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Abstract: An encryption scheme for colour images using a spatiotemporal chaotic system 

is proposed. Initially, we use the R, G and B components of a colour plain-image to form a 

matrix. Then the matrix is permutated by using zigzag path scrambling. The resultant 

matrix is then passed through a substitution process. Finally, the ciphered colour image is 

obtained from the confused matrix. Theoretical analysis and experimental results indicate 

that the proposed scheme is both secure and practical, which make it suitable for 

encrypting colour images of any size. 
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1. Introduction 

Nowadays the number of colour images which are transmitted over the Internet keeps increasing. 

Therefore, the security of transmitted colour images has attracted the interest of scholars in both science 

and engineering [1]. The encryption of images is different from text encryption due to some inherent 

features of images such as the bulk data capacity and the high correlation among pixels. Therefore, 

traditional encryption schemes such as Data Encryption Algorithm (DEA) and Rivest Shamir Adleman 

(RSA) are not suitable for encryption of images. Chaos contains some superior features, such as 
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sensitivity to initial conditions, ergodicity and random series [2]. For the design of encryption schemes for 

images, such features are of great importance for developing good diffusions and confusions. 

Recently, many encryption schemes based on chaos have been proposed [3–36], including schemes 

for grey-level images [3–7,27] and the schemes for colour images [8–14,20,26,34–36]. Inevitably, most 

of them have proven to be insecure because the trajectories in low dimension chaotic systems are 

periodic for finite precisions in digital computers [15,17,18,21,28,33]. To overcome this flaw, the 

Coupled Map Lattices (CML) system, which is a spatiotemporal chaos [16,37], has been widely 

employed in cryptography [17–23,32]. The CML system contains multiple positive Lyapunov 

exponents, which indicates that its trajectories have longer periodicity in digitalization of finite precision 

computations. Furthermore, the CML system has more parameters for a larger key space when the CML 

system is applied for cryptography. 

As for colour images, each pixel’s value of a colour image consists of R, G and B colour components, 

and each colour component directly determines the intensity of the red, green or blue colour. Because the 

colour images provide more information than grey-level images, they have attracted more and more 

attention [12–14], but most of the previous algorithms for colour images used the same method to 

encrypt their R, G and B components, which is to encrypt the image three times independently. This 

neglects the correlations between R, G and B components and is more vulnerable to attacks [8–14]. To 

overcome this problem, this paper proposes a novel colour image encryption algorithm based on chaos. 

We use CML to encrypt the colour image and make the three components affect each other. The 

permutation and substitution stages effectively reduce the correlations between R, G and B components 

and enhance the encryption performance. 

The remainder of the paper is organized as follows: in Section 2, CML and the permutation method 

used in the proposed algorithm are introduced. In Section 3, the encryption algorithm is described. 

Section 4 provides simulation results. Security analysis is given in Section 5. Finally, this paper is 

concluded in Section 6. 

2. Related Works 

2.1. The CML System 

The CML system is a nonlinear dynamical system with both time and space features. The space refers 

to the lattices. The local maps are nonlinear maps in a lattice. The coupling rules between lattices are the 

spatial neighborhood. Because of the intrinsic nonlinear nature of each local map, the CML system 

exhibits spatiotemporal chaos behavior [16] by the effect of spatial coupling among the local maps. The 

CML system [37] is described as follows: 

( ) )(( )( )1( ) (1 ) ( ) ( 1) ( 1) , 1, 2,...,
2n n n nx j x j x j x j j L
εε τ τ τ+ = − + + + − =  (1)

where n  is the time index, j  is the lattice index, (0,1)ε ∈  is a coupling parameter and L  is the 

lattice size. The periodic boundary condition, i.e., )()( jLxjx nn −=  for any valid j , is used in the  

CML system. ( )xτ  is a logistic map given by: 

( ) (1 ), [0,1], [0, 4]x x x xτ μ μ= − ∈ ∈  (2)
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which is chaotic when 3.57μ > . 

