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integral form of the weighted Gyarmati’s variational principle in the force representation,
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1. Introduction

In order to completely specify the operation of a device, we should ask what is the probability of
finding a carrier with crystal momentum ~k at location ~r at time t? The answer is the distribution
function f = f(~k, ~r, t), a number between zero and one. The distribution function describes an
average distribution of carriers in both position and momentum and can be used to obtain various
quantities of interest, such as carrier, current and kinetic energy densities. Progress in molecular beam
epitaxy (MBE) and metal organic chemical vapor deposition (MOCVD) epitaxial techniques makes it
possible to fabricate heterostructures used to manufacture numerous new devices, such as two-color
photodiodes matrices, super lattices, quantum dots, etc. The modeling of these devices is based on
specialized computer software, whose key task is to calculate the distribution functions mentioned above.
The distribution functions describing the statistics of carriers in semiconductor structures in thermal
equilibrium usually differ quite significantly from those describing non-equilibrium states. Usually, in
order to find a non-equilibrium distribution function for the electron and holes, the Boltzmann transport
equation (BTE) is solved with a relaxation time approximation [1–4]. However, the distribution functions
derived in this way may be used only in the cases where gradients of electrochemical potentials and
gradients of temperature are sufficiently low [5]. By coupling the basic postulate of the thermodynamics
of irreversible processes referring to entropy generation with the weighted Gyarmati’s principle in the
forces representation, we have derived functionals adopting their extreme values in a steady state.
Euler–Lagrange equations formulated for these functionals enable the determination of the distribution
function for an electron in a conduction band (CB) and in a valence band (VB), which may be used in
the case where strong gradients of temperature and those of quasi-Fermi energies occur.

2. Irreversible Process

The basic postulate of the thermodynamics of irreversible processes refers to the entropy generation.
As a result of the irreversible process proceeding in the element of volume dV entropy generation is
obtained with the rate of σSdV . σS ≥ 0, which is always a non-negative entropy generation rate (in
unit volume and unit time), which equals zero only in equilibrium. The change of entropy in the given
element dV in the time period dt is, however, the result of not only the entropy generation in the element
itself, but it is also caused by an exchange of heat energy with its environment. Thus, it could be
written as:

ds = σSdt+
dq

T
, (1)

where ds is the difference of entropy density, T is the temperature and dq is the difference of heat density,
which is exchanged by the element dV with its environment. Since there is always σS ≥ 0, therefore:

ds ≥ dq

T
. (2)

Equality in relation Equation (2) refers to reversible processes and non-equality to irreversible
processes. In a system being in non-equilibrium conditions, gradients of intense state parameters
(gradients of temperature and electrochemical potentials) occur. In semiconductors, relation Equation (2)
may be referred to as the selected kinds of charge carriers, which are treated as a system. We can
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distinguish, for instance, between electrons in a conduction band and holes in a valence band, ionized
impurities, etc. For the i-type particles, relation Equation (2) reads as:

dsi ≥
dqi
Ti

. (2a)

The steady state is the goal of our considerations. In classical irreversible thermodynamics [6–9],
it is presumed that small elements of a non-equilibrium system are in a state of local equilibrium, and
equations of equilibrium thermodynamics hold well for such sub-system. This postulate is known as a
local thermodynamic equilibrium.

Thus, considering the state of a small sub-volume dV of the semiconductor heterostructure, one can
apply Gibbs relation to express the differential of heat density dqi of i-type particles by the differential
of density of their energy dui, as well as the differential of particle density dni. Then, inequality
Equation (2a) assumes the relation as:

dsi −
dui
Ti

+
Φi

Ti
dni ≥ 0 , (3)

where Φi is the electrochemical potential of i-type particles (for example, electrons in a conduction
band). In a steady state, both intense and extensive state parameters are stable in an arbitrarily chosen
element of the volume dV . Due to relation Equation (3), the function:

mi = si −
ui
Ti

+
Φi

Ti
ni , (4)

which is determined in dV should achieve maximum values in a steady state.
In a steady state, a source of entropy generates an entropy in each cell of space with a possible low

rate. This is in accordance with Prigogine principle [10,11]. If we denote the efficiency of the entropy
source (in J K−1 cm−3) for i-kind particles as σSi

, then in steady-state conditions:

σSi
≥ 0 and σSi

= min . (5)

The steady state being a non-equilibrium state is caused by stationary gradients of state intensive
parameters (temperature and electrochemical potentials, usually called quasi-Fermi energies), which
cause flows of energy and electric carriers. However, these flows take place in a very complex and
complicated way, being the result of a huge number of single acts of an electron and phonon scattering in
a dissipative process. The integration of relation Equation (3) over all of the volume of the semiconductor
structure leads to a relation of: ∫

V

(
dsi −

dui
Ti

+
Φi

Ti
dni

)
dV ≥ 0 . (6)

Let us denote as Mi the following integral:

Mi =

∫
V

midV =

∫
V

(
si −

ui
Ti

+
Φi

Ti
ni

)
dV ≥ 0 . (7)

Thus, the right side of Equation (6) is the differential dMi of the function Mi. Since dMi is always
positive during the irreversible process, then, in the steady state, Mi being of stable quantity achieves its
maximum value. This value is stable as long as the steady state lasts (see Figure 1).
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Thus, in a steady state, the condition for the maximum of the following functional can be
formulated as:

Mi =

∫
V

(
si −

ui
Ti

+
Φi

Ti
ni

)
dV = max . (8)

Figure 1. In an irreversible process, differentials of the function mi in an arbitrarily chosen
element of volume are always positive. This is the reason why in the steady state,mi achieves
its maximum values.

