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Abstract: Using some investigations based on information theory, the model proposed by 

Keller and Segel was extended to the concept of fractional derivative using the derivative 

with fractional order without singular kernel recently proposed by Caputo and Fabrizio. 

We present in detail the existence of the coupled-solutions using the fixed-point theorem. 

A detailed analysis of the uniqueness of the coupled-solutions is also presented. Using an 

iterative approach, we derive special coupled-solutions of the modified system and we 

present some numerical simulations to see the effect of the fractional order. 

Keywords: Keller–Segel model; Caputo–Fabrizio fractional derivative; fixed-point theorem; 
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1. Introduction 

The mathematical exemplification of the environments and parameters affecting the diffusion and 

management of information is referred as to information theory. Information theory is a branch of 

applied mathematics, electrical engineering and computer science involving the quantification of 

information. In applied mathematics, to model real world problem, one needs to observe the physical 

behavior of the problem and then convert it into mathematical formulas. The concept of information 

theory is therefore needed to accurately represent the physical problem in mathematical formula, and 

quantify problem uncertainties via entropy in order to have better prediction. Other important 
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applications of information theory can be found in [1–5]. The field of fractional order derivatives has 

attracted the attention of many researchers in all branches of sciences and engineering. In recent years, 

many field of sciences and technology have used fractional order derivatives to model many real world 

problems in their respective fields, as it has been revealed that these fractional order derivatives are 

very efficient in describing such problems [6–12]. It is no wonder therefore why many researchers in 

the field of fractional calculus have devoted their attention to proposing new fractional order 

derivatives [13–19]. 

These derivative definitions range from the well-known Riemann–Liouville derivative to the newly 

proposed one known as the Caputo–Fabrizio derivative. It is very important to note that most of these 

definitions are based on the convolution. The definitions proposed by Riemann–Liouville and the first 

Caputo version has the weakness that their kernel had singularity. Since the kernel is used to describe 

the memory effect of the system, it is clear that with this weakness, these two derivatives cannot 

accurately describe the full effect of the memory. To further enhance the full description of memory, 

Caputo and Fabrizio have recently introduced a new fractional order derivative without a singular 

kernel [16,20,21]. In their paper, they demonstrated that the interest in the new derivative is because of 

the requirement of exploiting the performance of the conventional viscoelastic materials, thermal 

media, electromagnetic systems and others. However, they pointed out the fact that the commonly used 

fractional derivatives were designed to deal with mechanical phenomena, connected to plasticity, 

fatigue, damage and also electromagnetic hysteresis [20]. Therefore the new derivative can be used 

outside the scope of the described field. More importantly, their proposed derivative is able to portray 

material heterogeneities and structures at different scales [20]. The aim of this paper is to check the 

possibility of applying this new derivative to other branches of sciences, in particular epidemiology. In 

this work, we will modify the model proposed by Keller and Segel [22–26] by replacing the ordinary 

time derivative with the Caputo–Fabrizio fractional order derivative. In the knowledge that the new 

derivative is not popular, we will first present some useful information about this derivative to inform 

those readers that are not aware of it. 

2. The Caputo and Fabrizio Fractional Order Derivative  

The main problem faced with the first definition of fractional order derivative is the singularity at 

the end point of the interval. To avoid the singularity, Caputo and Fabrizio recently proposed a 

fractional order derivative without any singularity worries. The definition is based on the convolution 

of a first order derivative and the exponential function, given in the following definition: 

Definition 1. Let ∈ ( , ), > , ∈ 	 [0, 1] then, the new Caputo derivative of a fractional 

derivative is defined as: 

( ) = ( )1 − ( ) − −1 −  (1)

where ( ) is a normalization function such that (0) = (1) = 1 [20]. However, if the function 

does not belong to ( , ) then, the derivative can be reformulated as:  
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 ( ) = ( )1 − ( ( ) − ( )) − −1 −  

Remark 1. The instigators observed that, if = ∈ [0,∞), = ∈ [0, 1], then Equation (2) 

assumes the form: 

( ) = ( ) ( ) − − , (0) = (∞) = 1	 (2)

In addition: lim→ 1 − − = ( − ) (3)

At this instant subsequent to the preface of the novel derivative, the connected anti-derivative, the 

associate integral, turns out to be imperative [23,24].  

