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Abstract: Stress-strength reliability problems arise frequently in applied statistics and
related fields. Often they involve two independent and possibly small samples of
measurements on strength and breakdown pressures (stress). The goal of the researcher
is to use the measurements to obtain inference on reliability, which is the probability that
stress will exceed strength. This paper addresses the case where reliability is expressed in
terms of an integral which has no closed form solution and where the number of observed
values on stress and strength is small. We find that the Lagrange approach to estimating
constrained likelihood, necessary for inference, often performs poorly. We introduce a
penalized likelihood method and it appears to always work well. We use third order
likelihood methods to partially offset the issue of small samples. The proposed method
is applied to draw inferences on reliability in stress-strength problems with independent
exponentiated exponential distributions. Simulation studies are carried out to assess the
accuracy of the proposed method and to compare it with some standard asymptotic methods.
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1. Introduction

We consider a stress-strength reliability problem, R = P (Y < X), whereX and Y are independently
distributed as exponentiated exponential random variables. In this case, the parameter of interest, R, is
an integral with no closed form solution. Likelihood-based inference for this problem involves, in part,
numerical constrained optimization. The likelihood ratio test, for example, uses constrained maximum
likelihood parameter estimates where the log-likelihood function is maximized subject to the constraint
that the parameter of interest takes on the null-hypothesized value.

A standard approach to solving (equality) constrained problems is to apply the Lagrange method.
Detailed discussions can be found in many reference works in optimization, for example, see [1]. Using
the Lagrange technique, this problem requires that, in each iteration, one parameter has to be used to
guarantee that the integral equality constraint is satisfied up to a given level of numerical accuracy.
Satisfying the constraint involves simultaneous numerical integration and the numerical solution of a
nonlinear equation for the correct parameter value. Moreover, all of this needs to be repeated for each
value of the remaining parameters.

We found that the Lagrange approach led to problems of numerical accuracy and slow convergence.
We also discovered that the integral function was homogeneous of degree 0 in two of the parameters of
the model. The integral is therefore insensitive to equi-proportionate changes in the two parameters and
this complicated optimization.

Penalty function methods are also often used to solve equality and inequality-constrained optimization
problems. See Byrne [2] and the extensive list of references therein. The basic idea is to solve a
constrained optimization problem by solving a sequence of unconstrained problems where constraint
violation is penalized in a successively harsher manner. The sequence of unconstrained optima converges
to the constrained optimum. Smith et al. (2014) [3] demonstrates the accuracy of the penalty method
in a constrained optimization problem. When implementing this approach to the problem considered
in this paper, we found it was numerically stable and rapid in the sense that parameter estimates from
successively more harshly penalized models quickly converged to optimal values and became effectively
insensitive to further penalization.

The remainder of the paper is organized as follows. Section 2 begins with a brief description of
our stress-strength reliability problem. We then examine some of the properties of the unconstrained
likelihood function. This seems necessary because the likelihood function is not concave and generally
cannot be optimized by an algorithm that uses the exact Hessian matrix. We then introduce the integral
constraint and some of its properties together with a numerical example to illustrate how the Lagrange
approach failed. The section concludes with a discussion of some properties and an implementation
of the penalty function approach. Section 3 briefly reviews the likelihood-based third-order method
for inference concerning a scalar parameter of interest when samples are small. Section 4 applies the
approaches developed in Sections 2 and 3 to study inference for the stress-strength reliability problem
with independent exponentiated exponential distributions. Results from simulation studies are presented
to illustrate the extreme accuracy of our suggested approach. Some concluding remarks are given in
Section 5. Technical details related to some issues raised in Section 2 are presented in the Appendix.
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2. Computational Issues and Penalized Likelihood

2.1. Problem

We consider statistical inference for the reliability , R = P (Y < X) where X and Y are
independently distributed with exponentiated exponential distributions. The estimation ofR is important
in the statistical literature and has been widely studied in other areas, such as radiology, mechanical
engineering and materials science. In the context of the stress-strength model, reliability refers
to the probability that the unit’s strength Y is less than the stress X . Following the notation
in [4], the cumulative distribution function of the two-parameter exponentiated exponential distribution,
EE(α, β), is

F (x;α, β) = (1− e−βx)α; α > 0, β > 0, x > 0 (1)

where α is the shape parameter and β is the scale parameter. The EE(α, β) distribution is also known
as the generalized exponential distribution. It is equivalent to the exponentiated Weibull (κ = 1, α, σ)

distribution as introduced in [5], where κ is the first shape parameter, α is the second shape parameter
and σ is the scale parameter. If α = 1, the distribution reduces to the one parameter exponential (β)
model. The EE(α, β) distribution is recognized as a useful model for lifetime data or skewed data. It
has a monotone increasing hazard function when α > 1, decreasing when α < 1 and constant when
α = 1 . It also has a unimodal and right-skewed density function. For a fixed scale parameter value, the
skewness gradually decreases as the shape parameter increases.

Kundu and Gupta [6] and Raqab et al. [7] considered maximum likelihood estimation of R when X
and Y are independent EE(α1, β1) and EE(α2, β2) distributed random variables and where β1 and β2 are
assumed to be the same. ThenR = α1

α1+α2
. Likelihood-based inference forR can then be obtained easily.

However, without the assumption that β1 = β2, then

R = P (Y < X) =

∫ ∞
0

α1β1 (1− e−β1x)α1−1 e−β1x (1− e−β2x)α2 dx (2)

and this integral does not have a known closed form. To obtain likelihood-based inference for R in this
case, it is necessary to solve an optimization problem with an integral constraint. We found that standard
macros, functions and subroutines in popular software packages such as R or Matlab experienced
problems in converging to constrained maximum likelihood estimates in a Lagrange setting. As noted
in the Introduction, a penalized likelihood method is proposed to provide a solution for this constrained
maximization problem.

Once the constrained maximum likelihood estimates have been obtained, likelihood methods can be
used to draw inferences about R. In this paper, the third-order method discussed in Fraser and Reid [8]
is applied. This is known to be very accurate even when the sample sizes are small. See, for example,
Chang and Wong [9] and She et al. [10] where the accuracy of third order methods has been assessed.
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2.2. Unconstrained Likelihood and Its Properties

Let x = (x1, . . . , xn)
′ and y = (y1, . . . , ym)

′ be independent random samples from EE(α1, β1) and
EE(α2, β2) respectively. Then the log-likelihood function is:

l(θ;x, y) =l(α1, β1, α2, β2;x, y)

=n logα1 + n log β1 + (α1 − 1)
n∑
i=1

log(1− e−β1xi)− β1
n∑
i=1

xi

+m logα2 +m log β2 + (α2 − 1)
m∑
j=1

log(1− e−β2yj)− β2
m∑
j=1

yj

(3)

where θ = (α1, α2, β1, β2)
′.