The state of intense parameters contained in functional Equation (8) are space-dependent quantities;
however, they do not change in time. Using the expressions for electron and hole energy, as well as for
their entropy (Equations (46)–(49)), the function for the electron and holes can be derived as below:

me =kB
1

4π3

∫
BZ

{
fCe (~r,~k) ln fCe (~r,~k) +

[
1− fCe (~r,~k)

]
ln
[
1− fCe (~r,~k)

]}
d3k

+
1

4π3

∫
BZ

fCe (~r,~k)
(
χ(~r) + eΨ(~r)− εkC(~k) + Φn

) 1

Te(~r)
d3k (9)

and:

mh =kB
1

4π3

∫
BZ

{
fVe (~r,~k) ln fVe (~r,~k) +

[
1− fVe (~r,~k)

]
ln
[
1− fVe (~r,~k)

]}
d3k

+
1

4π3

∫
BZ

[
1− fVe (~r,~k)

] (
−χ(~r)− eΨ(~r)− Eg(~r)− εkV (~k) + Φp

) 1

Th(~r)
d3k , (10)

respectively. Here, fCe (~r,~k) is the distribution function for electrons in a conduction band and fVe (~r,~k)

is the distribution function for electrons in a valence band.
Functional Equation (8) for the electron and holes achieves the maximum if:

∂me

∂fCe
= 0 (11)

and:
∂mh

∂f ve
= 0 , (12)
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respectively. Equations (11) and (12) are Euler–Lagrange (E-L) equations, and their solution are the
functions:

f eC(~r,~k) =

(
1 + exp

(
−χ(~r)− eΨ(~r) + εkC(~k)− Φn(~r)

kBTe(~r)

))−1

(13)

f eV (~r,~k) =

(
1 + exp

(
−χ(~r)− eΨ(~r)− Eg(~r)− εkV (~k)− Φp(~r)

kBTh(~r)

))−1

(14)

It is apparent that the above functions cannot be the correct distribution functions by observing that
they are even in the wave vector (kinetic energies εkC(~k) and εkV (~k) are square functions of ~k), and
therefore, it can be predicted that current can never flow. Nevertheless, these are not unreasonable
results considering that average carrier velocities are frequently small. If we measure the spread in
velocities by the velocity at which f(~r,~k) drops to 1

e
of its peak, we find a spread of about 107 cm s−1

for a semiconductor with m∗ ≈ m0 [12]. Since average velocities are often much smaller than this, an
assumption that the average velocity equals zero may be not as bad as it seems. However, we will try to
find more correct expressions for the distribution functions.

3. Gyarmati’s Variational Principle of Dissipative Processes

Non-equilibrium processes arise either due to the action of thermodynamic forces, which prevent
the system from reaching the equilibrium state, or due to the process of internal phenomena, resulting
from certain types of relaxation processes [13]. In the 1960s, Gyarmati proposed a variational principle,
which describes the evolution of irreversible processes in space and time [14,15]. Gyarmati’s principle
is based on the fact that the generalization of dissipation functions, which were introduced by Reyleigh
and Onsager for special cases, always exist locally in continua [16–22]. In linear theory, these functions
are defined as:

Ψ(X) =
1

2

∑
i,k

LikXiXk ≥ 0 (15)

and:
Φ(J) =

1

2

∑
ik

RikJiJk ≥ 0 . (16)

The Rik coefficients are the components of the inverse of the Lik coefficient; hence, the existence of
dissipation potentials is connected to the existence of the Onsager reciprocal relations. The current Ji is
conjugated to the forceXi in the entropy production density σS . σS being the entropy production per unit
volume and unit time is a bilinear function of the independent currents Ji and the conjugate dissipative
forces Xi, that is:

σS =
∑
i

XiJi ≥ 0 . (17)

According to the Onsager’s linear theory of irreversible processes, the currents Ji and the dissipative
forces Xi are given by the following general constitutive laws [20,21]:

Ji =
∑
k

LikXi, Xi =
∑
k

RikJk , (18)
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Ji =
∂Ψ

∂Xi

, Xi =
∂Φ

∂Ji
. (19)

The most general form of Gyarmati’s principle is given by:

δ

∫
V

[σS −Ψ− Φ]dV = 0 (20)

or: ∫
V

[σS −Ψ− Φ]dV = max . (21)

Some weighted potentials ΨG and ΦG can be defined, as well. They show all of the essential properties
of Ψ and Φ, but correspond to the weighted entropy production GσS [23–25] (here, G is an arbitrary,
always positive state function):

GσS =
∑
i

GXiJi ≥ 0 . (22)

In some cases, in steady-state conditions, especially for strictly linear problems, there are two partial
forms that are also valid [25]: ∫

V

[σS −Ψ]dV = max, J = const (23)

and: ∫
V

[σS − Φ]dV = max, X = const . (24)

The first of these is called force, and the second is called flux representation. Both representations
were applied to the solution of several practical problems (see the references cited in the paper of
Verhas [25]).

We will apply Equation (23) for electrons and holes. The thermodynamic forces for electrons (see
relation Equation (72)) are recognized as:

X1 =
∇Φn(~r)

Te(~r)
; X2 =

∇Te(~r)
Te(~r)

(25)

and:
Ψ(X) =

1

2
(L11X1X1 + L12X1X2 + L21X2X1 + L22X2X2) , (26)

where:

L11 =
Te(~r)

4π3

∫
BZ

fCe (~r,~k)
τ e
m∗e

d3k (27)

L12 =L21 = −kBTe(~r)
4π3

∫
BZ

{
fCe (~r,~k) ln fCe (~r,~k) +

[
1− fCe (~r,~k)

]
ln
[
1− fCe (~r,~k)

]} τ e
m∗e

d3k (28)

L22 =
kBTe(~r)

4π3

∫
BZ

{
fCe (~r,~k) ln fCe (~r,~k) +

[
1− fCe (~r,~k)

]
ln
[
1− fCe (~r,~k)

]} τ e
m∗e

d3k

· kB
4π3n

∫
BZ

{
fCe (~r,~k) ln fCe (~r,~k) +

[
1− fCe (~r,~k)

]
ln
[
1− fCe (~r,~k)

]}
d3k . (29)
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In Equation (23), applied for holes, the suitable quantity (see Equation (74)) is recognized as:

X1 =
∇Φp(~r)

Th(~r)
, X2 =

∇Th(~r)
Th(~r)

(30)