Definition 2. Let 0 < < 1.	 The fractional integral of order  of a function  is defined as:		
( ( )) = 2(1 − )(2 − ) ( ) ( ) + 2(2 − ) ( ) ( ) , 0 (4)

Remark 2. Note that, according to the above definition, the fractional integral of Caputo type of 

function of order 0 < < 1 is an average between function f and its integral of order one. This 

therefore imposes the condition [21]: 2(1 − )(2 − ) ( ) + 2(2 − ) ( ) = 1 (5)

The above expression yields an explicit formula:  ( ) = 22 − , 0 ≤ ≤ 1 

Because of the above, Nieto and Losada [21] proposed that the new Caputo derivative of order 0 << 1 can be reformulated as: 

( ) = 11 − ( ) − −1 −  (6)

Theorem 1. For the new Caputo fractional order derivative, if the function ( ) is such that: ( )( ) = 0, = 1,2, …  

then, we have: ( ( ( ))) = ( ( ( ))) 
The proof this can be found in [20,21].  	  
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3. Chemotaxis Model Proposed by Keller and Segel 

Keller and Segel proposed the dynamic model of the aggregation process of cellular slime mold by 

chemical attraction in 1970. The simplified model in one dimension of the model is given by: ( , ) = ( , ) − ( , ) ( ( , ))( , ) = ( , ) + ( , ) − ( , )  (7)

The associated initial conditions to the above system are given as: ( , 0) = ( ), ( , 0) = ( ), ∈ = ( , ) , , ,  and  are positive constants. The coupled solutions ( , )  and ( , )  represent the 

concentration of a chemical substance and concentration of amoebae, respectively. The sensibility of 

the chemicals and attraction of terms are indicated by the chemotactic expression: 

( , ) ( ( , ) ( ( , )) ( , ))
 (8)

The term ( ( , )) represents the sensitivity function, and is a smooth function of ∈ (0,∞) 
which described a cell’s perception and response to chemical stimulus. However, the above model is 

not able to describe the effect of memory and also the movement of the bacteria within different layers 

of the medium via which the global movement is taking place. Therefore in order to include these two 

effects into the mathematical formulation, we modified the system by replacing the ordinary time 

derivative to the newly proposed fractional order derivative as follows: ( , ) = ( , ) − ( , ) ( ( , ))
( , ) = ( , ) + ( , ) − ( , )  (9)

To be more precise, we chose the sensitivity function to be: ( , ) = ( , )( , ) + 1 , ( , ), ( , )( , ) + 1 , ( , )  (10)

The initial conditions are the same as in Equation (8). 

3.1. Existence of Coupled Solutions 

In this section, using the fixed-point theorem, we present the existence of the coupled-solution. We 

first transform Equation (9) to an integral equation as follows: ( , ) − ( , 0) = ( , ) − ( , ) ( ( , ))
( , ) − ( , 0) = ( , ) + ( , ) − ( , )  
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Using the notation proposed by Nieto, we obtain: ( , ) − ( , 0) = 2(1 − )(2 − ) ( ) ( , ) − ( , ) ( , ) +2(2 − ) ( ) ( , ) − ( , ) ( , )
( , ) − ( , 0) = 2(1 − )(2 − ) ( ) ( , ) + ( , ) − ( , ) +2(2 − ) ( ) ( , ) + ( , ) − ( , )

 (11)

For simplicity, we define the following kernels: ( , , ) = ( , ) − ( , ) ( , )
 

( , , ) = ( , ) + ( , ) − ( , ) (12)

Theorem 2.  and  satisfy the Lipschiz condition and contraction if the following inequality holds: 0 < + ( , ) ≤ 1 

Proof. We shall start with . Let 	and  be two functions, then we evaluate the following: ‖ ( , , ) − ( , , )‖= ( , ) − ( , ) − ( , ) − ( , ) ( , )
 (13)

Using the triangular inequality, we transform the above Equation (13) to:  ‖ ( , , ) − ( , , )‖ ≤ ( , ) − ( , ) + − ( , ) − ( , ) ( , )
 

Knowing that the operator derivative satisfies the Lipchitz condition, we can then find two positive 

parameters  and  such that: ( , ) − ( , ) ≤ ‖ ( , ) − ( , )‖ 

− ( , ) − ( , ) ( , ) ≤ ( , ) ‖ ( , ) − ( , )‖ 

(14)

Replacing Equation (14) into Equation (12), we obtain: ‖ ( , , ) − ( , , )‖ ≤ + ( , ) ‖ ( , ) − ( , )‖ (15)
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Taking:  = + ( , )
 

then: ‖ ( , , ) − ( , , )‖ ≤ ‖ ( , ) − ( , )‖ 

Therefore  satisfies the Lipschiz conditions and if in addition:  0 < + ( , ) ≤ 1 

then it is also a contraction. 