The log-likelihood function is infinitely differentiable and has some interesting properties. In the first
place it is not concave. Nor is it quasiconcave or pseudoconcave or a member of any of the other classes
of generalized concave functions that appear regularly in the literature on optimization. However, the
function is strictly concave in each of its parameters individually. For fixed values of any 3 parameters,
the function reaches a unique maximum with respect to the fourth. The determinant of the Hessian
matrix changes sign throughout the domain of the function. But, the gradient of the log-likelihood
function vanishes at a unique vector of parameter values and at that point and in a neighbourhood
around it the Hessian matrix is negative definite. All of these results are derived in the Appendix. So,
when the function is restricted to an open region about the global optimum, the function is concave.
These results have some important implications regarding how to maximize log-likelihood for any given
sample. In particular, all parameters cannot typically be estimated simultaneously using any algorithm
that uses exact Hessian information. Quasi–Newton techniques (sometimes called variable metric) work
by building an increasingly accurate quadratic approximation to the log-likelihood surface. These will
work in this setting as long as exact Hessians are not used building the surface approximation and
updating the parameters. Hessian matrices from the exponentiated exponential model usually won’t
be negative definite and will lead to inappropriate updating. The Broyden–Fletcher–Goldfarb– Shanno
(BFGS) algorithm can work because some versions of it start with negative definite and symmetric
“approximate” Hessians and update them until they converge to the true Hessian at the optimum. Given
the independence of X and Y it is also possible to concentrate the log-likelihood using the derivative
information on α1 and α2 and then apply simple line searches to find the β parameters. The Appendix
shows why this latter, perhaps more cumbersome, approach will work but only in the unconstrained case.

In summary, obtaining the unconstrained parameter estimates is possible if done carefully. As well,
we found it is often helpful to restrict large changes in parameters during estimation. We recommend box
constraints be placed on parameters during estimation. Preset upper and lower bounds on the parameters
require that the parameters must be chosen from a four dimensional hyper-cube. A version of BFGS that
implants constraints of this type is available in the statistical package, R.
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2.3. The Integral Reliability Constraint

In this paper, the parameter of interest is stress-strength reliability, R = P (Y < X), where X and Y
are independently distributed as EE(α1, β1) and EE(α2, β2) distributions respectively. The constraint
function,R, is given in (2) and has no known closed form solution. Straightforward differentiation shows
that R is an increasing function of α1 and β2 and a decreasing function of α2 and β1. Introducing the
change of variables: z = β1x, the integral constraint can be expressed equivalently as:

R =

∫ ∞
0

α1 (1− e−z)α1−1 e−z (1− e−
β2
β1
z
)α2 dz

This establishes that R is homogeneous of degree 0 in (β1, β2). The contours of R are all constant
along the line in parameter space satisfying β2 = cβ1. This can complicate the numerical optimization
process. It also provides a good reason to introduce the box constraints on the parameters as discussed
in Section 2.2.

2.4. Constrained Optimization: Lagrange

We need to find the constrained maximum likelihood parameter estimates θ̂ψ = (α̃1, α̃2, β̃1, β̃2)
′ for

a given ψ0. This requires that we maximize the log-likelihood function in (3) subject to the constraint
R = ψ(θ) = ψ0 in (2). Using the Lagrange approach, for given values of ψ0 and three of the likelihood
parameters, the constraint R = ψ(θ) = ψ0 can be numerically integrated and the fourth parameter
simultaneously chosen so that the integral constraint holds. The value of the fourth parameter and ψ0 are
held fixed while the log-likelihood function is then maximized with respect to the three “free” likelihood
parameters. This process is iterated until convergence.

There is much that can go wrong in the above iterative process. The likelihood function is not concave,
the equality constraint is highly nonlinear in the parameters, the constraint integral must be evaluated
numerically and then solved numerically and the integral R is homogeneous of degree 0 with respect to
two of the parameters.

We discovered in simulation that this iterative Lagrange method sometimes gave relatively
satisfactory results for some values of ψ0 but it often went astray. Typically it took a long time for
the estimation process to converge. Performance degraded quickly when R was constrained to be closer
to the boundary values of 0 or 1.

Table 1 records one of these situations for a simulated data set from EE(2, 3) and EE(5, 1.6015)
distributions each with a sample size of 10 and ψ0 was set equal to 0.1. Initial attempts to program the
search algorithm in Matlab resulted in floating point overflow and division by zero errors.
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Table 1. Dataset1: Two Simulated Datasets.

Data Set Observations Sample Size

X
0.4977 0.0781 0.3827 0.2694 0.4125

10
0.6414 0.2669 0.1978 0.1968 0.2397

Y
1.7057 1.0191 0.5899 0.9031 0.9207

10
1.9481 2.1290 0.8109 1.6463 1.9842

We next tried Matlab’s built-in macro, “fminsearch”, which uses a simplex search method. This macro
provided the correct unconstrained parameter estimates but failed when constraints were introduced.
The unconstrained parameter estimates are recorded in Table 2. Not surprisingly, these unconstrained
parameter estimates do not solve the constrained optimization problem. They yield a constraint value of
0.0141 as opposed 0.1. Correct results were found using a penalized likelihood method (appearing as
Penalty in the table). This method is introduced below.

Table 2. Parameter Estimates for Dataset1.

Method α1 α2 β1 β2 R Loglikelihood

Unconstrained 4.4239 8.5227 6.7793 2.0262 0.0142 −3.3191
Constrained: Penalty 3.6028 3.2018 5.2707 1.5700 0.0989 −5.1659

We encountered similar problems with small samples and when sample sizes were unequal. We
reprogrammed the Lagrange constrained optimization algorithm in the statistical package R. In addition
to slow, inaccurate and sometimes failed convergence, we also encountered cases of singular matrices
during the optimization process.

2.5. The Penalized Likelihood Approach

As noted in the previous section, we encountered a wide variety of serious numerical problems when
we tried to implement the classical Lagrange approach to our integral equality constrained optimization
problem. We now present a penalized likelihood method, which was also discussed in Smith et al.
(2014) [3], that reliably solves the constrained optimization problems addressed in this paper. We begin
by defining the penalized likelihood function, PL, as:

PL(θ, ψ0;x, y) = l(θ;x, y)− k(R(θ)− ψ0)
2, k > 0 (4)

The function consists of the log-likelihood function l(θ;x, y) and a positive function, k(R(θ)− ψ0)
2,

called the penalty function, that is subtracted from the the likelihood function. Here we consider a
penalty function that is the square of the divergence of R from the constraint value ψ0. The greater is k,
the more the likelihood is penalized (decreased) for given divergences of R from ψ0. Next, consider the
unconstrained problem of maximizing PL(θ, ψ0;x, y) with respect to θ for a given value of k. Formally,
we obtain an optimal vector θ∗k. When k = 0, we obtain the parameter vector that maximizes the
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unconstrained log-likelihood. As k increases and we successively solve the optimization problems, we
obtain a sequence of optimal parameter vectors that converges to the solution of the constrained problem
of choosing θ to maximize l(θ;x, y) subject toR(θ) = ψ0. In contrast to the Lagrange approach, we now
have a sequence of unconstrained optimization problems instead of one constrained problem. This means
the penalty approach may be theoretically more complicated. But, in practice, we found it is faster and
more reliable than the Lagrange approach to our problem. First, the penalty approach does not require
that the equality R(θ) = ψ0 hold at any stage of the optimization process. Instead, divergence of R(θ)
from ψ0 is (increasingly) discouraged as k increases. Many of the numerical problems we encountered
in applying the Lagrange technique arose from trying to impose R(θ) = ψ0 exactly. Second, in practice
as k increases we found that the estimated parameters quickly converged to optimal values and it was not
necessary to continue to increase k and solve additional optimization problems. Finally, the Lagrange
and Penalty approaches are formally dual so that the Lagrange multiplier can be recovered as the limiting
value of the partial derivative of PL with respect to the parameter ψ0.