L11 =
Th(~r)

4π3

∫
BZ

(1− fVe (~r,~k))
τh
m∗h

d3k (31)

L12 =L21 =
kBTh(~r)

4π3

∫
BZ

{
f ve (~r,~k) ln fVe (~r,~k) +

[
1− fVe (~r,~k)

]
ln
[
1− fVe (~r,~k)

]} τh
m∗h

d3k (32)

L22 =
kBTh(~r)

4π3

∫
BZ

{
fVe (~r,~k) ln fVe (~r,~k) +

[
1− fVe (~r,~k)

]
ln
[
1− fVe (~r,~k)

]} τh
m∗h

d3k

· kB
4π3p

∫
BZ

{
fVe (~r,~k) ln fVe (~r,~k) +

[
1− fVe (~r,~k)

]
ln
[
1− fVe (~r,~k)

]}
d3k . (33)

4. Postulate of the Variational Principle for the Semiconductor Heterostructure in
Steady-State Conditions

As was shown in Section 2, functional Equation (8) is not sufficient to obtain the proper expression for
a non-equilibrium distribution function for electrons in CB and VB. To achieve this goal, we postulate
applying a new variational principle obtained through a connection of functional Equation (8) with
Gyarmati’s principle expressed by relation Equation (23). In order to join them, we form the weighted
potential ΨG by multiplying equation Equation (23) by the mean relaxation time τ e. This proposed
principle (for CB electrons) reads as:∫

V

λedV =

∫
V

(me + τ e[σSe −Ψ])dV = max . (34)

Why should the acceptance τ e as the multiplier be a good choice? First, Gyarmati’s principle
remains valid if it is multiplied by any non-negative state function and the average relaxation time is
a non-negative state function. Second, it is a characteristic time during which electron scattering takes
place by collisions. This time determines band electron mobility and their drift velocity. We show
further that the postulate will allow us to determine a non-equilibrium distribution function, which for
small gradients of intensive parameters is identical to the function resulting from the BKEsolution, which
will confirm the postulated validity.

By comparing the coefficient expression Equations (27)–(29), we note that the coefficientL22 is orders
of magnitude less than the other three coefficients. Thus, in equation Equation (26), we can skip the last
component. Now, using Equation (68) and using relations Equations (9), (25)–(29), we can present the
function λe in the form of:
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λe =
1

4π3

∫
BZ

fCe (~r,~k)
(
χ(~r) + eΨ(~r)− εkC(~k) + Φn(~r)

) 1

Te(~r)
d3k (35)

− 1

4π3

∇Φn(~r)

Te(~r)

∫
BZ

fCe (~r,~k)τ e
h̄~k

m∗e
d3k

+
kB
4π3

∫
BZ

{
fCe (~r,~k) ln fCe (~r,~k) +

[
1− fCe (~r,~k)

]
ln
[
1− fCe (~r,~k)

]}
d3k

+
kB
4π3

∇Te(~r)
Te(~r)

∫
BZ

{
fCe (~r,~k) ln fCe (~r,~k) +

[
1− fCe (~r,~k)

]
ln
[
1− fCe (~r,~k)

]}
τ e
h̄~k

m∗e
d3k

+
kBTe(~r)

4π3

(
∇Φn(~r)

Te(~r)

)(
∇Te(~r)
Te(~r)

)∫
BZ

{
fCe (~r,~k) ln fCe (~r,~k)

+
[
1− fCe (~r,~k)

]
ln
[
1− fCe (~r,~k)

]} (τ e)
2

m∗e
d3k

− 1

2

Te(~r)

4π3

(
∇Φn

Te

)2 ∫
BZ

fCe (~r,~k)
(τ e)

2

m∗e
d3k . (36)

Equation (34) for holes takes the form of:∫
V

λhdV =

∫
V

(mh + τh[σSh
−Ψ])dV = max . (37)

Proceeding as with electrons, λh will take the form of:

λh =
1

4π3

∫
BZ

[1− fVe (~r,~k)]
(
−χ(~r)− eΨ(~r)− Eg(~r)− εkV (~k) + Φp(~r)

) 1

Th(~r)
d3k

+
kB
4π3

∫
BZ

{
fVe (~r,~k) ln fVe (~r,~k) +

[
1− fVe (~r,~k)

]
ln
[
1− fVe (~r,~k)

]}
d3k

+
kB
4π3

∇Th(~r)
Th(~r)

∫
BZ

{
fVe (~r,~k) ln fVe (~r,~k) +

[
1− fVe (~r,~k)

]
ln
[
1− fVe (~r,~k)

]}
τh
h̄~k

m∗h
d3k

− kBTh(~r)

4π3

(
∇Φp(~r)

Th(~r)

)(
∇Th(~r)
Th(~r)

)∫
BZ

{
fVe (~r,~k) ln fVe (~r,~k)

+
[
1− fVe (~r,~k)

]
ln
[
1− fVe (~r,~k)

]} (τh)
2

m∗h
d3k

+
1

4π3

∇Φh(~r)

Th(~r)

∫
BZ

[1− fVe (~r,~k)]τh
h̄~k

m∗h
d3k − 1

2

Th(~r)

4π3

(
∇Φp(~r)

Th(~r)

)2 ∫
BZ

fVe (~r,~k)
(τh)

2

m∗h
d3k . (38)

4.1. The Non-Equilibrium Distribution Function for Electrons

Functional Equation (34) achieves maximum value if the function λe meets the E-L equation,
which means:

∂λe
∂fCe

= 0 . (39)

The solution of Equation (39) is the following function:

fCe (~r,~k) =1 + exp

−χ(~r)− eΨ(~r) + εkC(~k) + τ e∇Φn(~r) h̄
~k

m∗
e

+ 1
2
(∇Φn(~r))2(τ e)

2 1
m∗

e
− Φn(~r)

kb

[
Te(~r) +

(
τ e

h̄~k
m∗

e
+∇Φn(~r)(τ e)2 1

m∗
e

)
∇Te(~r)

]
−1

(40)
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4.2. The Non-Equilibrium Distribution Function for Holes

