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Abstract: In this paper, we propose a new entropy-optimized bivariate empirical mode
decomposition (BEMD)-based model for estimating portfolio value at risk (PVaR). It
reveals and analyzes different components of the price fluctuation. These components
are decomposed and distinguished by their different behavioral patterns and fluctuation
range, by the BEMD model. The entropy theory has been introduced for the identification
of the model parameters during the modeling process. The decomposed bivariate data
components are calculated with the DCC-GARCH models. Empirical studies suggest that
the proposed model outperforms the benchmark multivariate exponential weighted moving
average (MEWMA) and DCC-GARCH model, in terms of conventional out-of-sample
performance evaluation criteria for the model accuracy.
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1. Introduction

As an indispensable industry input nowadays, electricity is an integral part of the modern economy.
With the deregulation movement reforming the electricity industry since the 1970s, worldwide electricity
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markets have become more competitive and integrated. There are higher levels of interactions and
price fluctuations observed in the market place [1]. The designs of more accurate risk measurement
models have become the central issue for more effective risk management in the electricity market [2].
Among different risk measures developed over the years, portfolio value at risk (PVaR) is one of the
widely-accepted downside risk measures. Given the confidence level and holding horizon for a portfolio,
it is the single statistic summarizing the maximal downside risk [3]. Its estimation usually relies on the
analysis of data movement and fluctuation characteristics.

Recently, numerous empirical studies have provided evidence of the co-existence of extremal
events and normal events underlying the risk movement, potentially driven by investors with different
investment preferences [4–6]. One of the popular attempts to address this issue is the regime
switching-based models [7]. For example, Huisman and Mahieu [7] and Zhang and Zhang [8] used
the Markov regime switching model to identify three regimes for the crude oil market [8]. Shen and
Holmes [9] identified two stationary regimes for 12 Asia pacific country stock market and showed the
different rate of price mean reversion for two regimes [9]. Explicit breaks in risk behavior are usually
assumed in the regime switching-based approach. However, these models do not take joint influences
of different underlying components into consideration and cannot achieve robust superior out-of-sample
forecasting performance. For example, Samitas and Armenatzoglou [10] found that the Markov regime
switching model provides inferior performance to the regression tree model in the electricity market [10].
Chen and Bunn [11] found that Markov Regime Switching (MRS) may overfit the data and provides
insufficient level of explanatory and forecasting power [11]. Recently, the emergence of multiscale
analysis (MA) theory provides an important alternative and more flexible modeling framework, with
different assumptions from the MRS model. It is assumed that the underlying data generating processes
(DGPs) of different characteristics coexist across different scales. It further proposes methodologically
that different models can be used to characterize data governed by different laws across different scales
[12]. It recognizes the multiple spatial-temporal scale organization and non-equilibrium dynamics in the
data, often mixed together and distinguishable by their different scales and other characteristics [12].
MA theory aims for efficient representation of multiscale problem with a diverse range of data features
characterized by their scales, following the microscopic approach [13]. However, to adopt the MA theory
during the risk measurement modeling in the electricity market, there are two open problems, i.e., the
selection of an appropriate technique to conduct the multiscale analysis and the identification of the
appropriate model specifications.

As for the development of the appropriate techniques for multiscale analysis, some frequency
and time scale models have been utilized to investigate the multiscale risk structure using traditional
Fourier transform and wavelet transform. Empirical studies using these methods have reported positive
performance [14]. Meanwhile, the recently emerging empirical mode decomposition (EMD) takes an
empirical, intuitive, direct and self-adaptive data approach as the alternative [15,16]. It is mainly used
in the forecasting field and has shown positive performance. For example, An et al. [17] combined
a multi-output FFNN (feed-forward neural network) with EMD-based signal filtering and seasonal
adjustment. Results demonstrated that the proposed model improves the forecasting accuracy noticeably
compared with the existing models [17]. Dong et al. [18] proposed a forecasting model that detached
high volatility and daily seasonality for electricity price based on EMD. The comparisons demonstrate
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that the proposed model can improve the prediction accuracy noticeably [18]. However, we have not
identified the researches exploiting the multiscale analysis capability of the EMD algorithm in the
multivariate portfolio risk measurement.