A recent analysis of the rigorous foundations of the penalty (and other) approaches to constrained
optimization can be found in [2] and the discussion that follows draws upon Byrne’s presentation. We
need very few technical conditions to hold in order for the sequence of PL-maximizing vectors, θ∗k,
to converge to the solution of the constrained optimization problem. First, we need the permissible
parameter values to be drawn from a compact set. We satisfy this condition by imposing box constraints
on the four likelihood parameters. Second, there is a straightforward restriction that l and R are
continuous functions of the parameters. These conditions are satisfied. Finally, we require that the
sequence of optimal vectors, θ∗k, correspond to the global maximum of penalized likelihood for each k.
Our experience is that, for each k, there is only ever one optimum and that occurs where the gradient of
PL vanishes. In all cases the Hessian matrix at the optimum was negative definite.

When implementing the penalty approach we found that when 0.1 < ψ0 < 0.9, there was little gain
from increasing k beyond 10,000. For the extreme values of ψ0, k did not have to exceed 80,000. As
well, short sequences were sufficient. It was not necessary solve separate optimization problems for all
possible values of k.

We obtained parameter estimates from unconstrained optimization of PL using the optim
function in the statistical software package, R. Within optim, we adopted the L-BFGS-B algorithm.
L-BFGS-B was developed by Byrd et al. [11] and is a quasi-Newton optimization variant of the
Broydon-Fletcher-Goldfarb-Shanno (BFGS) algorithm. L-BFGS-B conveniently allows for simple upper
and lower search bounds (box constraints) on the parameters. As noted earlier, L-BFGS-B does not use
an exact Hessian. Instead it updates an approximate Hessian that is guaranteed to be negative definite
and symmetric. The approximate Hessian converges to the true one. Our code is available upon request.

3. Likelihood-based Inference for Any Scalar Parameter of Interest

In this section, we provide a brief review of likelihood-based inference for any scalar parameter of
interest. Let y = (y1, . . . , yn)

′ be a random sample from a distribution with log-likelihood function
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`(θ) = `(θ; y), where θ is a vector parameter with dim(θ) = p. Also let ψ = ψ(θ) be a scalar parameter
of interest. Denote θ̂ to be the overall maximum likelihood estimate, which satisfies

`θ(θ̂) =
∂`(θ)

∂θ

∣∣∣∣
θ=θ̂

= 0

Moreover, denote θ̂ψ as the constrained maximum likelihood estimate of θ for a given ψ(θ) = ψ0. θ̂ and
θ̂ψ can be obtained from the penalized likelihood method discussed in Section 2. Moreover, with θ̂ψ, the
corresponding Lagrange multiplier, K̂, can be obtained. Define the tilted log-likelihood function as

˜̀(θ) = `(θ) + K̂[ψ(θ)− ψ0] (5)

which has the property ˜̀(θ̂ψ) = `(θ̂ψ).
Two widely used likelihood-based methods for obtaining asymptotic confidence interval for ψ are

based on the maximum likelihood estimator of θ and the signed log-likelihood ratio statistic. It is
well-known that (θ̂− θ)′[var(θ̂)]−1(θ̂− θ) is asymptotically distributed as χ2-distribution with p degrees
of freedom, and var(θ̂) can be estimated by the inverse of either the expected Fisher information matrix
or the observed information matrix evaluated at θ̂. In practice, the latter,

v̂ar(θ̂) ≈ j−1θθ′ (θ̂) =
[
−`θθ′(θ̂)

]−1
=

[
−∂

2`(θ)

∂θ∂θ′

]−1
θ=θ̂

is preferred because of the simplicity in calculation. By applying the Delta method, we have

v̂ar(ψ̂) = v̂ar(ψ(θ̂)) ≈ ψ′θ(θ̂)v̂ar(θ̂)ψθ(θ̂) (6)

where ψθ(θ̂) =
∂ψ(θ)
∂θ

∣∣∣
θ=θ̂

. Hence ψ̂−ψ√
v̂ar(ψ̂)

is asymptotically distributed as N(0, 1). Thus a (1− γ)100%
confidence interval of ψ based on the maximum likelihood estimator is(

ψ̂ − zγ/2
√
v̂ar(ψ̂), ψ̂ + zγ/2

√
v̂ar(ψ̂)

)
(7)

where zγ/2 is the (1− γ/2)100th percentile of the standard normal distribution.
Alternatively, with regularity conditions stated in [12], the signed log-likelihood ratio statistic is

r(ψ) = sgn(ψ̂ − ψ){2[`(θ̂)− `(θ̂ψ)]}1/2

= sgn(ψ̂ − ψ){2[`(θ̂)− ˜̀(θ̂ψ)]}1/2
(8)

is asymptotically distributed as N(0, 1). Therefore, a (1− γ)100% confidence interval of ψ based on the
signed log-likelihood ratio statistic is

{ψ : |r(ψ)| ≤ zγ/2} (9)

It should be noted that both methods have rates of convergence only O(n−1/2). While the maximum
likelihood estimator based interval is often preferred because of the simplicity in calculation, the signed
log-likelihood ratio method is invariant to reparametrization and the maximum likelihood estimator
based method is not. Doganaksoy and Schmee [13], showed that the signed log-likelihood ratio statistic
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based interval has better coverage property than the maximum likelihood estimator based interval in
cases they considered.

In recent years, various adjustments to the signed log-likelihood ratio statistic have been proposed
to improve the accuracy of the signed log-likelihood ratio statistic. Reid [14] and Severeni [15] gave
detail overview of this development. In this paper, we consider the modified signed log-likelihood ratio
statistic, which was introduced by [16,17] and has the form

r∗(ψ) = r(ψ) + r(ψ)−1 log

{
Q(ψ)

r(ψ)

}
(10)

where r(ψ) is the signed log-likelihood ratio statistic, and Q(ψ) is a statistic that based on the
log-likelihood function and an ancillary statistic. Barndorff-Nielsen [16,17] showed that r∗(ψ) is
asymptotically distributed as N(0, 1) with rate of convergence O(n−3/2). Hence a 100(1 − γ)%

confidence interval for ψ(θ) is given by

{ψ : |r∗(ψ)| ≤ zγ/2} (11)

However, for a general model, an ancillary statistic might not exist, and even when it does, it might not
be unique. Fraser and Reid [8] showed that Q(ψ) is a standardized maximum likelihood departure in the
canonical parameter scale and Fraser et al. [18] derived the general formula for obtaining the statistic
Q(ψ). More specifically, Fraser et al. [18] obtained the locally defined canonical parameter