Functional Equation (37) achieves maximum value, if the E-L equation reads as:

∂λh
∂fVe

= 0 . (41)

The solution of Equation (41) is the following function:

fVe (~r,~k) =1 + exp

−χ(~r)− eΨ(~r)− Eg(~r)− εkV (~k)− τh∇Φp(~r)
h̄~k
m∗

h
− 1

2
(∇Φp(~r))

2(τh)
2 1
m∗

h
+ Φp(~r)

kb

[
Th(~r) +

(
τh

h̄~k
m∗

h
−∇Φp(~r)(τh)2 1

m∗
h

)
∇Th(~r)

]
−1

(42)

While the distribution function of holes fh will take the form of:

fh(~r,~k) = 1− fVe (~r,~k) =1 + exp

χ(~r) + eΨ(~r) + Eg(~r) + εkV (~k) + τh∇Φp(~r)
h̄~k
m∗

h
+ 1

2
(∇Φp(~r))

2(τh)
2 1
m∗

h
− Φp(~r)

kb

[
Th(~r) +

(
τh

h̄~k
m∗

h
−∇Φp(~r)(τh)2 1

m∗
h

)
∇Th(~r)

]
−1

(43)

5. Verification of the Obtained Results

Here, we verify the obtained relation Equations (40) and (43) by comparing them with suitable results
obtained by other authors using another method of analysis. The agreement of the results would be the
confirmation that the postulated variational principles (relations Equations (34) and (37)) are suitable for
analyzing the steady-state conditions in semiconductor heterostructures. Let us begin our considerations
for the function fCe . We compare expression Equation (40) with Expression (5.1) obtained by Marshak
and van Vliet [2] by a solution of the KBE under the assumption that the values of ∇Φn and ∇Te are
low. We decompose relation Equation (40) into the Taylor series around Φn and Te under the assumption
that∇Φn and ∇Te are of low values. As a result, we obtain the relation of:

fCe ≈

[
1 + exp

(
−χ− eΨ + εkC(~k)− Φn

kBTe

)]−1

−
exp

(
−χ−eΨ+εkC(~k)−Φn

kBTe

)
[
1 + exp

(
−χ−eΨ+εkC(~k)−Φn

kBTe

)]2

 τ e
kBTe

∇Φn
h̄~k

m∗e
−

(
−χ− eΨ + εkC(~k)− Φn

)
kB(Te)2

τ e
h̄~k

m∗e
∇Te


(44)

It is easy to notice that expression Equation (44) is the same as Expression (5.1) in the paper of
Marshak and van Vliet [2].
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Similarly, by decomposing the function fh around Φp and Th under the assumption that ∇Φp

and ∇Th are of small values and by confining ourselves to the first order words, we are going to
obtain the following:

fh ≈

[
1 + exp

(
χ+ eΨ + Eg + εkV (~k)− Φp

kBTh

)]−1

−
exp

(
χ+eΨ+EgεkV (~k)−Φp

kBTh

)
[
1 + exp

(
χ+eΨ+EgεkV (~k)−Φp

kBTh

)]2

(
τh
kBTh

∇Φp
h̄~k

m∗h
− χ+ eΨ + Eg + εkV (~k)− Φp

kB(Th)2
τh
h̄~k

m∗h
∇Th

)

(45)

Expression Equation (45) can be obtained similarly as what was done by Marshak and van Vliet [2]
by solving the BKE under the assumption that the gradients ∇Φp and ∇Th are low. Thus, expression
Equations (44) and (45) obtained in this paper are in agreement with the results obtained by solving the
BKE in the special case. This confirms that the forms of functionals Equations (34) and (37) are proper
and can be used to analyze semiconductor heterostructures in steady-state conditions

Expression Equations (40) and (43) are more general than the expressions for non-equilibrium
distribution functions, obtained by solving the BKE. What is more, non-equilibrium distribution
functions have the form of the Fermi–Dirac distribution function (with four additional components).
The physical interpretation of these components is relatively simple. We explain it for fCe . The physical
interpretation of suitable components in fh is analogous to those in fCe .

The expression
(
h̄~k
m∗

e
τ e +∇Φn

(τe)2

m∗
e

)
· ∇Te is equal to dTe, the change of the electron’s temperature

in the time period equal to the mean relaxation time τ e (Figure 2).

Te

Te + dTe

~v = h̄~k
m∗

e
+∇Φn

τe
m∗

e

d~l

Figure 2. An electron having thermal velocity h̄~k
m∗

e
+ ∇Φn

τe
m∗

e
(total electron velocity with

subtracted drift velocity caused by ∇Φn) at the point on the isotherm with temperature T
in the time period equaling the mean relaxation time τ e moves to the point on the isotherm
with temperature Te + dTe. Effective growth of electron temperature is dTe = d~l · ∇Te =(
h̄~k
m∗

e
τ e +∇Φn

(τe)2

m∗
e

)
· ∇Te. d~l is the displacement vector of electron in time τ e.
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The expression τ ke
h̄~k·∇Φn(~r)
m∗

e(~r)
is recognized (Figure 3) as a change of electron kinetic energy caused by

the movement of the electron in the region where the gradient of quasi-Fermi energy occurs. The sign of
this change depends on the direction of the electron velocity. The expression 1

2
(∇Φn)2 (τe)2

m∗
e

is found as an
increase of electron energy caused by the force−∇Φn working on the distance 1

2
a(τ e)

2 = −1
2
∇Φn

m∗
e

(τ e)
2.

Φn

Φn + dΦn

~v = h̄~k
m∗

e

d~l

n

Figure 3. The electron having velocity ~v = h̄~k
m∗

e
moves from the position where quasi-Fermi

energy equals Φn in the time period equaling τ e to the point where quasi-Fermi energy
equals Φn + dΦn, where dΦn = d~l ·∇Φn. The displacement vector d~l is equal to d~l = h̄~k

m∗
e
τ e.

This leads to a change of the electron kinetic energy τ ke
h̄~k·∇Φn(~r)
m∗

e(~r)
= dεkC .