As for the identification of appropriate multiscale model specifications, the determination of model
specifications, such as the decomposition scales in the EMD model, remains another theoretical
challenge in the literature. Information criteria (IC), such as AIC and BIC, are widely used in the
literature for model specification identification. IC is defined by goodness of fit of the model with
the log likelihood function penalized by the number of parameters representing the model complexity.
However the log likelihood function is not well defined for the multiscale analysis, especially for the
recently-emerging BEMD model. The entropy measure serves as a potential alternative approach. It
is shown in the literature that both the entropy and likelihood approaches reach the same optimization
results with different model assumptions. The entropy measure can be used directly to quantify and
measure the historical data patterns, often referred to as the information content of the predictor. In the
literature, the entropy measure is usually used to measure the information distribution in the wavelet
domain, For example wavelet entropy, relative wavelet entropy and many other variants have been
proposed in the literature to calculate the entropy of the energy distribution in the typical wavelet
decomposition, as well as the cost function for the best basis algorithm to choose the optimal basis
for wavelet packet transform [19,20]. A lower wavelet entropy value implies more orderly data.
Xu et al. [21] used the modified wavelet entropy measure to differentiate between the normal and
hypertension states [21]. Samui and Samantaray [22] incorporated the wavelet entropy measure in
constructing the measuring index for islanding detection in distributed generation [22].

To tackle these theoretical and methodological challenges, in this paper, we propose an entropy
measure to quantify the forecasting accuracy using the in-sample data and identify the appropriate model
specifications in the multiscale analysis. We also propose an entropy-optimized bivariate empirical
mode decomposition (BEMD)-based methodology to study risk evolutions and estimate PVaR in the
electricity markets. We assumed that the market price is influenced by a number of underlying data
components. We used the EMD methods to decompose the original price series into the chosen number
of data components and separate them into both normal and transient components. The noise part is
assumed to be caused by transient and extreme events, while the normal part is assumed to reflect the
normal market environment. PVaR for both parts is estimated. We use the in-sample performance
measure, such as entropy, to evaluate the performance of normal components under different separation
scenario and choose the one with the maximum entropy value. Empirical studies in the benchmark
electricity markets confirm the statistically-significant out-of-sample performance improvement using
the more appropriate multiscale model specification with the proposed EMD entropy method, in terms
of reliability and accuracy. The reliability is defined by equality of the probability of violations during the
chosen time period with the expected level of violations for VaR models, while the accuracy is defined
by how closely the VaR estimated tracks the realized losses [23].

The main contribution of this paper is the proposition of an entropy-based methodology for the
identification and determination of data components using BEMD methods, if the price fluctuations are
assumed to be the result of different influencing factors. This approach is unique in two aspects. Firstly,
the BEMD algorithm is introduced to decompose the bivariate portfolio data into its two constituent
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bivariate components, which are assumed to represent normal and transient market risks. Secondly,
different from the previous approaches to using entropy theory to measure the information distribution
in the wavelet domain, the proposed model uses the entropy to measure the information content of
the predictors in the EMD decomposed domain and to determine the appropriate levels for both data
and extreme event components in the BEMD algorithm during the in-sample model tuning process.
This approach measures the information extracted with the proposed model, instead of the historical
information in the original data, and, thus, can be used to determine the appropriate model specifications.
The work in this paper provides further empirical evidence of multiscale data characteristics, which
are distinguishable by distinct investment patterns characterized by scales in the BEMD algorithm. To
the best of our knowledge, the work in this paper represents an exploratory attempt to determine the
appropriate EMD model parameters using the quantified information in the prediction data.