ϕ(θ) =
∂`(θ)

∂y
V (12)

where

V = −
(
∂z(y; θ)

∂y

)−1(
∂z(y; θ)

∂θ

)∣∣∣∣∣
θ=θ̂

(13)

is the ancillary direction and z(y; θ) = (z1(y; θ), · · · , zn(y; θ))′ is a vector of pivotal quantities. Then
the standardized maximum likelihood departure in ϕ(θ) scale takes the form:

Q(ψ) = sgn(ψ̂ − ψ) |χ(θ̂)− χ(θ̂ψ)|√
v̂ar(χ(θ̂)− χ(θ̂ψ))

(14)

where
χ(θ) = ψθ(θ̂ψ)ϕ

−1
θ (θ̂ψ)ϕ(θ) (15)

is the recalibrated parameter of interest in the ϕ(θ) scale, and |χ(θ̂)− χ(θ̂ψ)| is a measure of maximum
likelihood departure of |ψ̂ − ψ| in ϕ(θ) scale,

ψθ(θ) =
∂ψ(θ)

∂θ
and ϕθ(θ) =

∂ϕ(θ)

∂θ

Since the exact var(χ(θ̂) − χ(θ̂ψ)) is difficult to obtain, Fraser et al. [18] showed that it can be
approximated by

v̂ar(χ(θ̂)− χ(θ̂ψ)) ≈ ψθ(θ̂ψ)j̃
−1
θθ (θ̂ψ)ψ

′
θ(θ̂ψ)

|j̃(θθ)(θ̂ψ)|
|j(θθ)(θ̂)|

(16)
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where
|j(θθ)(θ̂)| = |jθθ(θ̂)||ϕθ(θ̂)|−2 and |j̃(θθ)(θ̂ψ)| = |j̃θθ(θ̂ψ)||ϕθ(θ̂ψ)|−2

with jθθ(θ) and j̃θθ(θ) being the observed information matrix obtained from the log-likelihood function
and the tilted log-likelihood function respectively. Hence, the confidence interval of ψ based on r∗(ψ)
can be obtained from Equation (11).

4. Application to Stress-Strength Reliability with Independent EE Distributions

In Section 2 the EE distribution was introduced as was the reliability constraint. In Section 4.1, we
consider the case where the scale parameters are different. The proposed penalized likelihood method is
used to obtain the constrained maximum likelihood estimate. The likelihood-based third order method
is then applied to obtain inference for R = P (Y < X). Section 4.2 presents results from some
numerical studies. The special case where the scale parameters are assumed to be equal, and hence,
R = P (Y < X) has a closed-form, is also examined.

4.1. Stress-Strength Reliability with Unequal Scale Parameters

Let X and Y be independently distributed as EE(α1, β1) and EE(α2, β2) respectively. R(θ) is given
in (2) which does not have a closed form when β1 6= β2. Following the steps in Section 3, we first
obtain the overall maximum likelihood estimate θ̂ = (α̂1, α̂2, β̂1, β̂2)

′ and the constrained maximum
likelihood estimate θ̂ψ = (α̃1, α̃2, β̃1, β̃2)

′ by the penalized likelihood method discussed in Section 2.5.
Then observed information matrix jθθ(θ̂) can be obtained accordingly as follows.

jθθ(θ̂) =− `θθ(θ̂)

=



n

α̂2
1

−
n∑
i=1

xi e
−β̂1xi

1− e−β̂1xi
0 0

−
n∑
i=1

xi e
−β̂1xi

1− e−β̂1xi
n

β̂2
1

+ A 0 0

0 0
m

α̂2
2

−
m∑
j=1

yj e
−β̂2yj

1− e−β̂2yj

0 0 −
m∑
j=1

yj e
−β̂2yj

1− e−β̂2yj
m

β̂2
2

+B


where A = (α̂1 − 1)

n∑
i=1

x2i e
−β̂1xi

(1− e−β̂1xi)2
and B = (α̂2 − 1)

m∑
j=1

y2j e
−β̂2yj

(1− e−β̂2yj)2
.

The tilted log-likelihood function l̃(θ) is defined as

l̃(θ) = l(x, y;α1, α2, β1, β2) + K̂[ψ(θ)− ψ]
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where ψ(θ) = R defined by (2). Similarly, we can obtain the constrained maximum likelihood estimate
θ̂ψ = (α̃1, α̃2, β̃1, β̃2)

′ by the penalized likelihood method and K̂ is the Lagrange multiplier, then
constrained observed information matrix j̃θθ(θ̂ψ) can be written as

j̃θθ(θ̂ψ) = −l̃θθ(θ̂ψ) =


j̃α1α1(θ̂ψ) j̃α1α2(θ̂ψ) j̃α1β1(θ̂ψ) j̃α1β2(θ̂ψ)

j̃β1α1(θ̂ψ) j̃β1α2(θ̂ψ) j̃β1β1(θ̂ψ) j̃β1β2(θ̂ψ)

j̃α2α1(θ̂ψ) j̃α2α2(θ̂ψ) j̃α2β1(θ̂ψ) j̃α2β2(θ̂ψ)

j̃β2α1(θ̂ψ) j̃β2α2(θ̂ψ) j̃β2β1(θ̂ψ) j̃β2β2(θ̂ψ)


where

• j̃α1α1(θ̂ψ) =
n

α̃2
1

− K̂ Rα1α1(θ̂ψ), where Rα1α1(θ̂ψ) =
∂2R(θ)

∂α2
1

∣∣∣∣
θ=θ̂ψ

.

• j̃α1α2(θ̂ψ) = −K̂ Rα1α2(θ̂ψ), where Rα1α2(θ̂ψ) =
∂2R(θ)

∂α1∂α2

∣∣∣∣
θ=θ̂ψ

.

• j̃α1β1(θ̂ψ) = −
n∑
i=1

xi e
−β̃1xi

1− e−β̃1xi
− K̂ Rα1β1(θ̂ψ), where Rα1β1(θ̂ψ) =

∂2R(θ)

∂α1∂β1

∣∣∣∣
θ=θ̂ψ

.

• j̃α1β2(θ̂ψ) = −K̂ Rα1β2(θ̂ψ), where Rα1β2(θ̂ψ) =
∂2R(θ)

∂α1∂β2

∣∣∣∣
θ=θ̂ψ

.

• j̃α2α2(θ̂ψ) =
m

α̃2
2 − K̂ Rα2α2(θ̂ψ), where Rα2α2(θ̂ψ) =

∂2R(θ)

∂α2
2

∣∣∣∣
θ=θ̂ψ

.

• j̃α2β1(θ̂ψ) = −K̂ Rα2β1(θ̂ψ), where Rα2β1(θ̂ψ) =
∂2R(θ)

∂α2∂β1

∣∣∣∣
θ=θ̂ψ

.