6. The Calculation Method and Its Exemplary Results

We discuss here the calculation method consisting of calculating the electron and hole distribution
function, as well as presenting the exemplary results of the calculations for electrons (relation
Equation (40)). The calculations will involve ternary semiconductor compounds of mercury cadmium
telluride (MCT) (CdxHg1−xTe) with two chosen values of x, a mole fraction of CdTe (x = 0.165 and
x = 0.3), a concentration of donors ND = 1015 cm−3 and acceptors NA = 1013 cm−3. Data on the
physical parameters of the material can be found, for example, in the book edited by Capper [26].
While conducting the numerical modeling of devices, we are not able to calculate non-equilibrium
distribution functions at the heterostructure selected points directly using only relation Equations (40)
and (43). The calculations must be conducted by iterative methods, because Equations (40) and (43) are
highly non-linear. In turn, these values are dependent on external forces maintaining a steady state and on
a distribution function. First, our calculations begin for a thermal equilibrium state by solving the Poisson
equation with iterative methods for given spatial distributions of a molar composition and doping. This
allows the determination of the spatial distribution of electric potential, as well as the electron, holes and
ionized dopant concentrations. In order to determine these concentrations, the Fermi–Dirac functions
applicable to the thermal equilibrium state are used. The accurate description of this method is in the
paper of Jóźwikowska [27].
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Next, by changing the boundary conditions on electrical contacts due to the value of the applied
voltage, we solve the system of four or six transport equations with iterative methods. We gradually
increase the voltage until it reaches a desired value. Subsequent changes to the voltage value are the
condition for the convergence and stability of the iterative method used. In the first iterative step for
the initial voltage, we make calculations by using the non-equilibrium distribution functions in the form
of the Fermi–Dirac function for thermal equilibrium. In these functions, the Fermi level is replaced
with quasi-Fermi levels, and we take into account that the electron and holes own a thermodynamic
temperature, which can be different from the lattice temperature. For electrons in the conduction band
and valence band, those are Equations (13) and (14), respectively. In subsequent iterations, we already
use distribution functions in the form of Equations (40) and (43). Using these, we calculate both the
carrier concentration, as well as the average relaxation time defined by Equation (71). Counting the
relaxation time in MCT, we take into account two mechanisms of scattering: ionized impurity scattering
and polarized optical phonon scattering [13]. Due to the fact that the effective mass of electrons in a
HgCdTe narrow gap is more than an order of magnitude less than the effective mass of holes, effects
related to the gradient influence of intensive parameters are in the case of the electron distribution
function much stronger than for holes. Therefore, the exemplary calculation results are shown for the
non-equilibrium distribution function for electrons, as they are the most spectacular. As we analyzed
the semiconductor instruments, temperature gradients are usually very small, and their impact on the
non-equilibrium distribution function is incomparably smaller than the impact of the quasi-Fermi level
gradients. In the cases presented here, the influence of a temperature gradient on the function fCe is
negligible.

Figure 4a–4f presents the dependence of the function on the angle, which the wave vector ~k creates
with the vector∇Φn for selected modules of the vector ~k and the selected gradients∇Φn (see Figure 5).
Figure 4a–4c relates to the structure of the molar composition x = 0.165 and the temperature T = 300 K,
and Figure 4d–4f relates to the structure with parameters x = 0.3 and T = 300 K.

Now, it is evident that distribution functions determined by relation Equation (40) are not even in
the wave vector, in contrast to those determined by relation Equation (13). τ e∇Φn

h̄~k
m∗

e
determines it.

When the dot product ∇Φn · ~k is positive, it increases the potential energy of a moving electron at the
expense of kinetic energy. Reducing the kinetic energy leads to increasing the value of fCe . When the
movement direction is the opposite, then the electron potential energy decreases, and its kinetic energy
increases. Hence, the increase in value of the function fCe is with the increase at the angle α. The impact
of the component τ e∇Φn

h̄~k
m∗

e
on the function fCe becomes increased with both the increase of module ~k

vector and with the gradient value∇Φn, which is well illustrated by Figure 4.
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Dependence fe on the angle α that the wave vector ~k creates with the vector
∇Φn for the selected modules of the vector ~k and the selected gradients∇Φn (numbers with
curves). (a–c) The structure of x = 0.165, T = 300 K; and (d–f) the structure of x = 0.3,
T = 300 K.
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Figure 5. In the space of the wave vector ~k, we distinguish the z direction parallel to the
vector∇Φn. This space is divided into chase-space cells having a volume of d3k = 4π3/dV .
Here, V denotes the volume of the semiconductor. The probability that any cell is occupied
by an electron is determined by the distribution function fCe (relation Equation (40)) and
depends on the absolute value of the electron wave vector ~k and the angle α between vector
~k and the z direction. For all phase space cells in Ring B, the values of fCe are the same.

Figure 6 presents the dependence of fCe on the wave vector module ~k for the selected gradient values
∇Φn (numbers with curves). The presented values of the function fCe are mean values for cells that
form the spherical Envelope A (see Figure 5). Figure 6a describes the structure with the parameters of
x = 0.165, T = 300 K; Figure 6b, x = 0.3, T = 300 K; and Figure 6c, x = 0.165, T = 80 K.
For k < 107 m−1, fCe weakly depends on k, but rapidly disappears with increasing k for k > 108 m−1.
The reason for this failure is the kinetic energy εkC(~k) increase, which is a quadratic function of the
wave vector ~k. Increasing the kinetic energy component 1

2
(∇Φn)2 (τe)2

m∗
e

is the reason for the observed
decrease in the value of fCe with the increasing values of ∇Φn. However, the increase of the value of
∇Φn increases the role of the component τ e∇Φn

h̄~k
m∗

e
, which depending on the sign of the scalar product

∇Φn·~k, can cause either an increase or decrease in the value of fCe . This component of the overall balance
will increase the average value of the function fCe , which is noticeable for sufficiently large values of
the gradient ∇Φn. This is particularly shown in Figure 6c, where the influence of this component in
the range of values 107 m−1 < k < 108 m−1 seems to be dominant. This is achieved by the addition
of average relaxation time, which grows with a decreasing temperature. Calculated by us, τ e, for the
material x = 0.165 at T = 300 K is 4.17× 10−12 s and at T = 80 K is 7.3× 10−12 s.
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(a) (b)

(c)

Figure 6. Dependence of the average fe on k, the module of the wave vector ~k, for the
selected gradients ∇Φn (numbers with curves). (a) The structure of x = 0.165, T = 300 K;
(b) x = 0.3, T = 300 K; (c) x = 0.165, T = 80 K. The figures present the mean value of
the function distribution of phase cells located in the spherical Envelope A (see Figure 5).