The rest of the paper proceeds as follows: Section 2 provides a brief account of BEMD theories and
proposes the entropy-optimized BEMD-based methodology for estimating PVaR. In Section 3, empirical
studies are conducted in the Australia electricity markets, and experimental results are reported to justify
the superiority of the proposed algorithm. Section 4 provides some concluding remarks.

2. Entropy-Optimized BEMD-Based PVaR Methodology

2.1. Bivariate Empirical Mode Decomposition

Empirical mode decomposition (EMD) was initially proposed for the study of ocean waves and
then was successfully applied in biomedical engineering, structured health monitoring and other natural
science and engineering areas [24,25]. Compared with Fourier and wavelet analysis, EMD offers much
better temporal and frequency resolutions [15]. EMD can adaptively decompose a time series into several
independent intrinsic mode function (IMF) components at different scales (levels) and one residual
component. The fluctuations within a time series are automatically and adaptively selected from the
time series. EMD is a data-driven method with very few assumptions; thus, it can be used for data series
of a nonlinear and non-stationary nature [16].

The idea of EMD is to separate the data based on their different scale characteristics defined as
the fluctuation band. In the univariate case, this is achieved by defining the fluctuation band as the
distance between local extrema at each level. The EMD is viewed as identifying high frequency with
fast oscillation from lower frequency with slow oscillation. In the bivariate case, the fluctuation band
is defined as the edge of a tightly-enclosed tube. the notion of oscillation is extended to the notion of
rotation. The BEMD is viewed as identifying fast rotation from slow rotation [26].

The bivariate time series are expressed as the complex-valued signal z(t) = xi + y. For any
complex-valued signal z(t), BEMD involves the following steps:

(1) Choose the number of directions k to calculate the envelope curve.

(2) Project the complex-valued signal z(t) on the direction φi, i ∈ 1...j : pφj(t) = Re(e−iφjz(t)).

(3) Calculate the maxima of pφj(t). Extract the locations tji .
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(4) Interpolate the set (tji , z(t
j
i )) using the chosen curve fitting algorithm, such as the cubic spline

algorithm, to generate the envelop curve on the direction φj : eφj(t).

(5) Repeat Steps (2) to (4) to obtain the envelop curve eφj(t) for all directions φj, j = 1...k

(6) Calculate the mean curves m(t) from all envelope curves in different directions: m(t) =
1
k

∑
j eφj(t).

(7) Subtract the mean from the original signal z(t). The sifting elementary operators are defined as
SB[z](t) = z(t)−m(t).

(8) Test SB[z](t) for the conditions of bivariate IMF. If it qualifies, repeat the above steps on z(t) −
SB[z](t). Otherwise, repeat the above steps on SB[z](t).

The original bivariate time series can be expressed as the sum of some IMFs at different scales and
a residue.

2.2. Entropy Optimized BEMD Algorithm for PVaR Estimation

To implement the BEMD-based multiscale methodology, we make some further simplifying
assumptions as follows:

1. We assume that the electricity market is influenced by market agents with different defining
characteristics, such as normal and transient data characteristics. These market agents contribute
equally to the market price movement and risk (fluctuation) level during the market price formation
process. They are mutually independent, as their correlations and covariance are much smaller in
scale and ignorable.

2. We classify these characteristics into main groups, including investment strategies, time horizons
and investment scales. The market is assumed to be dominated with some main investment
strategies, stable at a particular scale over the period of analysis, with finite fluctuation bands
at certain boundary values at each scale.

With these assumptions, the market structure can be approximated with the combination and mixture
of DGPs at different scales. Since different models of the underlying DGPs exist for the observed market
price movement, it represents an identification problem of the redundant representation of the original
data during the modeling process. Empirical research in the current literature usually uses the in-sample
fitting accuracy to measure the generalizability of the model. However, the well-known overfitting issue
with this approach indicates that the accuracy of this approach is prone to the data time window and
the uncertainty in the representation, i.e., models other than the correct one could also lead to the same
in-sample error.