• j̃α2β2(θ̂ψ) = −
m∑
j=1

yj e
−β̃2yj

1− e−β̃2yj
− K̂ Rα2β2(θ̂ψ), where Rα2β2(θ̂ψ) =

∂2R(θ)

∂α2∂β2

∣∣∣∣
θ=θ̂ψ

.

• j̃β1β1(θ̂ψ) =
m

β̃2
1

+ (α̃1 − 1)
n∑
i=1

x2i e
−β̃1xi

(1− e−β̃1xi)2
− K̂ Rβ1β1(θ̂ψ), where Rβ1β1(θ̂ψ) =

∂2R(θ)

∂β2
1

∣∣∣∣
θ=θ̂ψ

.

• j̃β1β2(θ̂ψ) = −K̂ Rβ1β2(θ̂ψ), where Rβ1β2(θ̂ψ) =
∂2R(θ)

∂β1∂β2

∣∣∣∣
θ=θ̂ψ

.

• j̃β2β2(θ̂ψ) =
m

β̃2
2 + (α̃2 − 1)

m∑
j=1

y2j e
−β̃2yj

(1− e−β̃2yj)2
− K̂ Rβ2β2(θ̂ψ), where Rβ2β2(θ̂ψ) =

∂2R(θ)

∂β2
2

∣∣∣∣
θ=θ̂ψ

.

Thus r(ψ) can be obtained accordingly.
For the problem we are considering, the natural choice of the pivotal quantity is

z = (z1, . . . , zn, zn+1, . . . , zn+m)
′

= (logF (x1;α1, β), . . . , logF (xn;α1, β), logF (y1;α2, β), . . . , logF (ym;α2, β))
′.
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Hence the ancillary direction V is

V =(V1, V2, V3, V4)

=



− log(1− e−β̂1x1) 1− e−β̂1x1

α̂1β̂1e−β̂1x1
−x1
β̂1

0 0

...
...

...

− log(1− e−β̂1xn) 1− e−β̂1xn

α̂1β̂1e−β̂1xn
−xn
β̂1

0 0

0 0 − log(1− e−β̂2y1) 1− e−β̂2y1

α̂2β̂2e−β̂2y1
−y1
β̂2

...
...

...
...

0 0 − log(1− e−β̂2ym) 1− e−β̂2ym

α̂2β̂2e−β̂2ym
−ym
β̂2


Then we can calculate the locally defined canonical parameter ϕ(θ) as

ϕ(θ) =

(
n+m∑
i=1

∂l(θ)

∂wi
V1i,

n+m∑
i=1

∂l(θ)

∂wi
V2i,

n+m∑
i=1

∂l(θ)

∂wi
V3i,

n+m∑
i=1

∂l(θ)

∂wi
V4i

)′
where w = (x1, . . . , xn, y1, . . . , ym)

′ be the observed data. Hence, we also have ϕθ(θ). Therefore,
for this unequal scale parameter case, χ(θ), v̂ar

(
χ(θ̂)− χ(θ̂ψ)

)
, Q(ψ) and r∗(ψ) can be obtained

accordingly. Hence, the (1 − γ)100% confidence interval can be obtained from the modified signed
log-likelihood ratio statistics.

4.2. Numerical Examples

To illustrate the proposed third-order method for interval estimation, the following two data sets
with sample size of 11 and 9 were used: x = (2.1828, 0.5911, 1.0711, 0.9007, 1.7814, 1.3616, 0.8629,
0.2301, 1.5183, 0.8481, 1.0845) and y = ( 0.8874, 1.1482, 0.8227, 0.4086, 0.5596, 1.1978, 1.1324,
0.5625, 1.0679). By assumption, X and Y are independently distributed as EE(α1, β1) and EE(α2, β2)

distributions respectively. We are interested in testing H0 : R = 0.5 vs. H1 : R > 0.5, where
R = P (Y < X) is given in (2). Table 3 present the 90% and 95% confidence intervals (CI) for R based
on the maximum likelihood method (MLE), the signed log-likelihood ratio statistic method (r) and the
proposed third-order method (Proposed). In examining Table 3, we observe that all three methods give
different interval estimates.

Table 3. Interval Estimates of ψ for Example.

90% Confidence Interval 95% Confidence Interval

MLE (0.4223, 0.8179) (0.3843, 0.8557)

r (0.4151, 0.7966) (0.3767, 0.8241)

Proposed (0.4080, 0.7910) (0.3698, 0.8188)
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When the scale parameters is the same, the value of R can be expressed in closed form as
α1

α1 + α2

. This simplifies the analysis. Following the same procedures introduced in Section 3,

v̂ar
(
χ(θ̂)− χ(θ̂ψ)

)
, Q(ψ) and r∗(ψ) can be obtained.

To compare the accuracy of the three methods discussed in this paper, Monte Carlo simulation studies
were conducted. The cases of unequal and equal scale parameters are both examined. For each parameter
configuration and for each sample size, we generate 10,000 random samples from the EE distributions
by using the following transformation:

T = − 1

β
log(1− U1/α)

where U is a uniform variate between 0 and 1.
For each simulated setting, we report the proportion of ψ that fall outside the lower bound of the

confidence interval (lower error), the proportion of ψ that fall outside the upper bound of the confidence
interval (upper error), the proportion of ψ that fall within the confidence interval (central coverage), and
the average bias (Average Bias), which is defined as

Average Bias =
|lower error− 0.025|+ |upper error− 0.025|

2

The nominal values for the lower and the upper errors, the central coverage and the average bias are
0.025, 0.025, 0.95 and 0 respectively. These values reflect the desired properties of the accuracy and
symmetry of the interval estimates of ψ.

Tables 4–6 present simulation results for the unequal scale parameters case, i.e., α1 = 2,

α2 = 5, β1 = 3, and R = 0.1(0.1)0.9 with (n,m) = (10, 10), (10, 50) and (50, 10). Note that, we
fixed R and β2 is determined uniquely by Equation (2). It is clear that the coverage probabilities for R
are poor and the two-tail error probabilities are extremely asymmetric from the MLE method. Results
from the signed log-likelihood method are not satisfactory especially when the two sample sizes are
small or sample sizes are unequal, and it also shows some evidence of asymmetry of two-tail error
probabilities. However, the proposed method gives not only an almost exact coverage probability but
also it has symmetric two-tail error probabilities even for small or uneven sample sizes.

Note that if we had used the built-in macros / subroutines from Matlab or R, our simulation study
could not have been completed because of difficulties in obtaining the constrained maximum likelihood
estimates. Fortunately, we did not encounter any difficulties when the penalized likelihood method
was used.

Tables 7–9 present simulation results for the equal scale parameter case, i.e., α1 = 4, β = 8, and
R = 0.1(0.1)0.9 with (n,m) = (10, 10), (10, 50) and (50, 10). In estimation, we fixed R and α2 is
then determined uniquely by R = α1/(α1 + α2). Again, the proposed method outperformed the other
two methods even when the sample sizes were small. Other simulation results, though not reported here,
essentially corroborate those of Tables 7– 9, and are available upon request. In the equal scale parameter
case, when sample sizes were small, or when R was close to the boundary values, we used the penalized
likelihood method to obtain the constrained maximum likelihood estimates. More simulations have been
performed with the same pattern of results. They are not reported here, but are available on request.



