of this process are log2 T , and the entropy rate is hµ = 0, as expected.

Calculating the predictable information E(M,N) requires identifying finite-time prescient statistics,
since the predictable information is the mutual information between forward-time causal states over pasts
of length M and reverse-time causal states over futures of length N . Such finite-time prescient statistics
are identified in Corollary 1, below, and the predictable information is derived in Appendix B. The final
expression is not included in Table 1 due to its length.

Corollary 1. Forward-time (and reverse-time) finite-timeM prescient states of a discrete-time stationary
renewal process are the counts from (and to) the next event up until and including M .

All of these quantities can be calculated using a mixed-state presentation, as described in [46], though
the formulae developed there are as yet unable to describe processes with a countably infinite set of mixed
states. Calculations of finite-time entropy rate estimates using a mixed-state presentation are consistent
with all other results here, though. Purely for simplicity, we avoid discussing mixed-state presentations,
though interested readers can find relevant definitions in [46].

5. Nonunifilar HMMs and Renewal Processes

The task of inferring an ε-machine for discrete-time, discrete-alphabet processes is essentially that
of inferring minimal unifilar HMMs; what are sometimes also called “probabilistic deterministic” finite
automata. In unifilar HMMs, the transition to the next hidden state given the previous one and next
emitted symbol is determined. Nonunifilar HMMs are a more general class of time series models in
which the transitions between underlying states given the next emitted symbol can be stochastic.

This simple difference in HMM structure has important consequences for calculating the predictable
information, information architecture, and statistical complexity of time series generated by nonunifilar
HMMs. First, note that for processes with a finite number of transient and recurrent causal states,
these quantities can be calculated in closed form [25]. Second, the autocorrelation function and
power spectrum can also be calculated in closed form for nonunifilar presentations [49]. Unlike these
cases, though, most of Table 1’s quantities defy current calculational techniques. As a result, exact
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calculations of these prediction-related information measures for even the simplest nonunifilar HMMs
can be surprisingly difficult.

To illustrate this point, we focus our attention on a parametrized version of the SNS shown in
Figure 4a. As for the original SNS in Figure 2, transitions from state B are unifilar, but transitions from
state A are not. As noted before, the time series generated by the parametrized SNS is a discrete-time
renewal process with interevent count distribution:

F (n) =

(1− p)(1− q)(pn − qn)/(p− q) p 6= q ,

(1− p)2npn−1 p = q .

(15)

Figure 4b also shows F (n) at various parameter choices. The nonunifilar HMM there should be
contrasted with the unifilar HMM presentation of the parametrized SNS, which is the ε-machine in
Figure 3a, with a countable infinity of causal states.

A Bp|0
1− p|0

q|0
1− q|1

0 5 10 15 20
n

0.0

0.1

0.2

0.3

0.4

0.5

F
(n

)

p=.5, q=.1
p=.5, q=.5
p=.5, q=.9

(a) (b)

Figure 4. (a) A (nonunifilar) hidden Markov model for the (p, q) parametrized SNS;
(b) example interevent distributions F (n) from Equation (15) for three parameter settings
of (p, q).

Both parametrized SNS presentations are “minimally complex”, but according to different metrics.
On the one hand, the nonunifilar presentation is a minimal generative model: No one-state HMM (i.e.,
biased coin) can produce a time series with the same statistics. On the other, the unifilar HMM is the
minimal maximally-predictive model: In order to predict the future as well as possible given the entire
past, we must at least remember how many 0’s have been seen since the last 1. That memory requires
a countable infinity of prescient states. The preferred complexity metric is a matter of taste and desired
implementation, modulo important concerns regarding overfitting or ease of inference [24]. However, if
we wish to calculate the information measures in Table 1 as accurately as possible, finding a maximally
predictive model, that is, a unifilar presentation, is necessary.