In this paper, we argue that the level of information content of the potential candidate models for
the observed model performance could serve as the alternative measure for the model’s generalizability.
We propose the entropy theory to quantify and measure the level of information content of the observed
model performance for the potential model candidates. The chosen model is supposed to describe the
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underlying DGPs associated with the level of information content that corresponds to the expected level
for the defined problem domain. For example, for the identification of transient and extreme events,
we would expect a higher level of information content than that in the normal situation. As the aim of
this paper is to identify the BEMD model separating the transient and extreme events appropriately,
we propose the maximum entropy criteria to select the appropriate model specifications among the
potential models.

Based on the aforementioned theory for the electricity market, we propose the entropy-optimized
BEMD-based algorithm to model multiscale market structure and estimate PVaR.

Firstly, the BEMD algorithm is used to decompose the training data into different scales or levels.
We observe that an extreme event has the following characteristics, i.e., low probability of occurrence,
significantly less in number and significant impact on the risk level. Thus, we assume that only one level
or scale corresponds to the extreme event. The total market risk level is influenced by normal market risk
and extreme event risk, assumed to be equal. Since the extreme event risk level is time-varying in nature
and sensitive to the market data characteristics, it needs to be determined during the training process.

Secondly, the time varying variance and covariance for the normal market level and the
extreme behavior level are modeled with the multivariate GARCH approach. During the modeling
process, we assume that the decomposed components are stationary. Stationarity tests, including
Kwiatkowski-Phillips-Schmidt-Shin (KPSS) , the augmented Dicky–Fuller test, etc., can be employed
to test their stationarity [27]. This assumption is also realistic, as the EMD decomposed components are
confined in the fluctuation boundary, which implies that the variance is finite and the mean is constant.
Typical models include Baba-Engle-Kraft-Kroner (BEKK) , dynamic conditional correlation (DCC) and
constant conditional correlation (CCC) GARCH models [28]. Among them, the DCC-GARCH model is
the most popular one, because it relaxes the fixed correlation assumptions in the other two approaches.
Therefore, in this paper, we use the DCC-GARCH model [29,30].

The conditional mean matrix is defined as in rt|Ft−1 ∼ N(0, Ht), where rt is returns from k assets and
can be assumed to follow some time series models, such as the vector autoregressive moving average
(VARMA) model or the vector autoregressive (VAR) model [31]. Ht is the covariance matrix and is
defined asHt ≡ DtRtDt. Rt is the correlation matrix at time t. Dt is the standard deviations matrix with
elements

√
hit at the i-th diagonal. The element hit, i = 1, . . . , k can be assumed to follow the univariate

GARCH model as (1).

hi,t = wi +

Pi∑
p=1

αi,pr
2
i,t−p +

Si∑
s=1

βi,shi,t−s (1)

where Pi and Si are the lags of the GARCH model for each individual asset i. Parameters α and β need
to satisfy the stationary condition

∑Pi

p=1 αi,p +
∑Si

s=1 βi,s < 1.
The dynamic conditional correlation matrix Rt of εt at time t is defined as in (2).

Rt = Q∗
t
−1QtQ

∗
t
−1 (2)

where Q∗
t is a diagonal matrix whose elements are the square root of diagonal elements in Qt. Qt is

N ×N the symmetric positive definite unconditional correlation matrix of εt as in (3).

Qt = (1−
M∑
m=1

αm −
N∑
n=1

βm) +
M∑
m=1

αm(εt−mε
′

t−m) +
N∑
n=1

βnQt−n (3)
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where εt ∼ N(0, Rt) are the standardized residuals. M and N are lags for the correlation specification.
Both parameters α and β need to be positive and need to satisfy the stationary condition

∑M
m=1 αm +∑N

n=1 β < 1.
Although the stationary condition is defined in both the univariate GARCH model and DCC

model in the DCC GARCH model, the sufficient and necessary conditions for covariance stationarity
in the DCC GARCH model have not been well defined and have remained a particularly
challenging research problem in the literature, with very little progress achieved so far [32].
Recently, Fermanian and Malongo [33] proposed the some formulation for the necessary and sufficient
conditions [33]. However, Engle [29] showed that a consistent parameter estimate can be achieved for
the current formulation of the DCC GARCH model under standard regularity conditions and should
suffice in a wide range of circumstances [29].