In the proposed scheme, L  is assigned to 7. 0 (1)x , 0 (2)x , 0 (3)x , 0 (4)x , 0 (5)x , 0 (6)x , 0 (7)x , μ , 

ε  serve as secret keys. 

2.2. Zigzag Path Scrambling 

The height of blocks in the encryption process is 3, and the width ranges from 1 to 10. In the 

permutation process, pixels of each block are reshuffled within the block by a zigzag path scrambling 

process as shown in Figure 1. 

 
(a) (b) (c) (d) (e) 

  
(f) (g) (h) 

 
(l) (J) 

Figure 1. Zigzag path scrambling within blocks with different width. (a) width = 1;  

(b) width = 2; (c) width = 3; (d) width = 4; (e) width = 5; (f) width = 6; (g) width = 7;  

(h) width = 8; (i) width = 9; (j) width = 10. 

3. Colour Image Encryption Algorithm Based on Chaos 

Without loss of generality, we assume that the size of the colour plain-image F is M N× .  

Convert F into its R, G and B components rF , gF , bF ; the size of each colour’s (R, G or B)  
matrix is M N× , and the pixels’ values range from 0 to 255. r

kF ( [0, 1]k M N∈ × − ) denotes the k-th 

pixel of rF ; g
kF ( [0, 1]k M N∈ × − ) denotes the k-th pixel of gF ; b

kF ( [0, 1]k M N∈ × − ) denotes the 

kth pixel of bF . 

ε  in Equation (1) is decided by the colour plain-image F: 

[0, 1] [0, 1] [0, 1]

( ) (3 255)r g b
k k k

k M N k M N k M N

F F F M Nε
∈ × − ∈ × − ∈ × −

= + + × × ×    (3)

For different colour plain-image, our scheme has different secret key ε , so it could resist plaintext 

attack effectively. In more details, the encryption process may be summarized in the following steps: 
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Step 1: Use the R, G and B components rF , gF , bF  to form a matrix B with size of ( )3 M N× × : 

0
rF  1

rF  ...... 2
r

M NF × −  1
r

M NF × −  

( ) 2 1
g
M NF × +  ( ) 2 2

g
M NF × +  ...... 1

g
M NF × −  0

gF  1
gF ...... ( ) 2-1

g
M NF ×  ( ) 2

g
M NF ×  

1
b

M NF × −  2
b

M NF × −  ...... 1
bF  0

bF  

The first row of B is composed of pixels of rF  by arranging them from the first one to the last; the 

second is composed of pixels of gF  by swapping the first half and the latter part; the third is composed 

of pixels of bF  by arranging them from the last one to the first. 

Step 2: Iterate the CML using 0 (1)x , 0 (2)x , 0 (3)x , 0 (4)x , 0 (5)x , 0 (6)x , 0 (7)x , μ , ε  to get 

( ) ( 1, 2,..., 7)ix j j = . i  is set to 1 initially. 

Step 3: Using (1)ix , (2)ix , (3)ix , (4)ix , (5)ix , (6)ix  to obtain 1t , 2t , 3t , 1m , 2m , 3m : 

( )15
1 mod ( (1) (1) ) 10 ,10 ,i it x x= − ×    

( )15
2 mod ( (2) (2) ) 10 ,10 ,i it x x= − ×    

( )15
3 mod ( (3) (3) ) 10 ,10 ,i it x x= − ×    

( )15
1 mod ( (4) (4) ) 10 ,256 ,i im x x= − ×    

( )15
2 mod ( (5) (5) ) 10 , 256 ,i im x x= − ×    

( )15
3 mod ( (6) (6) ) 10 , 256 .i im x x= − ×    

1t , 2t , 3t  are used in the permutation process and 1m , 2m , 3m  are used in the substitution process. 

Step 4: Initially, randomly select three integers, assigned as r, g and b, serving as secret keys.  

Compare the value of r, g and b: if r is the maximum, set t = t1 + 1; if g is the maximum, set t = t2 + 1; if 

b is the maximum, set t = t3 + 1. 