With the second case we have that, the kernel is linear then it satisfies the Lipchitz condition as 

follows:  ‖ ( , , ) − ( , , )‖ ≤ + ‖ ( , ) − ( , )‖ 

Considering these kernels, Equation (11) is reduced to:  

( , ) = 2(1 − )(2 − ) ( ) ( , , ) + ( , 0) + 2(2 − ) ( ) ( , , )
( , ) = 2(1 − )(2 − ) ( ) ( , , ) + ( , 0) + 2(2 − ) ( ) ( , , )  (16)

We consider the following recursive formula:  

( , ) = 2(1 − )(2 − ) ( ) ( , , ) + 2(2 − ) ( ) ( , , )
( , ) = 2(1 − )(2 − ) ( ) ( , , ) + 2(2 − ) ( ) ( , , )  (17)

With initial component ( , ) = ( , 0)( , ) = ( , 0) 
The difference between the consecutive terms is given as: ( , ) = ( , ) − ( , )= 2(1 − )(2 − ) ( ) ( , , ) − 2(1 − )(2 − ) ( ) ( , , )

+ 2(2 − ) ( ) ( , , ) − ( , , )  
(18)
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 ( , ) = ( , ) − ( , )= 2(1 − )(2 − ) ( ) ( , , − )
+ 2(2 − ) ( ) ( , , − )  

It worth noting that: ( , ) = ( , )
( , ) = ( , )  

Step-by-step we evaluate:  ‖ ( , )‖ = ‖				 ( , ) − ( , )‖= 2(1 − )(2 − ) ( ) ( , , ) − 2(1 − )(2 − ) ( ) ( , , )
+ 2(2 − ) ( ) ( , , ) − ( , , )  

Using the triangular inequality; the above equation becomes: ‖	 ( , ) − ( , )‖≤ 2(1 − )(2 − ) ( ) ‖ ( , , ) − ( , , )‖
+ 2(2 − ) ( ) ( , , ) − ( , , )  

(19)

Since the kernel satisfies the Lipchitz condition, we obtain: ‖				 ( , ) − ( , )‖≤ 2(1 − )(2 − ) ( ) ‖ − ‖ + 2(2 − ) ( ) ‖ − ‖  
(20)

then: 

‖ ( , )‖ ≤ 2(1 − )(2 − ) ( ) ‖ ( , )‖ + 2(2 − ) ( ) ‖ ( , )‖  (21)
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In the similar way, we obtain:  ‖ ( , )‖ ≤ 2(1 − )(2 − ) ( ) ‖ ( , )‖ + 2(2 − ) ( ) ‖ ( , )‖  (22)

We shall then state the following theorem: 

Theorem 3. Since the concentration of a chemical substance and concentration of amoebae are taking 

place in a confined medium, then, Equation (9) has a coupled-solution. 

Proof. We have that, both ( , ) and ( , ) are bounded, in addition, we have proved that both 

kernels satisfy the Lipschiz condition, therefore following the results obtained in Equations (21) and (22), 

using the recursive technique, we obtain the following relation:  ‖ ( , )‖ ≤ ‖ ( , 0)‖ 2(1 − )(2 − ) ( ) + 2(2 − ) ( )  

‖ ( , )‖ ≤ ‖ ( , 0)‖ 2(1 − )(2 − ) ( ) + 2(2 − ) ( )  

(23)

Therefore the above solutions exist and are continuous. Nonetheless, to show that the above is a 

solution of Equation (9), we let: ( , ) = ( , ) − ( , )( , ) = ( , ) − ( , ) 
Thus: ( , ) − ( , )= 2(1 − )(2 − ) ( ) ( , , − ( , ))

+ 2(2 − ) ( ) ( , , − ( , )  
(24)

It follows from the above that: 

( , ) − 2(1 − )(2 − ) ( ) ( , , ) − ( , 0) − 2(2 − ) ( ) ( , , )
= ( , ) + 2(1 − )(2 − ) ( ) ( , , )
+ 2(2 − ) ( ) ( , , − ( , )) − ( , , )  

(25)
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However applying the norm on both sides together with the Lipchitz condition, we obtain: 

( , ) − 2(1 − )(2 − ) ( ) ( , , ) − ( , 0) − 2(2 − ) ( ) ( , , )
≤ ‖ ( , )‖ + 2(1 − )(2 − ) ( ) + 2(2 − ) ( ) ‖ ( , )‖ 

(26)

In the same way, we obtain:  ( , ) − 2(1 − )(2 − ) ( ) ( , , ) − ( , 0) − 2(2 − ) ( ) ( , , )
≤ ‖ ( , )‖ + 2(1 − )(2 − ) ( ) + 2(2 − ) ( ) ‖ ( , )‖ 

(27)

Taking the limit when → ∞ on both sides of Equations (26) and (27), the right hand sides of both 

equations tends to zero such: 

( , ) = 2(1 − )(2 − ) ( ) ( , , ) + ( , 0) + 2(2 − ) ( ) ( , , )  

( , ) = 2(1 − )(2 − ) ( ) ( , , ) + ( , 0) + 2(2 − ) ( ) ( , , )  

(28)

are indeed the coupled-solutions of system (9). This completes the proof of existence. We shall now 

show the proof of uniqueness. 

