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Abstract: Specifically setting a time delay fractional financial system as the study object, 

this paper proposes a single controller method to eliminate the impact of model uncertainty 

and external disturbances on the system. The proposed method is based on the stability 

theory of Lyapunov sliding-mode adaptive control and fractional-order linear systems. The 

controller can fit the system state within the sliding-mode surface so as to realize 

synchronization of fractional-order chaotic systems. Analysis results demonstrate that the 

proposed single integral, sliding-mode control method can control the time delay fractional 

power system to realize chaotic synchronization, with strong robustness to external 

disturbance. The controller is simple in structure. The proposed method was also validated 

by numerical simulation. 

Keywords: sliding-mode control; fractional order chaotic systems; uncertainty time delay 

system; single controller 

 

1. Introduction 

Recent years have seen a great deal of research on chaos control, in which many studies have focused 

specifically on fractional-order chaotic systems. Fractional differential equations not only provide a 

novel mathematical tool, but further, more successful mathematical models of systems [1,2]. As research 
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regarding chaotic systems has continually intensified, an increasing number of control and 

synchronization methods specific to chaotic systems have been proposed, verified, and applied 

effectively [3]. An integer order chaotic system is the result of idealized processing of an actual chaotic 

system. Fractional-order chaotic systems show enhanced universal application and practicability, 

however [4]. Generally, stability analysis of integer-order chaotic system controllers adopts Lyapunov 

stability theory; for stability analysis of a fractional-order system, fractional-order system stability theory 

is more common, or a combination of both theories [5]. 

Some synchronous control methods have already been proposed for fractional-order chaotic  

systems [6], including the drive response method, sliding-mode control method, Lyapunov equation 

method, self-adaption control method, active control method, nonlinear feedback control method, and 

generalized synchronization method [7–12]. The sliding-mode adaptive robust control, for one, is not 

only characterized by quick responsiveness, excellent dynamic characteristics, robustness, and 

insensitiveness to external changes, but is able to control uncertainty in the system, among other 

attractive advantages. One notable recent study [13] adopted a sliding-mode control to realize the 

synchronization of a three dimensional fractional-order chaotic system. The control system, however, 

was quite simple and did not account for unknown parameters which may occur during real world 

application, nor external disturbances to the system or impact of time delay on system synchronization. 

Recently, Zhang et al. [14] developed a single-state adaptive-feedback controller containing a novel 

fractional integral sliding surface to synchronize a class of fractional-order chaotic systems based on 

sliding mode variable structure control theory and adaptive control technique. Tian et al. [15] applied 

the sliding mode control strategy to stabilize a class of fractional-order chaotic systems with input 

nonlinearity. Toopchi et al. [16] proposed an adaptive integral sliding mode control scheme for 

synchronization of hyper chaotic Zhou systems. Another study [17] adopted a method to build 

corresponding response system according to the driving system, performing adaptive estimation of 

uncertain items considering the effects of uncertain factors to design a nonlinear adaptive controller.  

The controller did not require knowledge of the upper boundary of uncertainties, was simple in structure, 

and showed strong robustness to uncertainties including system disturbances; however, the method is 

not applicable to synchronization of fractional-order chaotic systems, and its response system is 

dependent on the drive system structure. 

The purpose of this study is the design of a synchronization method of sliding-mode adaptive robust 

control, with a single controller, applicable to external disturbances and uncertainties in fractional-order 

chaotic systems with time delay. The proposed method utilizes the sliding-mode adaptive 

synchronization method of integer-order chaotic systems, specifically according to relevant 

disadvantages shown in previous research [15–17]. The effectiveness of the method was verified by 

numerical simulation results and in contrast to some results from reference [18]. 

2. Results and Discussion 

2.1. Definitions and Lemma 

The most frequently used definitions for the general fractional calculus are Riemann-Liouville 

definition, Caputo definition and Grunwald-Letnikov definition [15,19,20]. 
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Definition 1. The αth order Riemann-Liouville fractional integration is given by: 
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where Γ(⋅) is the Gamma function. 