Entropy 2015, 17 4053

Table 4. β1 6= β2, α1 = 2, α2 = 5, β1 = 3 and β2 is obtained by Equation (2),
(n,m) = (10, 10).

R Method Lower Error Upper Error Central Coverage Average Bias

MLE 0.1602 0.0033 0.8365 0.07845

0.1 r 0.0401 0.0177 0.9422 0.01120

Proposed 0.0207 0.0252 0.9541 0.00255

MLE 0.1138 0.0125 0.8737 0.05065

0.2 r 0.0388 0.0235 0.9377 0.00765

Proposed 0.0218 0.0258 0.9524 0.00200

MLE 0.0857 0.0225 0.8918 0.03160

0.3 r 0.0372 0.0262 0.9366 0.00670

Proposed 0.0230 0.0259 0.9527 0.00135

MLE 0.0656 0.0362 0.8982 0.02590

0.4 r 0.0352 0.0294 0.9354 0.00730

Proposed 0.0244 0.0259 0.9497 0.00075

MLE 0.0505 0.0506 0.8989 0.02555

0.5 r 0.0317 0.0328 0.9355 0.00725

Proposed 0.0249 0.0255 0.9496 0.00030

MLE 0.0353 0.0670 0.8977 0.02615

0.6 r 0.0290 0.0359 0.9351 0.00745

Proposed 0.0244 0.0246 0.9510 0.00050

MLE 0.0235 0.0900 0.8865 0.03325

0.7 r 0.0257 0.0394 0.9349 0.00755

Proposed 0.0246 0.0238 0.9516 0.00080

MLE 0.0142 0.1234 0.8624 0.05460

0.8 r 0.0239 0.0419 0.9342 0.00900

Proposed 0.0261 0.0239 0.9500 0.00110

MLE 0.0035 0.1763 0.8202 0.08640

0.9 r 0.0198 0.0465 0.9337 0.01335

Proposed 0.0262 0.0240 0.9498 0.00110
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Table 5. β1 6= β2, α1 = 2, α2 = 5, β1 = 3 and β2 is obtained by Equation (2),
(n,m) = (10, 50).

R Method Lower Error Upper Error Central Coverage Average Bias

MLE 0.1341 0.0046 0.8613 0.06475

0.1 r 0.0399 0.0186 0.9415 0.01065

Proposed 0.0231 0.0246 0.9523 0.00115

MLE 0.1007 0.0131 0.8862 0.04380

0.2 r 0.0370 0.0243 0.9387 0.00635

Proposed 0.0239 0.0251 0.9510 0.00060

MLE 0.0774 0.0249 0.8977 0.02625

0.3 r 0.0349 0.0289 0.9362 0.00690

Proposed 0.0228 0.0270 0.9502 0.00210

MLE 0.0615 0.0353 0.9032 0.02340

0.4 r 0.0327 0.0311 0.9362 0.00690

Proposed 0.0220 0.0260 0.9520 0.00200

MLE 0.0475 0.0488 0.9037 0.02315

0.5 r 0.0294 0.0323 0.9383 0.00585

Proposed 0.0229 0.0240 0.9531 0.00155

MLE 0.0351 0.0682 0.8967 0.02665

0.6 r 0.0278 0.0348 0.9374 0.00630

Proposed 0.0222 0.0222 0.9556 0.00280

MLE 0.0225 0.0962 0.8813 0.03685

0.7 r 0.0256 0.0388 0.9356 0.00720

Proposed 0.0226 0.0227 0.9547 0.00235

MLE 0.0126 0.1249 0.8625 0.05615

0.8 r 0.0217 0.0431 0.9352 0.01070

Proposed 0.0224 0.0242 0.9534 0.00170

MLE 0.0063 0.1779 0.8158 0.08580

0.9 r 0.0168 0.0473 0.9359 0.01525

Proposed 0.0215 0.0238 0.9547 0.00235
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Table 6. β1 6= β2, α1 = 2, α2 = 5, β1 = 3 and β2 is obtained by Equation (2),
(n,m) = (50, 10).

R Method Lower Error Upper Error Central Coverage Average Bias

MLE 0.1257 0.0046 0.8697 0.06055

0.1 r 0.0392 0.0167 0.944115 0.01125

Proposed 0.0207 0.0203 0.9590 0.00450

MLE 0.0885 0.0154 0.8961 0.03655

0.2 r 0.0347 0.0223 0.9430 0.00620

Proposed 0.0226 0.0226 0.9548 0.00240

MLE 0.0657 0.0234 0.9109 0.02115

0.3 r 0.0332 0.0252 0.9416 0.00420

Proposed 0.0221 0.0233 0.9546 0.002130

MLE 0.0497 0.0335 0.9168 0.01660

0.4 r 0.0317 0.0286 0.9397 0.00515

Proposed 0.0228 0.0241 0.9531 0.00155

MLE 0.0368 0.0428 0.9204 0.01480

0.5 r 0.0285 0.0309 0.9405 0.00475

Proposed 0.0222 0.0236 0.9542 0.00210

MLE 0.0264 0.0499 0.9237 0.01315

0.6 r 0.0248 0.034830 0.9422 0.00410

Proposed 0.0215 0.0231 0.9554 0.00270

MLE 0.0184 0.0595 0.9221 0.02055

0.7 r 0.0222 0.0332 0.9446 0.00550

Proposed 0.0206 0.0235 0.9559 0.00295

MLE 0.0112 0.0715 0.9173 0.03015

0.8 r 0.0186 0.0324 0.9490 0.00690

Proposed 0.0196 0.0212 0.9592 0.00460

MLE 0.0055 0.0927 0.9018 0.04360

0.9 r 0.0149 0.0291 0.9560 0.00710

Proposed 0.0183 0.0209 0.9608 0.00540
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Table 7. α1 = 4, β = 8 and α2 satisfies R = α1/(α1 + α2), (n,m) = (10, 10).

R Method Lower Error Upper Error Central Coverage Average Bias

MLE 0.1608 0.0024 0.8368 0.07920

0.1 r 0.0526 0.0189 0.9285 0.01685

Proposed 0.0236 0.0267 0.9497 0.00155

MLE 0.1195 0.0121 0.8684 0.05370

0.2 r 0.0502 0.0236 0.9262 0.01330

Proposed 0.0269 0.0264 0.9467 0.00165

MLE 0.0944 0.0224 0.8832 0.03600

0.3 r 0.0428 0.0256 0.9316 0.00920

Proposed 0.0225 0.0234 0.9541 0.00205

MLE 0.0724 0.0347 0.8929 0.02855

0.4 r 0.0387 0.0277 0.9336 0.00820

Proposed 0.0256 0.0224 0.9520 0.00160

MLE 0.0523 0.0517 0.8960 0.02700

0.5 r 0.0335 0.0328 0.9337 0.00815

Proposed 0.0244 0.0230 0.9526 0.00013

MLE 0.0378 0.0753 0.8869 0.03155

0.6 r 0.0295 0.0400 0.9305 0.00975

Proposed 0.0234 0.0260 0.9506 0.00130

MLE 0.0245 0.0944 0.8811 0.03495

0.7 r 0.0282 0.0454 0.9264 0.01180

Proposed 0.0261 0.0262 0.9477 0.00115

MLE 0.0109 0.1187 0.8704 0.05390

0.8 r 0.0226 0.0467 0.9307 0.01205

Proposed 0.0239 0.0262 0.9499 0.00115

MLE 0.0027 0.1464 0.8509 0.07185

0.9 r 0.0211 0.0499 0.9290 0.01440

Proposed 0.0268 0.0252 0.9480 0.00100
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Table 8. α1 = 4, β = 8 and α2 satisfies R = α1/(α1 + α2), (n,m) = (10, 50).