The SNS is not eventually ∆-Poisson with an unbounded-support interevent distribution. It can only
be approximated by an eventually ∆-Poisson process. Therefore, one estimates its information anatomy
via infinite sums. Using the formulae of Table 1, Figure 5 shows how the statistical complexity Cµ,
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excess entropy E, entropy rate hµ, and bound information bµ vary with the transition probabilities p and
q. Cµ often reveals detailed information about a process’ underlying structure, but for the parametrized
SNS and other renewal processes, the statistical complexity merely reflects the spread of the interevent
distribution. Thus, it increases with increasing p and q. E, a measure of how much can be predicted
rather than historical memory required for prediction, increases as p and q decrease. The intuition for
this is that as p and q vanish, the process arrives at a perfectly predictable period-2 sequence. We see
that the SNS constitutes a simple example of a class of processes over which information transmission
between the past and future (E) and information storage (Cµ) are anticorrelated. The entropy rate hµ
in Figure 5b is maximized when transitions are uniformly stochastic and the bound information bµ in
Figure 5d is maximized somewhere between fully stochastic and fully deterministic regimes.
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Figure 5. Contour plots of various information measures (in bits) as functions of SNS
parameters p and q. (a) Cµ, increasing when F (n) has slower decay; (b) hµ, higher when
transition probabilities are maximally stochastic; (c) E, higher the closer the SNS comes
to Period 2; (d) bµ, highest between the maximally-stochastic transition probabilities that
maximize hµ and maximally-deterministic transition probabilities that maximize E.

Figure 6 presents a more nuanced decomposition of the information measures as p = q vary from
zero to one. Figure 6a breaks down the single-measurement entropy H[X0] into redundant information
ρµ in a single measurement, predictively useless generated information rµ, and predictively useful
generated entropy bµ. As p increases, the SNS moves from mostly predictable (close to Period-2)
to mostly unpredictable, shown by the relative height of the (green) line denoting hµ to the (red)
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line denoting H[X0]. The portion bµ of hµ predictive of the future is maximized at lower p when
the single-measurement entropy is close to a less noisy Period-2 process. Figure 6b decomposes the
predictable information E into the predictable information hidden from the present σµ, the predictable
generated entropy in the present bµ, and the co-information qµ shared between past, present, and future.
Recall that the co-information qµ = E − σµ − bµ can be negative, and for a large range of values, it is.
Most of the predictable information passes through the present as indicated by σµ being small for most
parameters p. Hence, even though the parametrized SNS is technically an infinite-order Markov process,
it can be well approximated by a finite-order Markov process without much predictable information loss,
as noted previously with rate distortion theory [50].
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Figure 6. (a) Simple nonunifilar source information anatomy as a function of p with
parameters q = p. The single-measurement entropy H[X0] is the upper solid (red) line,
entropy rate hµ the middle solid (green) line and the bound information bµ the lower solid
(blue) line. Thus, the blue area corresponds to bµ, the green area to the ephemeral information
rµ = hµ − bµ, and the red area to the single-symbol redundancy ρµ = H[X0]− hµ. (b) The
components of the predictable information (the excess entropy E = σµ + bµ + qµ in bits)
also as a function of p with q = p. The lowest (blue) line is qµ; the middle (green) line is
qµ + bµ, so that the green area denotes bµ’s contribution to E. The upper (red) line is E, so
that the red area denotes elusive information σµ in E. Note that for a large range of p, the
co-information qµ is (slightly) negative.

6. Conclusions

Stationary renewal processes are well studied, easy to define, and, in many ways, temporally
simple. Given this simplicity and their long history, it is somewhat surprising that one is still able
to discover new properties; in our case, by viewing them through an information-theoretic lens.
Indeed, their simplicity becomes apparent in the informational and structural analyses. For instance,
renewal processes are causally reversible with isomorphic ε-machines in forward and reverse-time, i.e.,
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temporally reversible. Applying the causal-state equivalence relation to renewal processes, however, also
revealed several unanticipated subtleties. For instance, we had to delineate new subclasses of renewal
process (“eventually ∆-Poisson”) in order to completely classify ε-machines of renewal processes.
Additionally, the informational architecture formulae in Table 1 are surprisingly complicated, since
exactly calculating these informational measures requires a unifilar presentation. In Section 5, we
needed an infinite-state machine to study the informational architecture of a process generated by simple
two-state HMM.

Looking to the future, the new structural view of renewal processes will help improve inference
methods for infinite-state processes, as it tells us what to expect in the ideal setting: what are the
effective states, what are appropriate null models, how informational quantities scale, and the like.
For example, Figure 3a–e gave all possible causal architectures for discrete-time stationary renewal
processes. Such a classification will allow for more efficient Bayesian inference of ε-machines of point
processes, as developed in [24]. That is, we can leverage “expert” knowledge that one is seeing a renewal
process to delineate the appropriate subset of model architectures and thereby avoid searching over the
superexponentially large set of all HMM topologies.