Figure 7a–7c presents the dependence of electron concentration on the value of∇Φn. Figure 7a shows
the structure with parameters x = 0.165, T = 300 K; Figure 7b, x = 0.3, T = 300 K; and
Figure 7c, x = 0.165, T = 80 K. In all three cases, the electron concentration remains almost constant
for gradients ∇Φn < 104 eV m−1. The increase of the gradient ∇Φn up to the value of 105 eV m−1

results in a reduction of the concentration in all cases by several orders of magnitude. The obtained values
of electron concentration are in good agreement with the experimental data presented by Capper [26].
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(a) (b)

(c)

Figure 7. Electron concentration in the function for the structures of: (a) x = 0.165, T =

300 K; (b) x = 0.3, T = 300 K; and (c) x = 0.165, T = 80 K.

7. Conclusions

Based on the postulates of local equilibrium, as well as on the integral form of Gyarmati’s
variational principle in the force representation, we have derived distribution functions for an electron
and holes. Thus, it is an alternative method commonly solving the BKE with the relaxation times’
approximation used. The obtained expressions have the form of the Fermi–Dirac distribution function
with four additional components. We have shown the physical interpretation of these components
as a change of effective carrier temperature and kinetic energy in the regions where gradients of
temperature and electrochemical potential occur. These expressions should be used especially in areas
where there are heavy electro-chemical potential gradients, such as the p-n junction, heterojunction,
metal-semiconductor connectors, etc. If one assumes that these gradients are weak, our results are in
excellent agreement with previous expressions obtained by solving the BKE. The presented method
should be developed to additionally consider many galvanomagnetic and thermomagnetic effects, and so
on, which may be important in some applications.



Entropy 2015, 17 4126

Acknowledgments

The work has been undertaken under the financial support of the Polish National Science Centre
as research Project No. DEC-2013/08/M/ST7/00913 and Project No. POIG.01.03.01-14-016/08 “New
Photonic Materials and Their Advanced Application”.

Author Contributions

The theoretical idea is attributed to K.J. and A.J. M.N. is responsible for the numerical calculations.
Both authors have read and approved the final manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

Appendix

A. The Energy and Entropy of Electrons and Holes in a Semiconductor Heterostructure

Figure 8 shows a two-band energy diagram for the general case of a semiconductor heterostructure.
The concept of the local vacuum level Ei, which represents the energy of an electron at a given point
if it is at rest and free from the influence of the crystal potential, was introduced by Marshak and van
Vliet [2]. Thus, Ei gives the spatial variation of electrostatic potential Ψ. The reference level E0 may
be an arbitrarily-chosen value of the energy. In our paper, we have assumed E0 = 0 without any loss of
generality. EV is the VB edge, and EC is the CB edge.

The energy of a single electron in CB (−χ−eΨ+εkC) contains element εkC , which denotes the electron
kinetic energy. εkC is the function of wave vector ~k. The density of CB electron energy ue in an element
of volume determined by position vector ~r is expressed by:

ue(~r) =
1

4π3

∫
BZ

fCe (~r,~k)
(
−χ(~r)− eΨ(~r) + εkC(~k)

)
d3k . (46)

Integration is carried out inside the Brillouin zone (BZ), and fCe (~r,~k) is the distribution function for
CB electrons. The density of the hole energy, uh, reads:

uh(~r) =
1

4π3

∫
BZ

(
1− fVe (~r,~k)

)(
χ(~r) + eΨ(~r) + Eg(~r) + εkV (~k)

)
d3k , (47)

where εkV (~k) is the hole kinetic energy. fVe (~r,~k) is the distribution function for VB electrons. The density
of the CB electron entropy reads [28]:

se(~r) = −kB
1

4π3

∫
BZ

{
fCe (~r,~k) ln fCe (~r,~k) +

[
1− fCe (~r,~k)

]
ln
[
1− fCe (~r,~k)

]}
d3k . (48)

The density of the VB electron entropy equal to the density of the hole entropy is expressed by [28]:

sh(~r) = −kB
1

4π3

∫
BZ

{
fVe (~r,~k) ln fVe (~r,~k) +

[
1− fVe (~r,~k)

]
ln
[
1− fVe (~r,~k)

]}
d3k (49)
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Figure 8. General one-dimensional two-band energy diagram of a semiconductor
heterostructure defining variables of interest; E represents total electron energy; E0 is the
reference level (we have assumed E0 = 0); Ψ is the electrostatic potential; X is the electron
affinity; Ei is the local vacuum level (defined by Marshak and Vliet [2]); EV is the valence
band (VB) edge; EC is the conductance band (CB) edge; and Eg is the bandgap. The
transition of the electron from energy level EV − εkV in VB to energy level EC + εkC in CB
demands that the delivery of energy equalsEg+εkC+εkV . This energy is the sum of the energy
of the created electron −χ+ eΨ + εkC and the energy of the created hole χ+ eΨ +Eg + εkV .

