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Zengqiang Chen 1, Matthias Dehmer 2,3,*, Frank Emmert-Streib 4,5 and Yongtang Shi 6,*

1 College of Computer and Control Engineering, Nankai University, Tianjin 300071, China;
E-Mail: chenzq@nankai.edu.cn

2 Department of Computer Science, Universität der Bundeswehr München,
Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany

3 Department of Mechatronics and Biomedical Computer Science, UMIT, A-6060 Hall in Tyrol, Austria
4 Computational Medicine and Statistical Learning Laboratory, Department of Signal Processing,

Tampere University of Technology, FI-33720 Tampere, Finland; E-Mail: v@bio-complexity.com
5 Institute of Biosciences and Medical Technology, 33520 Tampere, Finland
6 Center for Combinatorics and LPMC-TJKLC, Nankai University, Tianjin 300071, China

* Author to whom correspondence should be addressed; E-Mails: matthias.dehmer@unibw.de (M.D.);
shi@nankai.edu.cn (Y.S.); Tel.: +43-50-8648-3851 (M.D.); +86-22-23503682 (Y.S.);
Fax: +86-22-23509272 (Y.S.).

Academic Editor: Kevin H. Knuth

Received: 18 May 2015 / Accepted: 1 June 2015 / Published: 5 June 2015

Abstract: Shannon entropies for networks have been widely introduced. However, entropies
for weighted graphs have been little investigated. Inspired by the work due to Eagle et al.,
we introduce the concept of graph entropy for special weighted graphs. Furthermore, we
prove extremal properties by using elementary methods of classes of weighted graphs, and
in particular, the one due to Bollobás and Erdös, which is also called the Randić weight. As
a result, we derived statements on dendrimers that have been proven useful for applications.
Finally, some open problems are presented.
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1. Introduction

The study of entropy measures for exploring network-based systems emerged in the late fifties based
on the seminal work due to Shannon [1]. Rashevsky is the first who introduced the so-called structural
information content based on partitions of vertex orbits [2]. Mowshowitz used the the same measure
and proved some properties for graph operations (sum, join, etc.) [3–6]. Moreover, Rashevsky used the
concept of graph entropy to measure the structural complexity of graphs. Here, the complexity of a graph
is based on the well-known Shannon’s entropy. Mowshowitz [3] introduced the entropy of a graph as
an information-theoretic quantity, and he interpreted it as the structural information content of a graph.
Mowshowitz [3] later studied mathematical properties of graph entropies measures thoroughly and also
discussed special applications thereof. Graph entropy measures have been used in various disciplines,
for example for characterizing graph patterns in biology, chemistry and computer science; see [7–14].
Thus, it is not surprising at all to realize that the term “graph entropy” has been defined in various ways.
Another classical example is Körner’s entropy [15], introduced from an information theory-specific point
of view.

Several graph invariants have been used for developing graph entropy measures, such as the
number of vertices, the vertex degree sequences, extended degree sequences (i.e., the second neighbor,
third neighbor, etc.), eigenvalues and connectivity information; see, [16–21]. Distance-based graph
entropies [17,21] are also studied, which are related to the average distance and various Wiener
indices [22–32]. The properties of graph entropies that are based on information functionals by using
degree powers of graphs have been explored, too; see [13,33,34]. The degree power is one of the most
important graph invariants and well studied in graph theory; its also related to the Zagreb index [35–41]
and the zeroth-order Randić index [42–44]. To study results on the properties of degree powers and
Randić indices in depth, we refer to [45,46].

In order to investigate the influence of the structure of social relations between individuals of a
community’s economic development, Eagle et al. [47] developed two new metrics, social diversity and
spatial diversity, to capture the social and spatial diversity of communication ties within a social network
of each individual, by using the entropy for vertices. Following this, we introduce the concept of graph
entropy for weighted graphs. We mention that Dehmer et al. [48] already tackled the problem of defining
the entropy of weighted chemical graphs by using special information functionals. Therefore, this paper
extends the work done in [48] considerably. Another contribution of this paper relates to the study of
extremal values of weighted graphs. We examined the extremal properties of this entropy when using
special graph classes. Here, we use the class of weighted graphs due to Bollobás and Erdös. Finally,
some open problems are presented.