Thirdly, since we further assume that the normal market behavior and transient market behaviors
are not correlated, the aggregated risk can be reconstructed from the individual risk estimates at each
state. We further assume that risk at each state contributes equally to the aggregated risk level; the
variance-covariance matrix is simply the equal average of the individual variance-covariance matrix
forecast at each state as in (4). ∑

t
= 0.5×

∑
NB,t

+ 0.5×
∑

TB,t
(4)

where
∑

t is the aggregated conditional variance-covariance forecast matrix at time t .
∑

NB,t and∑
TB,t are conditional variance-covariance forecast matrices for both returns at both normal and

extreme phenomenon, respectively, at time t.
∑

t = Cov(Xt, Yt) is the covariance matrix at time t,
Cov(XNB,t, YTB,t) = 0 and Cov(XTB,t, YNB,t) = 0.

Fourthly, suppose a unit worth portfolio investment with ω weights and one day holding period with
the forecasted conditional mean and covariance matrices; we follow the traditional variance-covariance
approach for estimating PV aR as in (5) [3].

V aR(a, t) = [−hωtRt +
√
h

√
ωt
∑

t
ωTt zα]P (5)

where α = 1 − cl.
∑

t refers to the variance-covariance matrix. ωt refers to the weight matrix for the
portfolio. Zα refers to the relevant quantile from the standard normal distribution. P is the invested
portfolio value. h is the holding period.

Fifthly, we calculate different measures for the predictors to determine the model specifications.
We assume that the correctly-specified models can extract the maximal amount of information from
the original data. These measures include the number of the exceedances, the p-value for the Kupiec
backtesting procedure and MSE, as well as the entropy measure, to determine the optimal parameter for
the BEMD used. The number of exceedances refers to the number of times the realized loss exceeds the
PVaR threshold. Minimization of the number of exceedances implies that the PVaR estimated provide
a maximum level of coverage for the market risk. The maximization of the p-value implies that the
number of exceedances corresponds to the theoretical value at the given confidence level. We propose
the maximum entropy criteria to choose the scales to be retained. The entropy maximization corresponds
to the maximization of information content in the predictors. Given the predicted random variable
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Ŷ ∈ Rn, generated with the unknown data generating process (DGP) with unknown parameters, and
the observation Y ∈ Rn, the Shannon entropy of predictor is defined as (6).

H(Ŷ ) = E[−logp(Ŷ ))] = −
∫
Rn

p(Ŷ )logp(Ŷ )dx (6)

where H(Ŷ ) refers to the Shannon entropy of the predictor Ŷ and p(x) refers to the probability density
function (pdf). The objective is to maximize the H(Ŷ ) of the measurable function Y by adjusting
different parameters of forecasting algorithm that produces Ŷ .

Sixthly, with the chosen parameters for the BEMDPVaR, we repeat the previous steps to make one
step ahead forecasts for the test dataset, using the rolling windows method over the entire test dataset.