R Method Lower Error Upper Error Central Coverage Average Bias

MLE 0.0722 0.0093 0.9185 0.03145

0.1 r 0.0302 0.0273 0.9425 0.00375

Proposed 0.0250 0.0261 0.9489 0.00055

MLE 0.0577 0.0206 0.9217 0.01855

0.2 r 0.0287 0.0268 0.9445 0.00275

Proposed 0.0260 0.0244 0.9496 0.00080

MLE 0.0431 0.0327 0.9242 0.01290

0.3 r 0.0276 0.0306 0.9418 0.00410

Proposed 0.0261 0.0257 0.9482 0.00090

MLE 0.0299 0.0412 0.9289 0.01055

0.4 r 0.0216 0.0290 0.9494 0.00370

Proposed 0.0218 0.0227 0.9555 0.00275

MLE 0.0475 0.0488 0.9037 0.02315

0.5 r 0.0234 0.0358 0.9408 0.00620

Proposed 0.0243 0.0269 0.9488 0.00130

MLE 0.0166 0.0688 0.9146 0.02610

0.6 r 0.0221 0.0350 0.9429 0.00645

Proposed 0.0249 0.0254 0.9497 0.00250

MLE 0.0105 0.0789 0.9106 0.03420

0.7 r 0.0206 0.0366 0.9428 0.00800

Proposed 0.0276 0.0229 0.9495 0.00235

MLE 0.0059 0.1021 0.8920 0.04810

0.8 r 0.0195 0.0426 0.9379 0.01155

Proposed 0.0259 0.0269 0.9472 0.00140

MLE 0.0016 0.1210 0.8774 0.05970

0.9 r 0.0160 0.0456 0.9384 0.01480

Proposed 0.0239 0.0249 0.9512 0.00060
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Table 9. α1 = 4, β = 8 and α2 satisfies R = α1/(α1 + α2), (n,m) = (50, 10).

R Method Lower Error Upper Error Central Coverage Average Bias

MLE 0.1120 0.0008 0.8872 0.05560

0.1 r 0.0412 0.0161 0.9427 0.01255

Proposed 0.0230 0.0247 0.9523 0.00115

MLE 0.1011 0.0048 0.8941 0.04815

0.2 r 0.0407 0.0202 0.9319 0.01025

Proposed 0.0261 0.0260 0.9479 0.00105

MLE 0.0805 0.0108 0.9087 0.03485

0.3 r 0.0366 0.0232 0.9402 0.00670

Proposed 0.0248 0.0275 0.9477 0.00135

MLE 0.0648 0.0140 0.9212 0.02540

0.4 r 0.0338 0.0215 0.9447 0.00615

Proposed 0.0238 0.0247 0.9515 0.00075

MLE 0.0551 0.0258 0.9191 0.01545

0.5 r 0.0317 0.0256 0.9427 0.00365

Proposed 0.0242 0.0276 0.9482 0.00170

MLE 0.0437 0.0296 0.9267 0.01165

0.6 r 0.0329 0.0228 0.9443 0.00505

Proposed 0.0247 0.0229 0.9524 0.00120

MLE 0.0332 0.0400 0.9268 0.01160

0.7 r 0.0307 0.0247 0.9446 0.00300

Proposed 0.0257 0.0241 0.9502 0.00080

MLE 0.0228 0.0548 0.9224 0.01600

0.8 r 0.0294 0.0266 0.9440 0.00300

Proposed 0.0256 0.0242 0.9502 0.00070

MLE 0.0098 0.0670 0.9232 0.02860

0.9 r 0.0247 0.0299 0.9454 0.00260

Proposed 0.0234 0.0261 0.9505 0.00135



Entropy 2015, 17 4059

5. Conclusions

A penalized likelihood method is proposed to overcome numerical difficulties that arose in using
the Lagrange method to solve an optimization problem with an integral constraint. The proposed
method is used to obtain constrained maximum likelihood estimates for the stress-strength reliability
with independent exponentiated exponential distributions. In turn, these estimates are used to obtain
inference for the stress-strength reliability via a likelihood-based third order asymptotic method. In
our simulation studies, the penalized likelihood method did not encounter any numerical difficulties in
obtaining the constrained maximum likelihood estimates. Moreover, the likelihood-based third order
asymptotic method gives very accurate results even when the sample sizes are small. Although the paper
is restricted to independent exponentiated exponential distributions, it can easily be extended to other
distributions.
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Appendix

In this appendix, we derive the properties of the unconstrained likelihood function that we stated in
Section 2 of the paper. Some or all of these results may be known in the literature but we have not found
such a source.

Let x = (x1, . . . , xn)
′ and y = (y1, . . . , ym)

′ be independent random samples from EE(α1, β1) and
EE(α2, β2) respectively. Then the log-likelihood function is:

l(θ;x, y) =l(α1, β1, α2, β2;x, y)

=n logα1 + n log β1 + (α1 − 1)
n∑
i=1

log(1− e−β1xi)− β1
n∑
i=1

xi

+m logα2 +m log β2 + (α2 − 1)
m∑
j=1

log(1− e−β2yj)− β2
m∑
j=1

yj

(17)

where θ = (α1, α2, β1, β2)
′. We note that, because of independence of X and Y , the log-likelihood

function is the sum of two functions that are identical except for the parameter and variable names.
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Parameters of one function do not enter the second function. For that reason, we limit our analysis to the
generic log-likelihood function:

l(α, β;x) = n logα + n log β + (α− 1)
n∑
i=1

log(1− e−βxi)− β
n∑
i=1

xi (18)

The first and second partial derivatives are given, using subscript notation, as:

lα =
n

α
+

n∑
i=1

log(1− e−βxi) (19)

lβ =
n

β
+ (α− 1)

n∑
i=1

xie
−βxi

(1− e−βxi)
−

n∑
i=1

xi (20)

lαα = − n

α2
(21)

lββ = − n

β2
− (α− 1)

n∑
i=1

x2i e
−βxi

(1− e−βxi)2
(22)

lαβ =
n∑
i=1

xie
−βxi

(1− e−βxi)
(23)