Step 5: We assume w represents the width of B processed; w1 represents the width of B not processed. 

Case 1: w1 ≥  t. Select t columns from B after the w-th column, as shown in Figure 2. 

 

Figure 2. The case of w1 ≥  t. 

Set: 

( )15mod ( (7) (7) ) 10 , 1.5i ir x x t= − × ×        



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(1) Permute the selected block of width t for r times using the zigzag path scrambling. 

(2) Confuse the permutated block: implement exclusive OR operation bit-by-bit on the first row of 
the permutated block using 1m ; implement exclusive OR operation bit-by-bit on the second row of the 

permutated block using 2m ; implement exclusive OR operation bit-by-bit on the third row of the 

permutated block using 3m . Then set: 

0 1,t wr B + −= ，  

1 1,t wg B + −= ，  

2 1,t wb B + −= ，  

.w w t= +  

If w M N= × , encryption algorithm finishes. Finally, obtain the ciphered colour image from the 

resultant matrix B. 

Case 2: w1 < t, select w1 columns from B after the w-th column, as shown in Figure 3. 

 

Figure 3. The case of w1 < t. 

Set: 

( )15
1mod ( (7) (7) ) 10 , 1.5i ir x x w= − × ×       . 

(1) Permute the selected block of width w1 for r times using the zigzag path scrambling. 

(2) Confuse the permutated block: implement exclusive OR operation bit-by-bit on the first row of 
the permutated block using 1m ; implement exclusive OR operation bit-by-bit on the second row of the 

permutated block using 2m ; implement exclusive OR operation bit-by-bit on the third row of the 

permutated block using 3m . 

Encryption algorithm finishes. Finally, obtain the ciphered colour image from the resultant matrix B. 

Step 6: Set i=i+1 and then go to Step 2. 

4. Experimental Simulations 

We have used MATLAB 7.6.0 to run programs that realize the proposed algorithm in a personal 

computer with an AMD Athlon (tm) 64 Processor 3000+ 2.00 GHz, 992 MB memory and 60 GB 

hard-disk capacity. The operating system is Microsoft Windows XP. Our simulation results are shown in 

Figures 4 and 5. The colour image “Lena” (Figure 4a) is used as the plain image. Figure 4b–d show its R, 
G and B components, respectively. The secret keys are set as follows: 0 (1) 0.45x = , 0 (2) 0.89x = , 

0 (3) 0.56x = , 0 (4) 0.77x = , 0 (5) 0.22x = , 0 (6) 0.89x = , 0 (7) 0.45x = , 4.0μ = , 45r = , 133g = ,

91b = . 



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(a) (b) (c) (d) 

Figure 4. Colour plain-image “Lena” and its R, G and B components. (a) Colour  

plain-image “Lena”; (b) R component; (c) G component; (d) B component. 

The ciphered colour image is shown in Figure 5a, which becomes an unintelligible colour 

image. Figure 5b–d show the R, G and B components of the ciphered colour image, respectively. 

 
(a) (b) (c) (d) 

Figure 5. Ciphered colour image of “Lena” and its R, G and B components. (a) Ciphered 

colour image of “Lena”; (b) R component; (c) G component; (d) B component. 

5. Performance Analysis 

A good encryption scheme should resist against all kinds of attacks. Security analyses are performed 

on the proposed algorithm in this section. 

5.1. Key Space 

A good encryption scheme should have a large key space size to resist against any kind of brute-force 
attack. In our algorithm, 0 (1)x , 0 (2)x , 0 (3)x , 0 (4)x , 0 (5)x , 0 (6)x , 0 (7)x , μ , ε , r, g and b are used 

as the secret keys. The complexity of brute-force is great, so the key space is large enough for common 

applications to resist brute-force attacks. 