The range of the results’ application is much larger than that explicitly considered here. The
formulae in Table 1 will be most useful for understanding renewal processes with infinite statistical
complexity. For instance, [28] applies the formulae to study the divergence of the statistical complexity
of continuous-time processes as the observation time scale decreases. Additionally, [29] applies these
formulae to renewal processes with infinite excess entropy. In particular, there, we investigate the
causal architectures of infinite-state processes that generate so-called critical phenomena: behavior
with power-law temporal or spatial correlations [51]. The analysis of such critical systems often
turns on having an appropriate order parameter. The statistical complexity and excess entropy are
application-agnostic order parameters [52–54] that allow one to better quantify when a phase transition
in stochastic processes has or has not occurred, as seen in [29]. Such critical behavior has even been
implicated in early studies of human communication [55] (though, see [56,57]) and recently in neural
dynamics [58] and in socially-constructed, communal knowledge systems [59].
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A. Causal Architecture

Notation. Rather than write pasts and futures as semi-infinite sequences, we notate a past as a list of
nonnegative integers [60]. The semi-infinite past X:0 is equivalent to a list of interevent counts N:0 and
the count N ′0 since the last event. Similarly, the semi-infinite future X0: is equivalent to the count to next
event N0 −N ′0 and future interevent counts N1:.

Now, recall Lemma 1.

Lemma 1. The counts since the last event are prescient statistics of a discrete-time stationary
renewal process.

Proof. This follows almost immediately from the definition of stationary renewal processes and the
definition of causal states, since the random variables Ni are all i.i.d.. Then:

Pr(X0:|X:0) = Pr(N0 −N ′0|N ′0)
∞∏
i=1

Pr(Ni) .

Therefore, Pr(X0:|X:0 = x:0) = Pr(X0:|X:0 = x′:0) is equivalent to Pr(N0 − N ′0|N ′0 = n0) =

Pr(N0 −N ′0|N ′0 = n′0). Hence, the counts since the last event are prescient.

In light of Lemma 1, we introduce new notation to efficiently refer to groups of pasts with the same
count since the last event.

Notation. Let r+
n := {←−x : x−n−1:0 = 10n} for n ∈ Z≥0. Recall that 10n = 100 · · · 00, the sequence

with n 0’s following a 1.

Remark. Note that R+ = {r+
n }∞n=0 is always at least a forward-time prescient rival, if not the

forward-time causal states S+. The probability distribution over r+
n is straightforward to derive. Saying

that N ′0 = n means that there were n 0s since the last event, so that the symbol at X−n−1 must have been
a 1. That is:

π(r+
n ) = Pr(N ′0 = n)

=
∑
x∈A

Pr(N ′0 = n,X−n−1 = x)

= Pr(N ′0 = n,X−n−1 = 1)

= Pr(X−n−1 = 1) Pr(X−n:0 = 0n|X−n−1 = 1) .

Since this is a stationary process, Pr(X−n−1 = 1) is independent of n, implying:

π(r+
n ) ∝ Pr(X−n:0 = 0n|X−n−1 = 1)

=
∞∑
m=0

Pr(X−n:m+1 = 0n+m1|X−n−1 = 1)

=
∞∑
m=n

F (m)

= w(n) .
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We see that π(r+
n ) = w(n)/Z, with Z a normalization constant that makes

∑∞
n=0w(n) = µ + 1.

Therefore:

π(r+
n ) =

w(n)

µ+ 1
.

In the main text, Theorem 1 was stated with less precision so as to be comprehensible. Here, we
state it with more precision, even though the meaning is obfuscated somewhat by doing so. In the proof,
we still err somewhat on the side of comprehensibility, and so, one might view this proof as more of a
proof sketch.

Theorem 1 The forward-time causal states of a discrete-time stationary renewal process that is not
eventually ∆-Poisson are exactly S+ = R+, if F has unbounded support. When the support is bounded,
such that F (n) = 0 for all n ≥ N , S+ = {r+

n }Nn=0. Finally, a discrete-time eventually ∆-Poisson renewal
process with characteristic (ñ,∆) has forward-time causal states:

S+ = {r+
n }ñ−1

n=0 ∪ {∪∞k=0r
+
ñ+k∆+m}∆−1

m=0 .