3.2. Uniqueness of the Coupled Solutions 

In this section, we show that the coupled-solutions presented in the above section are unique. To 

achieve this, we assume that we can find another coupled-solutions for system (9), say ( , ), 	 ( , ), then:  ( , ) − ( , )= 2(1 − )(2 − ) ( ) ( , , ) − ( , , 	 )
+ 2(2 − ) ( ) ( , , ) − ( , , 	 )  

(29)

and:  ‖ ( , ) − ( , )‖≤ 2(1 − )(2 − ) ( ) ‖ ( , , ) − ( , , 	 )‖
+ 2(2 − ) ( ) ‖ ( , , ) − ( , , )‖  

(30)
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Making use of the Lipchitz conditions of the kernel, together with the fact that the solutions are 

bounded, we obtain:  ‖ ( , ) − ( , )‖ < 2(1 − )(2 − ) ( ) + 2(2 − ) ( ) ( )  (31)

This is verified for any  then: ( , ) = ( , ),		 
Using the same routine, we have also: ( , ) = ( , ) 
This completes the uniqueness of the coupled-solutions of system (9). 

4. Derivation of Approximate Coupled-Solutions 

Since the system is nonlinear and it may be hard to obtain the exact solution, in this section, we 

present the derivation of a special solution by employing an iterative technique. The technique 

involves coupling the Laplace transform and its inverse. Before presenting the methodology of the 

technique, we will first present the relationship between the Laplace transform and the new fractional 

derivative without singular kernel.  

The connection between the Laplace transform and the Caputo-Fabrizio fractional order derivative 

is given as [12]:  ℒ( ( ( ))) = ℒ( ( )) − (0)+ (1 − )  (32)

Now applying the above operator on both sides of system (9) we obtain:  ℒ( ( , )) − ( , 0)+ (1 − ) = ℒ ( , ) − ( , ) ( ( , ))
ℒ ( , ) − ( , 0)+ (1 − ) = ℒ ( , ) + ( , ) − ( , )  (33)

We transform the above to: ℒ( ( , )) = ( , 0) + ( + (1 − )) ℒ ( , ) − ( , ) ( ( , ))
ℒ( ( , )) = ( , 0) + ( + (1 − )) ℒ ( , ) + ( , ) − ( , )  (34)

Now applying the inverse Laplace on both sides, we obtain: ( , ) = ( , 0) +ℒ ( + (1 − )) ℒ ( , ) − ( , ) ( ( , ))
( , ) = ( , 0) +ℒ ( + (1 − )) ℒ ( , ) + ( , ) − ( , )

 (35)
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We assume the following iterative formula:  ( , ) = ( , ) +ℒ + (1 − ) ℒ ( , ) − ( , ) ( , )
( , ) = ( , ) +ℒ + (1 − ) ℒ ( , )) + ( , ) − ( , )

 (36)

With the first component: ( , ) = ( , 0)( , ) = ( , 0) 
The coupled solution is thus provided as: ( , ) = lim→ ( , )( , ) = lim→ ( , ) (37)

The numerical simulations are presented here for different values of alpha. The results are depicted 

in Figures 1–4. 

 

Figure 1. Numerical simulation of concentration of chemical substance for alpha = 0.5. 
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Figure 2. Numerical simulation of concentration of amoebae for alpha = 0.5. 

 

Figure 3. Numerical simulation of chemical substance for alpha = 0.95. 

 

 

Figure 4. Numerical simulation of concentration of amoebae for alpha = 0.95. 
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From the above figures, one can see that the solution of our equation also depends on the fractional 

order. This shows that, the fractional order can be used to control the behavior of the solution in 

different scale within the system.  

5. Conclusions 

In this work, the aim was to check the possibility of extending the application of the new proposed 

fractional derivative without singular kernel to other fields of science. The original aim of the new 

derivative is the exploitation of the performance of the conventional viscoelastic materials, thermal 

media, electromagnetics system and others. We have applied the derivative to the Keller and Segel 

model and presented in detail the use of the fixed-point theorem to prove the existence and uniqueness 

of the coupled-solution. A derivation of the special solution was done via an iterative approach. 
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