5.2. Histogram Analysis 

The distribution of the ciphered image should be uniform. A histogram as a graph used for showing 

the distribution of pixel values of an image. An adversary can recover the corresponding information 

from the characteristics of the histogram of an image, when the histogram of the image is not flat 

enough. However, the adversary will be unable to do so when the histogram of a ciphered image is 
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uniform. A flat distribution is important in cryptography. 

Figure 6 illustrates the histograms of the colour plain-image “Lena”. Figure 6a shows the histogram 

of the R component; Figure 6b shows the histogram of the G component; Figure 6c shows the histogram 

of the B component. From Figure 6, the histograms of the plain-image are not flat. 

(a) 

(b) (c) 

Figure 6. Histograms of the R, G and B components of the colour plain-image “Lena”.  

(a) Histogram of the R component; (b) histogram of the G component; (c) histogram of  

the B component. 

Figure 7 illustrates the histograms of the ciphered colour image of “Lena”. Figure 7a shows the 

histogram of the R component; Figure 7b shows the histogram of the G component; Figure 7c shows the 

histogram of the B component. It is clear from Figure 7 that the proposed algorithm results in very flat 

distributions and that statistical attacks on our algorithm are not effective. 

0

500

1000

1500

2000

2500

3000

3500

0 50 100 150 200 250

0

500

1000

1500

2000

2500

3000

0 50 100 150 200 250

0

500

1000

1500

2000

2500

3000

3500

0 50 100 150 200 250



Entropy 2015, 17 3884 

 

 

(a) 

(b) (c) 

Figure 7. Histograms of the R, G and B components of the ciphered colour image of “Lena”. 

(a) Histogram of the R component; (b) histogram of the G component; (c) histogram of  

the B component. 

Without loss of generality, the plaintext images in USC-SIPI [38] database such as Girl, 

House, Mandrill and Peppers are included for encryption tests. The results are shown in Figure 8. 

(a) (b) 

Figure 8. Cont.  
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(c) (d) 

(e) (f) 

(g) (h) 

(i) (j) 

Figure 8. Cont.  
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(k) (l) 

Figure 8. Histograms of the R, G and B components of the ciphered colour images. (a) R 

component in ciphered Girl; (b) G component in ciphered Girl; (c) B component in ciphered 

Girl; (d) R component in ciphered House; (e) G component in ciphered House; (f) B 

component in ciphered House; (g) R component in ciphered Mandrill; (h) G component in 

ciphered Mandrill; (i) B component in ciphered Mandrill; (j) R component in ciphered 

Peppers; (k) G component in ciphered Peppers; (l) B component in ciphered Peppers. 

The 2χ  align tests are employed for quantity analysis of the uniformity in ciphered images. The 

value of the 2χ  tests for a ciphered colour image of dimension M N×  is given by the following 

formula: 

22 2255
02 0 0

0 0 0 0

( )( ) ( )igir ib

i

v vv v v v

v v v
χ

=

 −− −= + +  
 

  (4)

where irv , igv  and ibv  are the corresponding R, G and B components of the observed frequency of a 

pixel value i ( 0 255i≤ ≤ ). The is the expected frequency of a pixel value i, so ν0 = (M × N)/256. The 
results obtained by applying the 2χ  tests on 100 encrypted images can be summarized as it follows: in 
98% of the tests, the values obtained were lower than the critical value 2

767,0.05 832.54χ =  and only in 2% of 

tests; the obtained values were lying in the interval [834.632, 861.045], which is close to the critical value 
2
767,0.05 832.54χ = . Table 1 shows the results of 2χ  tests of the five pairs of plaintext/ciphered images. 

Table 1. Results of 2χ  tests. 