3. Empirical Studies

We conducted empirical studies using the average daily electricity prices in two representative
sub-markets, i.e., New South Wales (NSW) and Queensland (QLD) in the Australian electricity market,
known as the Australian Energy Market Operator (AEMO). AEMO belongs to the first group of
deregulated markets, where the pricing and risk management mechanism are more developed and
established. We obtained the data from AEMO, who made publicly available the transaction and
operation data of electricity market. The dataset covers the period from 1 January 2004 to 12 April
2015. Since there is no consensus on the division of the dataset, either in the machine learning or
econometric literature [34], when dividing the dataset, we follow the common criteria that reserves at
least 70% data as the training set and retains a sufficiently large size of the test set for the results to be
statistically valid [35]. The dataset is divided into three sub-datasets, i.e., the training set for the proposed
BEMDPVaR model (49%), the model tuning set to determine the model parameters (21%) and the test
set for the out-of-sample test to evaluate the out-of-sample performance of different models (30%). The
size of the window is 2015, covering the relevant information available. We assume one dollar equal
holding position for initial investments in each market. We assume a one-day holding period and use the
one day ahead rolling window method to conduct one step ahead PVaR estimations. The out-of-sample
performance of different models is evaluated using the reliability measure including the number of
exceedances, the p-value for the Kupiec backtesting procedure and the mean square error (MSE).

Table 1 lists the descriptive statistics for both electricity markets.

Table 1. Descriptive statistics and statistical tests.

Statistics pNSW pQLD rNSW rQLD

Mean 34.4483 31.5751 0.0001 0.0002
Maximum 291.9500 292.7700 2.2698 4.2669
Minimum 13.8700 0.3300 −2.3521 −4.1527

Standard Deviation 26.9090 24.1481 0.3203 0.3771
Skewness 5.1524 4.7733 −0.3634 0.2067
Kurtosis 36.1707 33.9937 19.7392 30.0137
pJB 0.0010 0.0010 0.0010 0.0010
pBDS 0 0 0 0
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In Table 1, pi, i ∈ (NSW,QLD) and ri, i ∈ (NSW,QLD) refer to the price and return in the
i market, respectively. The electricity markets are subject to frequent and abrupt external shocks.
Descriptive statistics in Table 1 show that the electricity prices in both markets significantly deviate from
the normal distribution, as confirmed by the four statistical moments, as well as the rejection of both
the Jarque–Bera (JB) test of normality and the Brock-Dechert- Scheinkman (BDS) test of independence
[36,37]. Electricity prices in both markets exhibit significant fluctuations. The fluctuations in the NSW
market are significantly higher than those in QLD, subject to different regional pricing mechanisms.
As the autocorrelation and partial autocorrelation functions indicate the trend factors, the daily prices
were log differenced at the first order to remove them as in yt = ln pt

pt−1
. We further calculated the

descriptive statistics on the return data. The distribution of the return data appears to approximate
the normal distribution, as indicated by the four moments. The kurtosis appears to deviate from the
normal level, which indicates that the market exhibits a significant abnormal event. Besides, since the
null hypotheses of both the JB and BDS tests are rejected, this further indicates that the market return
contains unknown nonlinear dynamics, not easily captured by traditional linear models.

The MEWMA and DCC-GARCH models are chosen as the benchmark models following the
convention in the literature. The generalizability of the proposed model is evaluated using both risk
coverage and predictive accuracy measures. More specifically, the Kupiec backtesting procedure is
chosen to test for the unconditional risk coverage. The Kupiec likelihood ratio test statistic conforms to
the χ2(1) distribution. MSE, defined as T−1

∑T
i=1 ε

2
i where εi = yi−yi, is used to evaluate the predictive

accuracy. We fix the lags to one for the VARMA(1,1)-DCC-GARCH(1,1) model used, since it suffices
for most of the situations in the empirical studies and represents the most parsimonious form.

Following the proposed numerical procedure, firstly, we conducted the experiments to determine
the model specifications and parameters. The in-sample performance evaluation results of different
models using the reliability measures, including exceedances and the corresponding p-value measuring
its statistical significance, as well as the MSE as the accuracy measure and the entropy as the information
criteria measure, are listed in Table 2.