This is a complete classification of the causal states of any persistent renewal process.

Proof. From the proof of Lemma 1 in this Appendix, we know that two prescient states r+
n and r+

n′ are
minimal only when:

Pr(N0 −N ′0|N ′0 = n) = Pr(N0 −N ′0|N ′0 = n′) . (16)

Since Pr(N0 −N ′0 = m|N ′0 = n) = Pr(N0 = m+ n)/Pr(N ′0 = n), Pr(N0 = m+ n) = F (m+ n)

and Pr(N ′0 = n) = w(n)/(µ+ 1) from earlier, we find that the equivalence class condition becomes:

F (m+ n)

w(n)
=
F (m+ n′)

w(n′)
, (17)

for all m ≥ 0.
First, note that for these conditional probabilities even to be well defined, w(n) > 0 and w(n′) > 0.

Hence, if F has bounded support (max suppF (n) = N ) then the causal states do not include any r+
n for

n > N . Furthermore, Equation (17) cannot be true for all m ≥ 0, unless n = n′ for n and n′ ≤ N . To
see this, suppose that n 6= n′, but that Equation (17) holds. Then, choose m = N + 1 − max(n, n′) to
give 0 = F (N + 1− |n− n′|)/w(n′), a contradiction, unless n = n′.

Therefore, for all remaining cases, we can assume that F in Equation (17) has unbounded support.
A little rewriting makes the connection between Equation (17) and an eventually ∆-Poisson process

clearer. First, we choose m = 0 to find:

F (n)

w(n)
=
F (n′)

w(n′)
,

which we can use to rewrite Equation (17) as:

F (m+ n)

F (n)
=
F (m+ n′)

F (n′)
,
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or more usefully:

F (n′ +m) =
F (n′)

F (n)
F (n+m).

A particularly compact way of rewriting this is to define ∆′ := n′ − n, which gives F (n′ + m) =

F ((n + m) + ∆′). In this form, it is clear that the above equation is a recurrence relation on F in steps
of ∆′, so that we can write:

F ((n+m) + k∆′) =

(
F (n′)

F (n)

)k
F (n+m) . (18)

This must be true for every m ≥ 0. Importantly, since w(n) =
∑∞

m=n F (m), satisfying this
recurrence relation is equivalent to satisfying Equation (17). However, Equation (18) is just the definition
of an eventually ∆-Poisson process in disguise; relabel with λ := F (n′)/F (n), ñ := n and ∆ = ∆′.

Therefore, if Equation (17) does not hold for any pair n 6= n′, the process is not eventually ∆-Poisson,
and the prescient states identified in Lemma 1 are minimal; i.e., they are the causal states.

If Equation (17) does hold for some n 6= n′, choose the minimal such n and n′. The renewal process
is eventually ∆-Poisson with characterization ∆ = n′ − n and ñ. Additionally, F (ñ+m)/w(ñ+m) =

F (ñ+m′)/w(ñ+m′) implies that m ≡ m′ mod ∆, since otherwise, the n and n′ chosen would not be
minimal. Hence, the causal states are exactly those given in the theorem’s statement.

Remark. For the resulting F (n) to be a valid interevent distribution, λ = F (ñ + ∆)/F (ñ) < 1, as
normalization implies:

ñ−1∑
n=0

F (n) +
ñ+∆−1∑
n=ñ

F (n)

1− λ = 1 .

Notation. Let us denote S+ = {σ+
n := r+

n }∞n=0 for a renewal process that is not eventually ∆-Poisson,
S+ = {σ+

n := r+
n }ñn=0 for an eventually ∆-Poisson renewal process with bounded support, and

S+ = {σ+
n := r+

n }ñ−1
n=0 ∪ {σ+

ñ+m := ∪∞k=0r
+
ñ+k∆+m}∆−1

m=0 for an eventually ∆-Poisson process.
The probability distribution over these forward-time causal states is straightforward to derive from

π(r+
n ) = w(n)/(µ + 1). Therefore, for a renewal process that is not eventually ∆-Poisson or one that

is with bounded support, π(σ+
n ) = w(n)/(µ + 1). (For the latter, n only runs from zero to ñ.) For an

eventually ∆-Poisson renewal process π(σ+
n ) = w(n)/(µ+ 1) when n < ñ and:

π(σ+
n ) =

∞∑
k=0

π(r+
n+k∆)

=

∑∞
k=0w(n+ k∆)

µ+ 1
,

when ñ ≤ n < ñ+ ∆. Therefore, the statistical complexity given in Table 1 follows from C+
µ = H[S+].