Images 
2χ  Tests 

Plaintext Image Ciphered Image 

Lena 712,602.34 812.34 

Grill 15,699,323.29 825.45 

House 772,576.61 815.73 

Mandrill 305,590.38 795.75 

Peppers 1,022,998.32 816.85 
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5.3. Information Entropy Analysis 

Information entropy can indicate the feature of randomness. The global information entropy can be 

calculated as follows: 

2 1

2
0

1
( ) ( ) log

( )

n

i
i i

H m p m
p m

−

=

=   (5)

where m  is the information source and ( )ip m  represents the probability of symbol im . When there are 
82  states of the information source, the same probability appears. For Equation (5), we obtain 
( ) 8H m = , which indicates the completely randomness of the information. Therefore, the information 

entropy of a ciphered image must be close to 8. The closer it is to 8, the less possible it is for the scheme 

to divulge information. Information entropies of the R, G and B components of the ciphered colour 

images of Lena, Girl, House, Mandrill and Peppers are displayed in Table 2. From the table, test results 

based on the proposed algorithm are closer to the ideal value of 8. 

Table 2. Global information entropies of the ciphered colour images. 

Ciphered Images Entropy 

Lena 7.9931 
Grill 7.9947 

House 7.9954 
Mandrill 7.9958 
Peppers 7.9962 

The local Shannon entropy [39] over image blocks is as follows: 

( , )
1

( )
( )

B

k
i

k T
i

H S
H S

k=

=  (6)

where 1 2, ,..., kS S S  are randomly selected non-overlapping blocks image with BT  pixels within a test 

image S  of L  intensity scales and ( )iH S  are computed using Shannon entropy. The local Shannon 

entropy measure is evaluated for the five ciphered images. Non-overlapping image blocks with 
1936BT =  pixels and 30k =  are selected randomly from the ciphered images. The observed value of 

local Shannon entropy [39] should lie in the confidence interval [7.9019, 7.9030], with respect to the  

α-level confidence equal to 0.05. Table 3 shows the results of five ciphered images lie in this 

confidence interval. We can conclude that the ciphered images obtained by the proposed algorithm 

could hardly divulge information. 

Table 3. Local information entropies of the ciphered colour images. 

Ciphered Images Entropy Results 

Lena 7.9021 Success 
Grill 7.9026 Success 

House 7.9027 Success 
Mandrill 7.9023 Success 
Peppers 7.9024 Success 
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5.4. Correlation Analysis 

Correlation between two random series indicates the strength and direction of their linear 

relationship. Therefore, correlation between two adjacent pixels of images is usually applied in image 

processing. The correlation of a recognizable image is usually high because plaintext images are 

information redundant. In cryptography, the correlation of two adjacent pixels should have a low value 

to ensure the security of the ciphered images. 

For evaluation of the correlations, vertically adjacent pixels, diagonally adjacent pixels and 

horizontally adjacent pixels are tested, respectively. Equation (7) calculates the correlation of two 

adjacent pixels: 

cov( , )

( ) ( )
xy

x y
r

D x D y
=  (7)

where: 

1

1
cov( , ) ( ( ))( ( ))

N

i i
i

x y x E x y E y
N =

= − − , 
1

1
( )

N

i
i

E x x
N =

=  , 2

1

1
( ) ( ( ))

N

i
i

D x x E x
N =

= − . 

We choose 1.000 pairs of adjacent pixels randomly in each direction from the R, G and B components 

of the ciphered colour image. Without loss of generality, we plot the correlation distributions of the R, G 

and B components of “Lena” and its ciphered colour image in each direction, as illustrated in  

Figures 9 and 10. Figure 9a–c show the correlation distributions of the R component of “Lena” in each 

direction; Figure 9d–f show the correlation distributions of the G component of “Lena” in each direction; 

Figure 9g–i show the correlation distributions of the B component of “Lena” in each direction;  

Figure 10a–c show the correlation distributions of the R component of the ciphered colour image in each 

direction; Figures 10d–f show the correlation distributions of the G component of the ciphered colour 

image in each direction; Figure 10g–i show the correlation distributions of the B component of the 

ciphered colour image in each direction. The strong correlation between adjacent pixels of the plain 

image is evident as all the dots are congregated along the diagonal in Figure 9a–i. However, in  

Figure 10a–i, the dots are scattered over the entire plane, which indicates that the correlation is greatly 

reduced in the ciphered image. The corresponding correlation coefficients are calculated for ciphered 

Lena, Girl, House, Mandrill and Peppers and are listed in Table 4. 