B. The Sources of Electron and Hole Entropy in Steady-State Conditions

Both the electrons’ energy and the holes’ energy contain kinetic energy (see Appendix A) associated
with the chaotic thermal particles’ motion and the potential energy, determined by electrochemical
potentials Φ (determined by the energies of band edges and chemical potentials). In thermal equilibrium,
it is possible to apply the first law of thermodynamics. If we consider the densities of extensive variables
(entropy and the number of electrons), the first law of thermodynamics for the differential of the electrons
energy is expressed by Gibbs relation:

due = Tdse + Φdn . (50)

However, opportunely, the expression for the holes:

duh = Tdsh − Φdp, (51)

where du is the increment of energy density (subscript e refers to electrons, subscript h to holes),
s, the density of entropy, n, the electron density (concentration), p, the hole concentration and Φ,
Fermi energy. Thus, the increment of density of the carriers’ energy is caused by a change of the particles’
density, the consecutive changing potential energy and the energy associated with the increment of the
density of entropy.
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Now, we would like to analyze the structure of a semiconductor in steady-state conditions. We have
used the postulate of local equilibrium. The first law of thermodynamics for the increments of electrons’
and holes’ density of energy changing locally in a semiconductor structure is expressed by:

due = Tedse + Φndn (52)

duh = Thdsh − Φpdp, (53)

where effective temperatures of electrons and holes (Te and Th, respectively) and quasi-electrochemical
potentials (quasi-Fermi energies, Φn and Φp) are defined locally by the relations:(

∂ue
∂se

)
Φn

= Te

(
∂ue
∂n

)
Te

= Φn (54)

and (
∂uh
∂sh

)
Φp

= Th

(
∂uh
∂p

)
Th

= −Φp . (55)

Here, Φn and Φp are the electrochemical potential for CB electrons and CV electrons, respectively.
The electrochemical potential for holes is equal to −Φp.

Let us consider Equation (52). The first component is defined as thermal energy dQn. The second
component includes the increment of potential energy duΦn , determined by electrochemical potential.
They are expressed by:

due = dQn + duΦn . (56)

If there are flows of particles and energy, the balance equations for physical parameters are subject to
a low of conservation and are expressed by:

∂x

∂t
+∇jx = (Gx −Rx), (57)

where x is the density of the considered extensive parameter, jx is the current density of x, Gx is the
generation rate andRx the recombination rate of the x parameter. For ue, we obtain the following balance
equation:

∂ue
∂t

= −∇jQe + (Gn −Rn)ε̃ke −∇(Φnje) + (Gn −Rn)Φn . (58)

Here, ε̃ke is the average of the kinetic energy of electrons generated with the net generation rate (Gn−Rn),
and je, the density of the electron current (current of particles, no electric current). Similarly, as for
electrons, the balance of energy density equation for holes, uh, is expressed by:

∂uh
∂t

= −∇jQh
+ (Gp −Rp)ε̃

k
h +∇(Φpjh)− (Gp −Rp)Φp . (59)

Here, jQh
is the density of the hole’s heat current; jh, the density of the hole’s current (particles current);

Gp, the density of the generation rate; Rp, the density of the hole’s recombination rate; uΦp , the potential
energy of the holes, defined by quasi-Fermi energy Φp.

A was shown by Parrot [29], there is a simple relation between the density of thermal energy current
and the density of entropy current:

jQn = Tejse = Teseve , (60)



Entropy 2015, 17 4129

where se is the density of the electron entropy and ve is an average electron velocity. A similar equation
for holes is expressed by [29]:

jQp = Thjsh = Thshvh , (61)

where sh is the density of the hole entropy and ve is an average hole velocity.
Entropy is not subject to the rules of conservation. Thus, it is difficult to drive an expression for

the entropy balance equation. If we try to use the first law of thermodynamics, applied to the selected
subsystem in the local equilibrium (Equation (52)), the increment of the entropy of electrons may be
expressed by the increments of the particles’ number and energy. It is expressed by the equation:

∂se
∂t

=
1

Te

∂ue
∂t
− Φn

Te

∂n

∂t
. (62)

The balance equation for the electrons density (concentration) has the form:

∂n

∂t
= −∇jn + (Gn −Rn) . (63)

Using Equations (58), (60) and (63), Equation (62) can be converted to the form:

∂se
∂t

= −∇Te
Te

js −∇js +
1

Te
(Gn −Rn)ε̃ke −

∇Φn

Te
jn . (64)

Equation (64) has the form of Equation (57); thus, it is an equation of the entropy density balance.
The source of the density of electron entropy is now given by the expression:

σse = −∇Φn

Te
jn −

∇Te
Te

jse +
1

Te
(Gn −Rn)ε̃ke . (65)

In a steady state, the electrons’ generation rate is equal to the rate of the electrons’ recombination;
thus, expression Equation (65) can be simplified to the form:

σse = −∇Φn

Te
jn −

∇Te
Te

jse . (66)

Similar considerations for holes lead us to the expression for the source of the holes entropy in
steady-state conditions:

σsh =
∇Φp

Th
jp −

∇Th
Th

jsh . (67)

The left side of Equation (66) one can express in two ways. In the first method, the electron current
density and density of their entropy current are derived by the integration of electron velocity h̄~k

m∗
e

inside
the Brillouin zone (BZ) as below.

σse =− 1

4π3

∇Φn

Te

∫
BZ

fCe (~r,~k)
h̄~k

m∗e
d3k

+
kB
4π3

∇Te
Te

∫
BZ

{
fCe (~r,~k) ln fCe (~r,~k) +

[
1− fCe (~r,~k)

]
ln
[
1− fCe (~r,~k)

]} h̄~k

m∗e
d3k (68)

In the second method, the electron current density, as well as the density of entropy current are
expressed by the electron drift velocity ved:

ved = τ e
Fe
m∗e

, (69)



Entropy 2015, 17 4130

where τ e is the average electron relaxation time, m∗e the effective electron mass and Fe is the electron
driving force expressed by:

Fe = −∇Φn − Σe∇Te , (70)

where Σe is Seebeck’s coefficient for electrons. As was shown in Appendix C, Σe = se
n

.
The relaxation time in semiconductors is determined by some different scattering mechanisms [13].