Definition 2. For n − 1 < α ≤ n, n ∈ R, the Riemann-Liouville fractional derivative definition of order 

α is defined as: 
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Definition 3. The Grunwald-Letnikov fractional derivative definition of order α is written as: 
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Lemma 1. (Barbalat’s Lemma [21]) If ε: R → R is a uniformly continuous function for t ≥ 0, and if the 

limit of the integral 
0

lim ( )
t

t
dε τ τ

→∞   exist and is finite, then lim ( ) 0
t

tε
→∞

= . 

2.2. Numerical Method for Solving Fractional Differential Equations 

The PC (Predictor, Corrector) method which was proposed by Diethelm et al. [22] is generally used 

to solve fractional differential equations (FDE). Let us consider the following differential equations: 
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and m is the first integer larger than the a. The solution of the Equation (4) is equivalent to the Volterra 

integral equation: 
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let: 

/ , , 0,1, 2 ,nh T N t nh n N= = =   (8)

Then Equation (8) can be discretized as follows: 
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where predicted value 1( )p
h ny t +  is determined by: 
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Hence, for approximating the Equation (6), the predictor formula is given by: 
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In this method, the error is: 
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Thus, we can obtain the numerical solution of a fractional order system by using the above mentioned 

algorithm. 

2.3. Sliding Surface and Single Controller 

Here, we select the 3D fractional financial system expressed as follows: 
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where q q q
tD d dt=  is the Caputo differential operator, 0 < q < 1, and x = (x1, x2, x3)T is the state vector 

of the system. 

System (14) is the driving system. The response system without control is: 

( )
( )

( )

1

2

3

1 3 2 1

2

2 2 1

3 1 3

1

q
t

q
t

q
t

D y y y t a y

D y by y t

D y y t cy

τ

τ

τ

= + − −  

= − − −  
= − − −

 (15)

The error system can be derived from System (14) and System (15): 
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The formula above can be modified as follows: 

( )
( )
( )

1

2

3

1 1 1 2 3

2 2 1 2 3

3 3 1 2 3

, ,

, ,

, ,

q
t

q
t

q
t

D e g e e e

D e g e e e

D e g e e e

=

=

=

 (17)

Uncertain items of the error system ∆ f(y, t) are integration of model perturbation, external 

disturbance, and non-modeled sections. An unknown but always existing constant ρ is defined; all ρ 

must satisfy the following equation: 

ρΔ ≤ < ∞  (18)

where U is a synchronous controller. By designing a reasonable single controller u(t) ∈ Rn, the error 

system becomes stable, gradually, so as to realize the synchronization between the driving system and 

response system. The following must be satisfied: 
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The error system can be modified as: 
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As a conjecture, if Formulas (14) and (16) are smooth and continuous within the neighborhood region 

of e1 = 0, the following subsystem is defined: 
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For all e2, e3, e2 = 0, e3 = 0, is consistent exponential stability.  

The following controller forms are considered: 

( ) ( ) ( )eq du t u t u t= +  (22)

where ueq(t) is equivalent control system, and ud(t) is the system’s approach rate. 

To ensure the system stays at the equilibrium point, (system synchronization,) sliding-mode surface 

s was designed as follows: 

( )1
1 10

tq
ts D e ae dτ τ−= +   (23)

If the sliding manifold meets s = 0 and 0s = , equivalent control ueq(t) can be obtained: 

( ) ( )3 2eq sst e tu e τ= = − + −  (24)

In order to realize the path curve of the system as it reaches a given sliding manifold, the approach 

rate ud(t) must satisfy: 

( ) ( )sgn 0du t k s k= <  (25)

Theorem 1. Consider the sliding-mode dynamics (20), the system is asymptotically stable. 
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Proof: According to the continuous frequency distributed model of fractional integrator [23–25], the 

fractional-order sliding-mode dynamics (20) is exactly equivalent to the following infinite dimensional 

ordinary differential equations: 
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where μi(ω) = ((sin(qiπ))/π) ω-q
i > 0, i = 1, 2, 3. In above model, z1(ω,t), z2(ω,t), z3(ω,t) are the true state 

variables, while x(t), y(t), z(t) are the pseudo state variables [26,27]. Then, Lyapunov’s stability theory 

in [28] can be applied to prove the asymptotic stability of the above system. Selecting a positive definite 

Lyapunov function: 
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Taking the derivative of V1(t) with respect to time, it yields: 
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It has been proven that in case of idling mode motion in the system, the sliding-mode surface s meets 

the following conditions: 
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If e1 = 0, then the 2D sub-system 2
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3 3
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Since μi(ω) > 0, a are non-negative constants, so according to the analysis results of reference [28], 

we have 1( ) 0V t < , which implies that the fractional-order sliding-mode dynamics (20) is asymptotically 

stable. Therefore, the proof is completed. □ 

Theorem 2. For a controlled error system starting from an arbitrary value, when t → ∞, the trajectory 
converges to zero ( ( )lim 0 1,2,3i

t
e i

→∞
= = ). Under the effects of the sliding-mode adaptive controller, the 

fractional-order driven system and response will realize a gradual synchronization. 