 
(a) (b) 

Figure 9. Cont.  
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(c) (d) 

 
(e) (f) 

 
(g) (h) 

(i) 

Figure 9. Correlation distributions. (a–c) Correlation distributions of the R component of 

“Lena” in each direction; (d–f) correlation distributions of the G component of “Lena” in 

each direction; (g–i) correlation distributions of the B component of “Lena” in each direction. 
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

 
(g) (h) 

Figure 10. Cont.  
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(i) 

Figure 10. Correlation distributions. (a–c) Correlation distributions of the R component of 

the ciphered colour image in each direction; (d–f) correlation distributions of the G 

component of the ciphered colour image in each direction; (g–i) correlation distributions of 

the B component of the ciphered colour image in each direction. 

Table 4. Correlation coefficients of the R, G and B components of the ciphered images. 

Component Horizontal Vertical Diagonal 

R component in ciphered Lena −0.0032 −0.0006 0.0005 
G component in ciphered Lena −0.0041 0.0056 0.0074 
B component in ciphered Lena 0.0021 −0.0065 −0.0022 
R component in ciphered Girl −0.0012 −0.0014 0.0004 
G component in ciphered Girl 0.0054 −0.0037 −0.0042 
B component in ciphered Girl −0.0003 0.0032 0.0017 

R component in ciphered House 0.0053 −0.0024 −0.0049 
G component in ciphered House −0.0023 0.0008 −0.0017 
B component in ciphered House 0.0046 0.0021 0.0037 

R component in ciphered Mandrill 0.0029 0.0023 −0.0021 
G component in ciphered Mandrill −0.0007 −0.0038 0.0019 
B component in ciphered Mandrill 0.0011 0.0020 0.0015 
R component in ciphered Peppers −0.0020 0.0024 −0.0026 
G component in ciphered Peppers −0.0025 0.0030 −0.0025 
B component in ciphered Peppers 0.0008 0.0011 −0.0016 

From Table 4, in the R, G and B components of the ciphered colour image, correlation coefficients are 

all smaller than 0.01, indicating a negligible correlation between adjacent pixels. 

5.5. Differential Attacks 

Number of Pixels Change Rate (NPCR) shows the number of changed pixels when the value of a 

pixel in the plain image is changed. The NPCR indicates the sensitivity of the scheme to similar plain 

images with a tiny difference; therefore, the NPCR can evaluate the ability of a scheme against chosen 

plaintext attacks. Unified Average Changing Intensity (UACI) shows the average intensity of 

differences between the plain image and the corresponding ciphered image. Therefore, the UACI can 
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evaluate the ability of a scheme for resistance to differential attacks. The NPCR and UACI are as 

follows: 

( , )
NPCR 100%ij

D i j

W H
= ×

×


 (8)

1 2

,

( , ) ( , )1
UACI [ ] 100%

255i j

C i j C i j

W H

−
= ×

×   (9)

where W  and H  are the width and height of the image, respectively; 1C  is the ciphered image for the 

original image; 2C  are the ciphered image that one pixel changed in its plain image. For the pixel where 

its position is ),( ji , if 1 2( , ) ( , )C i j C i j≠ , let ( , ) 1D i j = ; else let ( , ) 0D i j = . NPCR and UACI of R, G 

and B components of Lena, Girl, House, Mandrill and Peppers are listed in Table 5. The idea values of 

UACI and NPCR must approach 99.609375% and 33.463541% respectively [33,40]. The results show 

that the proposed algorithm displays good NPCR and UACI performance against plaintext attacks and 

differential attacks. 

Table 5. NPCR and UACI of R, G and B components of ciphered images. 