Table 2. In-sample performance measure comparison of different models.

scale Nn Pn MSEn Entropyn Nt Pt MSEt Entropyt

1 89 0 0.3415 −203.9906 64.6667 0 0.4409 −371.4122
2 37.3333 0.0505 0.2438 79.5904 25.6667 0.2556 0.3190 31.1773
3 37.6667 0.0178 0.2237 84.5989 23.6667 0.4295 0.2888 51.8779
4 26.3333 0.1188 0.2038 155.9300 20 0.2466 0.2644 156.2305
5 25 0.1928 0.2074 144.3604 18 0.2469 0.2693 137.4740
6 25.6667 0.1897 0.2148 154.1064 18 0.3788 0.2787 147.5416
7 20.3333 0.3003 0.2166 148.7923 15 0.2897 0.2828 135.7875
8 23.3333 0.1709 0.2250 149.4715 16.6667 0.2880 0.2943 133.2261
9 22 0.3025 0.2258 151.9358 16.6667 0.3279 0.2950 136.4991

10 22 0.3222 0.2248 151.9826 16.6667 0.3432 0.2939 136.6463
11 22 0.3328 0.2340 159.8013 16.3333 0.3683 0.3039 144.8537
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In Table 2, scale refers to the level of decomposition in the BEMD algorithm, n refers to the normal
distribution, t refers to the t distribution, N refers to the mean value of the number of exceedances at
different confidence levels, including 95%, 97.5% and 99%, P refers to mean value of the p-value of
the Kupiec backtesting procedure at different confidence levels, MSE refers to mean value of MSE at
different confidence levels and Entropy refers to the mean value of entropy of the prediction errors at
different confidence levels.

Altogether, we identified 11 IMFs. The results in Table 2 show that with each choice of IMF
as the transient and extreme factors, there are performance variations. The objective is to find the
optimal choice of transient factors. Using the model tuning dataset, the optimal level for the model
with normal distribution assumption is 7, 11, 4, 11, using exceedances, p-value, MSE and entropy
measures, respectively. The optimal level for the model with the t distribution assumption is 7, 3, 4,
4 respectively. We found that the model with the t distribution would provide much better in-sample
performance than the model with the normal distribution. Thus, we would adopt the t distribution as the
underlying distribution for the VaR estimates.

With the chosen model specifications and parameters through the in-sample model tuning test, we
further conducted the out-of-sample experiments to evaluate the out-of-sample performance of the
proposed model. The results are listed in Table 3

The results in Table 3 show that in general, the proposed BEMDPVaR algorithm improves the
reliability upon the traditional MEWMA and DCC-GARCH model. This is supported with the higher
p-value from Kupiec backtesting procedure and lower MSE values for the models with both the normal
and t distribution assumptions. The optimal out-of-sample performance is achieved when the model
parameters are optimized with entropy measure at Level 4, and the t distribution is used as the model
assumption. When using either the normal distribution and t distribution as the model assumption,
exceedances, the p-value and MSE do not provide consistent superior out-of-sample performance.
Using the p-value as the measurement criteria, we choose the optimal model parameters with the
highest out-of-sample performance for the normal distribution assumption, while using MSE as the
measurement criteria, we choose different sets of optimal parameters for the t distribution. Out-of-sample
performance comparisons for the proposed BEMDPVaR using different criteria during the model
parameter determination in-sample suggest that using the proposed entropy measure leads to improved
model performance out-of-sample when both the normal and t distributions are assumed.

Out-of-sample performance improvement of the proposed algorithm, especially concerning the
predictive accuracy aspects, is attributed to the identification of the transient or extreme factors using
the entropy-optimized BEMD. This implies that the electricity price data movement is a complicated
process with a mixture of underlying DGPs of different natures. It has a multiscale structure, far more
complicated than what the mainstream models assume. Meanwhile, there are redundant representations
of the underlying latent structure. As there is a lack of explicit and analytic solutions to determine the
appropriate latent structure for the multiscale model specifications in the literature, significant model
risk would result. We found that the model risk can be reduced significantly with the appropriate
choice of optimization criteria, i.e., entropy measure in this paper, during the model tuning process.
Thus, the determination of the multiscale model specifications holds the key to the further out-of-sample
performance improvement and more thorough understanding of the DGPs during the modeling process.
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Some innovative methodologies, such as entropy theory, BEMD and the like, enable the analysis of the
mixed data structure during the process.