The average relaxation time [5] is expressed by:

τ e =
1

4π3

∫
BZ

fCe τe(ε
k
e(
~k))εke(

~k)d3k
1

4π3

∫
BZ

fCe ε
k
e(
~k)d3k

=
1

4π3

∫
BZ

fCe τe(ε
k
e(
~k))εke(

~k)d3k
3
2
nkBTe

, (71)

where εke(~k) is the kinetic energy of the electron with quasi-momentum h̄~k.
Now, Equation (66) can be expressed in the form:

σse =
Te
4π3

(
∇Φn

Te

)(
∇Φn

Te

)∫
BZ

fCe (~r,~k)
τ e
m∗e

d3k

− kBTe
4π3

(
∇Φn

Te

)(
∇Te
Te

)∫
BZ

{
fCe (~r,~k) ln fCe (~r,~k) +

[
1− fCe (~r,~k)

]
ln
[
1− fCe (~r,~k)

]} τ e
m∗e

d3k

− kBTe
4π3

(
∇Te
Te

)(
∇Φn

Te

)∫
BZ

{
fCe (~r,~k) ln fCe (~r,~k) +

[
1− fCe (~r,~k)

]
ln
[
1− fCe (~r,~k)

]} τ e
m∗e

d3k

+
kB
4π3

(
∇Te
Te

)(
∇Te
Te

)∫
BZ

{
fCe (~r,~k) ln fCe (~r,~k) +

[
1− fCe (~r,~k)

]
ln
[
1− fCe (~r,~k)

]} τ e
m∗e

d3k

· kB
4π3n

∫
BZ

{
fCe (~r,~k) ln fCe (~r,~k) +

[
1− fCe (~r,~k)

]
ln
[
1− fCe (~r,~k)

]}
d3k (72)

Similar considerations for holes lead to two different forms of expressions for σsh:

σsh =
1

4π3

∫
ZB

[
1− fVe (~r,~k)

] h̄~k
m∗h

∇Φh

Th
d3k

+
kB
4π3

∫
ZB

{
fVe (~r,~k) ln fVe (~r,~k) +

[
1− fVe (~r,~k)

]
ln
[
1− fVe (~r,~k)

]} h̄~k

m∗h

∇Φh

Th
d3k (73)

and:

σsh =
Th
4π3

(
∇Φp

Th

)(
∇Φp

Th

)∫
BZ

(
1− fVe (~r,~k)

) τh
m∗h

d3k

+
kBTh
4π3

(
∇Φp

Th

)(
∇Th
Th

)∫
BZ

{
fVe (~r,~k) ln fVe (~r,~k) +

[
1− fVe (~r,~k)

]
ln
[
1− fVe (~r,~k)

]} τh
m∗h

d3k

+
kBTh
4π3

(
∇Th
Th

)(
∇Φp

Th

)∫
BZ

{
fVe (~r,~k) ln fVe (~r,~k) +

[
1− f ve (~r,~k)

]
ln
[
1− fVe (~r,~k)

]} τh
m∗h

d3k

+
kBTh
4π3

(
∇Th
Th

)(
∇Th
Th

)∫
BZ

{
fVe (~r,~k) ln fVe (~r,~k) +

[
1− fVe (~r,~k)

]
ln
[
1− fVe (~r,~k)

]} τh
m∗h

d3k

· kB
4π3p

∫
BZ

{
fVe (~r,~k) ln fVe (~r,~k) +

[
1− fVe (~r,~k)

]
ln
[
1− fVe (~r,~k)

]}
d3k (74)
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C. The Transport Coefficients of Semiconductor Heterostructures in Steady-State Conditions

Forces acting on electric carriers in a semiconductor heterostructure are caused by gradients of
quasi-Fermi energies or the gradient of temperature. To determine them, one has to find the kinetic
coefficients by which these gradients have to be multiplied. Denoting these gradients by ∇Φ and ∇Ψ,
respectively, the usual results, as found for example in the paper of Marshak and van Vliet [2], are:

jel = L11∇Φn + L12∇T (75)

jse = L21∇Φn + L22∇T . (76)

The Onsager conductances (L) are band integrals, such as L11 and L12 for electrical conductance in
a conduction band. The band integrals are found in the classical article by Marshak and van Vliet [2]
and more succinctly in the latter’s recent book [30]. Lindefelt [3] approximated their results by using a
“mean” energy 〈E〉 (cf. his Equation (12)); thus, for Equation (75), he wrote,

jel = nµe{∇Φn + [(〈E〉 − Φn)/Te]∇Te} . (77)

Here, jel is the electron electric current, and µe is the electron mobility.
We also note that the entropy per particle for the conduction band is just given by:

se
n

= (〈E〉 − Φn)/Te . (78)

Thus, relation Equation (77) reads:

jel = nµe{∇Φn +
se
n
∇Te} . (79)

This way, se
n

= Σe is Seebeck’s coefficient.
On the other hand, by multiplying σse (relation Equation (66)) by Te, we obtain the heat energy

generated in a unit of volume and a unit of time, that is εkine ; the kinetic energy of CB electrons (in
J m−3 s−1) reads:

∂qe
∂t

= σseTe = −jse∇Te − je∇Φn = −seve∇Te − nve∇Φn =
∂εke
∂t

. (80)

On the other hand, the time derivative of electron kinetic energy in a unit of volume is equal to:

dεke
dt

= veFe = ve(−n∇Φn − se∇Te) , (81)

where Fe is the mean force acting on all conduction-band electrons in a unit volume. Therefore, now,
the mean force acting on a single electron reads:

Fn
n

= −∇Φn −
se
n
∇Te . (82)

The transport coefficient se
n

= Σe is here recognized as the Seebeck coefficient for electrons.
Similarly as for electrons, by multiplying σsh (relation Equation (67)) by Th, we obtain the heat energy

generated in a unit of volume and a unit of time, that is the kinetic energy of holes (in J m−3 s−1).
This leads to the expression of the mean force acting on all holes in a unit volume:

Fh = p∇Φp − sh∇Th (83)
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and, next, to the expression of the average force acting on a single hole.

Fh
p

= ∇Φp −
sh
p
∇Th . (84)

Seebeck’s coefficient for holes is found as Σh = sh
p

.
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