Component NPCR UACI 

R component in ciphered Lena 99.59% 33.28% 
G component in ciphered Lena 99.55% 33.33% 
B component in ciphered Lena 99.58% 33.33% 

R component in ciphered Girl 99.45% 33.31% 
G component in ciphered Girl 99.47% 33.34% 
B component in ciphered Girl 99.51% 33.35% 

R component in ciphered House 99.55% 33.38% 
G component in ciphered House 99.53% 33.43% 
B component in ciphered House 99.57% 33.41% 

R component in ciphered Mandrill 99.59% 33.40% 
G component in ciphered Mandrill 99.59% 33.43% 
B component in ciphered Mandrill 99.58% 33.42% 

R component in ciphered Peppers 99.57% 33.33% 
G component in ciphered Peppers 99.57% 33.43% 
B component in ciphered Peppers 99.58% 33.42% 

5.6. Key Sensitivity 

A good encryption scheme should be sensitive to the secret keys and the plaintext. Taking secret key 

0 (1)x  for instance, a sensitivity test on the R component of “Lena” is performed. Figure 11a shows the 

differences between two ciphered R components when 0 (1)x  is changed from 0.45 to 0.45000000001 

while the other keys remain the same. Figure 11b shows the differences between two ciphered R 

components when 1 bit of the pixel data of the R component of “Lena” is changed. Without loss of 

generality, the Girl and Mandrill images are also tested in the same manner. The results are shown in 

Figure 12. 
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(a) (b) 

Figure 11. Sensitivity tests. (a) Differences between two ciphered R components when 

0 (1)x  is changed from 0.45 to 0.45000000001; (b) Differences between two ciphered R 

components when 1 bit of the pixel data of the R component of “Lena” is changed. 

(a) (b) 

(c) (d) 

Figure 12. Sensitivity tests result of Girl and Mandrill. (a) R components when 0 (1)x  is 

changed in Girl; (b) R components when 1 bit is changed in Girl; (c) R components when 

0 (1)x  is changed in Mandrill; (d) R components when 1 bit is changed in Mandrill. 

The experimental results indicate that the proposed scheme is sensitive to the plaintext. A tiny change 

in the plaintext image leads to entirely different changes in the ciphered image. The high sensitivity to 

plaintext ensures the scheme can resist plaintext attacks. 
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5.7. Speed Performance 

To evaluate the running speed, all the tests are implemented in Visual C++ 6.0 under the Windows 

XP Professional operating system, and the computer is an Intel Core 2.4 GHz CPU, 2GB RAM and  

500 GB hard disk. The colour images of Lena, Grill, House, Mandrill and peppers are encrypted by each 

algorithm ten times. The average execution time is 267.5 ms for one round. Therefore, the mean speed 

of encryption of the proposed scheme is 2.87 MB/s. 

5.8. Performance Comparison with Other Colour Image Encryption Schemes 

Some recent excellent image encryption schemes [25,29,35,36] are employed for comparison with 

the proposed scheme. Table 6 lists the mean values obtained for the correlation coefficient of adjacent 

pixels, NPCR, UACI and speed. The results indicate that the performance of the proposed scheme is 

similar or better than the previous excellent schemes. 

Table 6. Comparison with previous excellent encryption schemes. 

Indicator Reference [25] Reference [29] Reference [35] Reference [36] Proposed Scheme 

NPCR 99.24 99.61 99.85 99.48 99.55 
UACI 33.13 33.72 33.58 30.87 33.37 

Horizontal 0.0039 −0.0043 0.01776 0.342 0.0026 
Vertical 0.0059 0.0049 0.04912 0.352 0.0027 
Diagonal 0.0004 0.0057 0.00348 0.298 0.0026 

Speed (MB/s) 3 2.4 0.45 1.65 2.87 

6. Conclusions 

In this paper, we propose a colour image encryption algorithm based on the CML system. Initially, 

we form a matrix using the R, G and B components of a colour plain-image. The simplicity of the 

proposed scheme leads to an easy software implementation. Both experimental results and theoretical 

analysis indicate that the scheme is secure. For future work, we will design a parallel implementation of 

the scheme in order to reduce the execution time. 
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