Table 3. Predictive accuracy comparison of different models with the t distribution.

Models CL Nn PKT,n MSEn Nt PKT,t MSEt

MEWMA

99% 40 0.0867 0.2522 40 0.0867 0.2522
97.5% 55 0 0.1915 55 0 0.1915
95% 67 0.4945 0.1477 67 0.4945 0.1477

Average 54 0.1648 0.1985 54 0.1648 0.1985

DCC-GARCH

99% 11 0.6961 0.2822 7 0.0963 0.4187
97.5% 20 0.0347 0.2106 11 0 0.2779
95% 31 0 0.1590 25 0 0.1931

Average 20.6667 0.2426 0.2173 25 0 0.1931

BEMDPVaRexceedances

99% 29 0 0.1719 12 0.9222 0.2466
97.5% 39 0.1532 0.1326 30 0.8763 0.1695
95% 64 0.3003 0.1043 45 0.0222 0.1230

Average 44 0.3061 0.1363 29 0.6069 0.1797

BEMDPVaRp

99% 29 0 0.1741 27 0.0003 0.2029
97.5% 43 0.0364 0.1348 58 0 0.1430
95% 66 0.5785 0.1064 90 0.0005 0.1071

Average 46 0.2050 0.1385 58.3333 0.0003 0.1510

BEMDPVaRMSE

99% 31 0 0.1577 16 0.3166 0.2247
97.5% 51 0.0008 0.1226 31 0.9782 0.1556
95% 83 0.0081 0.0974 57 0.5343 0.1140

Average 55 0.0029 0.1259 34.6667 0.6097b 0.1647

BEMDPVaREntropy

99% 29 0 0.1741 16 0.3166 0.2247
97.5% 43 0.0364 0.0364 31 0.9782 0.1556
95% 66 0.5785 0.1064 57 0.5343 0.1140

Average 46 0.2050 0.1385 34.6667 0.6097 0.1647

4. Conclusions

In this paper, we propose the entropy theory to identify the BEMD model specifications and construct
an effective PVaR estimation algorithm based on that. The superior out-of-sample performance of the
proposed algorithm is supported by out-of-sample performance evaluation in the empirical studies in
major Australian electricity markets. This is attributed to the identification and the incorporation of the
multiscale structure of the high-dimensional time series. The bivariate time series is decomposed into
several meaningful components in different frequency domains, so that the normal factors and extreme
factors are separated to analyze and estimate PVaR.

Results obtained in this paper have some important implications that contribute to the relevant
literature. Firstly, the proposition of the maximum entropy criteria shows that model specification
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determination is a nontrivial task, which has significant impacts on the result interpretation and
forecasting performance. A diverse range of accuracy measures can be developed and used, where
MSE and entropy measures represent a rather restricted set of them. The optimization objective
using these measures needs to be constructed based on the problem domain knowledge. Analysis in
major electricity markets provides the additional empirical evidence of the multiscale market structure,
revealing the chaotic and multiscale behaviors. This provides further supporting evidence for the MA
methodology and Heterogeneous Market Hypothesis (HMH) theoretical framework. The work in this
paper represents an exploratory attempt. Secondly, improved risk measurement reliability would result
from the incorporation of the multiscale investment strategies for portfolios across different markets.
New multiscale techniques, such as BEMD, are essential in terms of the appropriate separation of
this multiscale market structure, i.e., data and extreme components in the portfolio, with their distinct
behavioral and correlation patterns. Overall, the work in this paper represents an initial exploratory
attempt in modeling the multiscale electricity market structure using the MA methodology, which paves
the way for in-depth investigation of a more diverse range of data features available in the electricity
markets.
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