It is clear from (21) that lαα < 0 as stated in the Section 2. In order to establish that lββ < 0, it is
convenient to rewite Equation (22) as:

lββ = − n

β2
+

n∑
i=1

x2i e
−βxi

(1− e−βxi)2
− α

n∑
i=1

x2i e
−βxi

(1− e−βxi)2
(24)

The first and third terms in Equation (24) are negative but the second term is positive. However, it is
possible to show that the the sum of the first two terms is negative. Note first that n = (1−e−βx1 )2

(1−e−βx1 )2 + · · ·+
(1−e−βxn )2
(1−e−βxn )2 . This allows us to rewrite Equation (24) as:

lββ =
1

β2

(
n∑
i=1

β2x2i e
−βxi − (1− e−βxi)2

(1− e−βxi)2

)
− α

n∑
i=1

x2i e
−βxi

(1− e−βxi)2
(25)

A representative numerator term from the first expression is: β2x2i e
−βxi − (1 − e−βxi)2 which is the

difference of squares and can be re-expressed as:

β2x2i e
−βxi − (1− e−βxi)2 = (βxie

−.5βxi − (1− e−βxi))(βxie−.5βxi + (1− e−βxi))

The second product term on the right hand side is the sum of two positive terms and is therefore positive.
The first product term is always negative when β > 0 and xi > 0. This is because

βxie
−.5βxi − (1− e−βxi) = e−.5βxi

[
βxi − (e.5βxi − e−.5βxi)

]
and using a Taylor expansion of βxi − (e.5βxi − e−.5βxi) < 0 with β > 0 and xi > 0, we see that
βxie

−.5βxi − (1 − e−βxi) < 0. This completes the demonstration that lββ < 0 whenever β > 0 and
xi > 0.
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The log-likelihood function, l(α, β;x), is not a concave function of (α, β) over the domain of the
function. However, it is possible to show that when n > 2, there is a unique maximum of l(α, β;x) that
occurs where lα = 0 and lβ = 0. We begin by showing that there is a unique solution to lα = 0 and
lβ = 0.

Equation (19) can be solved for α as:

α(β) =
−n∑n

i=1 log(1− e−βxi)
(26)

From (26) it is clear that α(β) is monotone increasing and that limβ→0 α(β) = 0. Substituting α(β) into
Equation (20) yields:

n

β
+ (

−n∑n
i=1 log(1− e−βxi)

)
n∑
i=1

xie
−βxi

(1− e−βxi)
−

n∑
i=1

xie
−βxi

(1− e−βxi)
−

n∑
i=1

xi = 0 (27)

The first three terms on the left hand side define a function of β, call it lhs(β), with the property that
lhs(β) is monotone decreasing with limβ→0 lhs(β) = +∞ and limβ→∞ lhs(β) = 0. The fact that
limβ→∞ lhs(β) = 0 is clear by inspection. As well, it is clear that the second term on the left hand side
approaches +∞ as β → 0. What is less obvious is that the sum of the first and third terms limits to
.5
∑n

i=1 xi as β → 0. However, this can be established by writing the sum of the first and third terms
as: 1

β
(n −

∑n
i=1

βxie
−βxi

(1−e−βxi )). If we make the substitution: n = (1−e−βx1 )
(1−e−βx1 ) + · · · +

(1−e−βxn )
(1−e−βxn ) we obtain:

1
β
(n −

∑n
i=1

βxie
−βxi

(1−e−βxi )) = 1
β
(
∑n

i=1
1−e−βxi−βxie−βxi

(1−e−βxi ) ). The result above follows when the exponential
terms are expressed as series and the limit is taken as β → 0. Alternatively, l’Hopital’s rule can be
applied to each term of the sum.

Given that
∑n

i=1 xi > 0 becauseX is a positive random variable, we see that there is a unique solution
to Equation (27).

The final task in this Appendix is to show that the unique point (α, β)∗, where the gradient vanishes,
is the global maximum of the likelihood function. This can be accomplished by showing that the
determinant of the Hessian matrix of l(α, β;x) is strictly positive at (α, β)∗. The determinant of the
Hessian matrix, call it D, can be expressed equivalently as:

D = −A1 − A2 (28)

where:

A1 = −
n

β2
+

n∑
i=1

x2i e
−βxi

(1− e−βxi)2
(29)

and

A2 = B
n∑
i=1

log(1− e−β1xi)
n∑
i=1

x2i e
−βxi

(1− e−βxi)2
+B(

n∑
i=1

xie
−βxi

(1− e−βxi)
)2 (30)

with B = n
(
∑n
i=1 log(1−e−β1xi ))2

> 0. To establish that D > 0 it is sufficient to show that A1 < 0 and
A2

B
< 0. Note that the first two terms in Equation (24) are exactly the same as A1 and we proved the sum

of those terms was negative in the discussion following Equation (24). It remains only to prove that:

n∑
i=1

log(1− e−βxi)
n∑
i=1

x2i e
−βxi

(1− e−βxi)2
+ (

n∑
i=1

xie
−βxi

(1− e−βxi)
)2 < 0 (31)
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Recalling the inequality log(s) < s − 1 and therefore that log(1 − e−t) < −e−t < 0 for all t > 0, we
replace

∑n
i=1 log(1− e−β1xi) by −

∑n
i=1 e

−β1xi and obtain:

−
n∑
i=1

e−βxi
n∑
i=1

x2i e
−βxi

(1− e−βxi)2
+ (

n∑
i=1

xie
−βxi

(1− e−βxi)
)2 < 0 (32)

and note that the inequality in Equation (31) will hold whenever the inequality in Equation (32) holds.
The Cauchy-Schwatz inequality establishes that (

∑n
i=1 uivi)

2 ≤
∑n

i=1 u
2
i

∑n
i=1 v

2
i . Equality holds only

when ui
vi

= K for all i where K is a constant different from 0 or where ui = 0 and/or vi = 0 for all i.

Setting ui = e−.5βxi and vi = xie
−.5βxi

(1−e−βxi ) , we see that the Cauchy-Schwartz inequality establishes the strict
inequality in Equation (32) and therefore the determinant of the Hessian matrix of the log-likelihood
function is positive. In fact, we have proved a stronger result. Suppose that we concentrate the
log-likelihood function by substituting α(β) from Equation (26) into Equation (18). This function
shows how the log-likelihood varies with β assuming that α is always chosen according to lα = 0

as in Equation (26). The second derivative of the concentrated log-likelihood function with respect to
β is exactly equal to the negative of the determinant of the Hessian of the log-likelihood function. We
have proved that this is negative without requiring that β must satisfy lβ = 0 as in Equation (27). As
such, the concentrated log-likelihood function must be strictly concave as a function of β. We therefore
have established a straightforward algorithm to get to the maximum of the log-likelihood function. Use
a simple line search to find the unique β∗ that satisfies Equation (27). This is guaranteed to converge.
The corresponding unique α∗ is then obtained from Equation (26). Alternatively, a search algorithm
using second derivative information from the log-likelihood function could fail. Yee [19] notes possible
problems in estimating EE models using the maximum likelihood function expexp() in the VGAM
package in R.
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