Recall Lemma 2 and Theorem 2.

Lemma 2. Groupings of futures with the same counts to next event are reverse-time prescient statistics
for discrete-time stationary renewal processes.

Theorem 2. (a) The reverse-time causal states of a discrete-time stationary renewal process that is
not eventually ∆-Poisson are groupings of futures with the same count to the next event up until and
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including N , if N is finite. (b) The reverse-time causal states of a discrete-time eventually ∆-Poisson
stationary renewal process are groupings of futures with the same count to next event up until ñ,
plus groupings of futures whose counts since the last event n are in the same equivalence class as ñ
modulo ∆.

Proof. The proof for both claims relies on a single fact: in reverse-time, a stationary renewal process is
still a stationary renewal process with the same interevent count distribution. The lemma and theorem
therefore follow from Lemma 1 and Theorem 1.

Since the forward and reverse-time causal states are the same with the same future conditional
probability distribution, we have C+

µ = C−µ , and the causal irreversibility vanishes: Ξ = 0.
Transition probabilities can be derived for both the renewal process’s prescient states and its

ε-machine as follows. For the prescient machine, if a 0 is observed when in r+
n , we transition to r+

n+1;
else, we transition to r+

0 , since we just saw an event. Basic calculations show that these transition
probabilities are:

T
(x)

r+
n r

+
m

= Pr(R+
t+1 = r+

m, Xt+1 = x|R+
t = r+

n )

=
F (n)

w(n)
δm,0δx,1 +

w(n+ 1)

w(n)
δm,n+1δx,0 .

Not only do these specify the prescient machine transition dynamic, but due to the close
correspondence between prescient and causal states, they also automatically give the ε-machine
transition dynamic:

T
(x)
σσ′ = Pr(S+

t+1 = σ′, Xt+1 = x|S+
t = σ)

=
∑

r,r′∈R+

T
(x)
r′→r Pr(S+

t+1 = σ′|R+
t+1 = r)× Pr(R+

t = r′|S+
t = σ) .

B. Information Architecture

It is straightforward to show that Pr(X0 = 0) = 1
µ+1

, and thus:

H[X0] = − 1

µ+ 1
log2

1

µ+ 1
−
(

1− 1

µ+ 1

)
log2

(
1− 1

µ+ 1

)
.

The entropy rate is readily calculated from the prescient machine:

hµ =
∞∑
n=0

H[Xt+1|R+
t = r+

n ]π(r+
n )

= −
∞∑
n=0

w(n)

µ+ 1

(F (n)

w(n)
log2

F (n)

w(n)
+
w(n+ 1)

w(n)
log2

w(n+ 1)

w(n)

)
.

Additionally, after some algebra, this simplifies to:

hµ = − 1

µ+ 1

∞∑
n=0

F (n) log2 F (n) ,
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once we recognize thatw(0) = 1, and sow(0) log2w(0) = 0, and we recall thatw(n+1)+F (n) = w(n).
The excess entropy, being the mutual information between forward and reverse-time prescient states,
is [37,46]:

E = I[R+;R−]

= H[R+]−H[R+|R−] .

Therefore, to calculate, we note that:

Pr(r+
n , r

−
m) =

F (m+ n)

µ+ 1

Pr(r+
n |r−m) =

F (n+m)

w(m)
.

After some algebra, we find that:

H[R+] = −
∞∑
n=0

w(n)

µ+ 1
log2

w(n)

µ+ 1

and that:

H[R+|R−] = −
∞∑

m,n=0

F (n+m)

µ+ 1
log2

F (n+m)

w(m)

= −
∞∑
m=0

m+ 1

µ+ 1
F (m) log2

F (m)

µ+ 1
+
∞∑
m=0

w(m)

µ+ 1
log2

w(m)

µ+ 1
.