It has been proven that in case of sliding mode motion in the system, the sliding-mode surface s meets 

the following conditions: 
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The following proves that the error system satisfies the sliding condition s = 0 starting from arbitrary 

initial conditions. The Lyapunov function is 2 2V s= . 

The following can be derived: 
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As long as a proper k value is set and the error system is in line with Lyapunov stability theory after 

disturbance, the synchronization control method is effective. The error system is also shown here to meet 

sliding-mode conditions starting from arbitrary initial conditions. Because Formula (34) was established 

on the sliding-mode surface, the error system can remain at the equilibrium point. In other words, 

synchronization was maintained between the driving system and controlled response system. 
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3. Experimental Section  

In order to fully legitimize the proposed theory, we performed numerical validation of fractional 

order-chaos in a financial system. 

The driving system is: 
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The response system is: 
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where the model uncertainty, external disturbance and sector nonlinear input are given by: 

( ) 1, 0.1sin(2 )f y t yπΔ =  (37)

The error system is: 
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If e1 = 0, then the 2d subsystem 0.98
2 20.1tD e e= − , 0.96

3 31.2tD e e= − , thus 2 3lim 0,lim 0
t t

e e
→∞ →∞

= = . According 

to the theorem specified above, under the effect of the single controller, the driving system will maintain 

synchronization with the response system. Numerical simulation was executed by combining the 

fractional frequency approximation method and s function in MATLAB. The control law is selected as: 

( ) ( )3 2 sgne e tu sτ= − + − −  (39)

According to the initialization method in [29,30], the initial conditions for fractional differential 

equations with order between 0 and 1 are constant function of time, so the initial conditions for  

systems (35) and (36) can be chosen randomly as: 
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With the above fractional orders and initial conditions, systems (35) and (36) possesses a chaotic 

behavior, as shown in Figures 1 and 2. To observe the control effect of controller, the state trajectories 
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of Equation (38) without control are firstly given in Figure 3. When the controller is activated, we can 

obtain the desired time responses of system (38), shown in Figure 4. It is not difficult to see that all state 

trajectories converge to zero asymptotically, which implies that a class of uncertain fractional-order chaotic 

systems (38) with sector nonlinear input can be stabilized. Reference [18] has the same synchronization 

time as this paper, but in this paper there is less codes by contrast. Figures 1 and 2 show chaotic attractor 

images of the driving system and response system, respectively. 

 

Figure 1. Fractional-order chaotic attractors of drive system with time delay. 

 

Figure 2. Fractional-order chaotic attractors of response system with time delay. 
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Figure 3. Error system of chaos system without controller. 

 

Figure 4. Error system of chaos system with controller. 

 

Figure 5. Control effort in suppression while the control law (39) is used. 
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4. Conclusions  

Based on Lyapunov stability theory and sliding-mode adaptive control method, using a time-delay 

fractional financial system as an example, this paper proposed a sliding-mode adaptive synchronous 

control method. The proposed method replaces the common linear sliding-mode control with an integral 

sliding-mode control. The synchronous control method is applicable to the single controller as-designed, 

and is altogether applicable to synchronization control of fractional-order chaotic systems. 

The proposed method focuses on practicability. Its single controller implies low cost, as well. It is 

robust against noise, reduces buffeting generated during the control process, and demonstrates favorable 

control capability for time delay systems. The proposed method is an example of integer-order adaptive 

synchronization of chaotic systems successfully translated to fractional-order chaotic systems, with 

certain theoretical and practical significance. Numerical simulation results verified the proposed 

method’s effectiveness, robustness, and successful control of the study system. Furthermore, the method 

is easily implemented in engineering applications. 
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