The above quantity is the forward crypticity χ+ [37] when the renewal process is not eventually
∆-Poisson. These together imply:

E = −2
∞∑
n=0

w(n)

µ+ 1
log2

w(n)

µ+ 1
+
∞∑
m=0

(m+ 1)
F (m)

µ+ 1
log2

F (m)

µ+ 1
.

Finally, the bound information bµ is:

bµ = I[X1:;X0|X:0]

= I[R−1 ;X0|R+
0 ]

= H[R−1 |R+
0 ]−H[R−1 |R+

1 ] ,

where we used the causal shielding properties of prescient states, X:0 → R+
0 → R−1 → X1:, and the

unifilarity of the prescient machines, as shown in Figure 3a–d. While we already calculated H[R−1 |R+
1 ],
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we still need to calculate H[R−1 |R+
0 ]. We do so using the prescient machine’s transition dynamic.

In particular:

Pr(R−1 = n|R+
0 = m) =

∑
r∈R+

Pr(R−1 = n|R+
1 = r) Pr(R+

1 = r|R+
0 = m)

=
F (m+ n+ 1) + F (n)F (m)

w(m)
.

Where we omit details getting to the last line. Eventually, the calculation yields:

bµ =

∑∞
n=0(n+ 1)F (n) log2 F (n)

µ+ 1
−
∑∞

m,n=0 g(m,n) log2 g(m,n)

µ+ 1
,

where:

g(m,n) = F (m+ n+ 1) + F (n)F (m) .

From the expressions above, we immediately solve for rµ = hµ − bµ, qµ = H[X0] − hµ − bµ, and
σµ = E− qµ; thereby laying out the information architecture of stationary renewal processes.

Finally, we calculate the finite-time predictable information E(M,N) as the mutual information
between finite-time forward and reverse-time prescient states:

E(M,N) = H[R−N ]−H[R−N |R+M ] . (19)

Recall Corollary 1.

Corollary 1. Forward-time (and reverse-time) finite-timeM prescient states of a discrete-time stationary
renewal process are the counts from (and to) the next event up until and including M .

Proof. From Lemmas 1 and 2, we know that counts from (to) the last (next) event are prescient
forward-time (reverse-time) statistics. If our window on pasts (futures) is M , then we cannot distinguish
between counts since (to) the last (next) event that are M and larger. Hence, the finite-time M prescient
statistics are the counts from (and to) the next event up until and including M , where a finite-time M
prescient state includes all pasts with M or more counts from (to) the last (next) event.

To calculate E(M,N), we find Pr(R+M ,R−N ) by marginalizing Pr(R+,R−). For ease of notation,
we first define a function:

u(m) =
∞∑
n=m

w(n) .
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Algebra not shown here yields:

E(M,N) = H[S−N ]−H[S−N |S+M ]

= log2(µ+ 1)−
∑N−1

n=0 w(n) log2w(n)

µ+ 1

−
∑M−1

m=0 w(m) log2w(m)

µ+ 1

+

∑N+M−1
n=M w(n) log2w(n)

µ+ 1

+

∑N+M−1
n=N w(n) log2w(n)

µ+ 1

− u(N) log2 u(N) + u(M) log2 u(M)

µ+ 1

+
u(N +M) log2 u(N +M)

µ+ 1

+

∑M−1
m=0

∑N+m−1
n=m F (n) log2 F (n)

µ+ 1
.

Two cases of interest are equal windows (N = M ) and semi-infinite pasts (M →∞). In the former,
we find:

E(M,M) = log2(µ+ 1)− 2
∑M−1

m=0 w(m) log2w(m)

µ+ 1

+
2
∑2M−1

m=M w(m) log2w(m)

µ+ 1

− 2u(M) log2 u(M)

µ+ 1
+
u(2M) log2 u(2M)

µ+ 1

+

∑M−1
m=0

∑M+m−1
n=m F (n) log2 F (n)

µ+ 1
.

In the latter case of semi-infinite pasts, several terms vanish, and we have:

E(N) = log2(µ+ 1)− 2
∑N−1

n=0 w(n) log2w(n)

µ+ 1

− u(N) log2 u(N)

µ+ 1

+
N
∑∞

n=N F (n) log2 F (n)

µ+ 1

+

∑N−1
n=0 (n+ 1)F (n) log2 F (n)

µ+ 1
.
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