2. Preliminaries

In this paper, “log” denotes the logarithm based on two entirely.
In [47], the authors used the following node entropy. For a given graph G and vertex vi, let di be the

degree of vi. For an edge vivj , one defines:



Entropy 2015, 17 3712

pij =
w(vivj)∑di
j=1w(vivj)

, (1)

where w(vivj) is the weight (or volume) of the edge vivj and w(vivj) > 0. The node entropy has been
defined by:

H(vi) = −
di∑
j=1

pij log(pij). (2)

Motivated by this method, we introduce the definition of the entropy of edge-weighted graphs, which
also can be interpreted as multiple graphs. For an edge-weighted graph, G = (V,E,w), where V , E
and w denote the vertex set, the edge set and the edge weight (sometimes, also called the cost) of G,
respectively. In this paper, we always assume that the edge weight is positive.

Definition 1. For an edge weighted graph G = (V,E,w), the entropy of G is defined by:

I(G,w) = −
∑
uv∈E

puv log(puv), (3)

where puv = w(uv)∑
uv∈E

w(uv)
.

The above definition of the entropy for edge-weighted graphs is based on the probability function (1),
which is used in [47]. In this sense, Definition 1 is a general case of that used by Eagle et al. For any
edge weight w, Theorem 1 provides the extremal values of I(G,w) for graphs with n vertices. However,
if we want to go further to investigate the extremal values of I(G,w), then we need to specify an edge
weight function rather than the general case. After careful consideration, we would like to choose the
Randić weight, which is well studied; for more details, see Section 3.

In the following, we assume all to be edge weighted connected graphs. Let Kn, Pn and Sn be
the complete graph, the path graph and the star graph with n vertices, respectively. A tree is called
a subdivided star if it is obtained from a star by subdividing each edge of the star exactly once, and at
most one edge is subdivided twice. The double star with n vertices, denoted by Sp,q, is the tree obtained
by connecting two centers of two stars Sp and Sq, where p + q = n. The balanced complete bipartite
graph is a complete bipartite graph, such that the numbers of vertices in the two parts are equal or have a
difference of one. The balanced complete multipartite graph is a complete multipartite graph, such that
the number of vertices in any two parts are equal or have a difference of one, which is also called the
Turán graph.

3. Extremal Properties of I(G,w)

The trivial case is that w(e) = c > 0 for each edge e, where c is a constant.

Theorem 1. Let G = (V,E,w) be a graph with n vertices. If w(e) = c for each edge e, where c > 0 is
a constant, then we obtain:

log(n− 1) ≤ I(G,w) ≤ log

(
n(n− 1)

2

)
.
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The left equality holds if and only if G is a tree, and the right equality holds if and only if G is the
complete graph.

Proof. Suppose m = |E|. Since w(e) = c for each edge e, then we get:

I(G,w) = −
∑
e∈E

1

m
log

1

m
=
∑
e∈E

logm

m
= logm.

Since G is connected, we have n− 1 ≤ m ≤
(
n
2

)
. The result is proven.

In 1975, the chemist, Milan Randić [49], proposed a topological index by describing its interpretation
as the “branching index”. It has been proven useful for measuring the extent of branching of the
carbon-atom skeleton of saturated hydrocarbons. This index is nowadays called the Randić index.
Randić noticed that there is a good correlation between this index and several physico-chemical
properties of alkanes; for instance boiling points, chromatographic retention times, enthalpies of
formation, parameters of the Antoine equation for vapor pressure, surface areas, etc. Later, in 1998, two
famous mathematicians, Bollobás and Erdös [50], generalized this index by replacing −1/2 by any real
number α, which is called the general Randić index. In fact, the Randić index became the most popular
and most frequently-employed structure descriptor, used in numerous QSPRand QSARstudies. To study
chemical applications and mathematical results of the Randić index in depth, we refer to [44,49,51].

For an edge e = uv and any real number α, one defines w(e) = (d(u)d(v))α, where d(u) denotes the
degree of u. Then, the general Randić index [44,52,53] is defined as:

Rα(G) =
∑
uv∈E

(d(u)d(v))α. (4)

When α = −1
2
, Equation (4) is just the well-known Randić index [49]. When α = 1, Equation (4) is the

second Zagreb index [54–57]. The case of α = −1 has been also investigated [58].
Now, we list some basic extremal results on Rα(G) for α < 0 that are used in this paper.

Lemma 1 ([44]). (i) Let G be a graph with n vertices and no isolated vertices. For α ∈ (−1/2, 0),
the maximum value of Rα is n(n−1)1+2α

2
, and the minimum value is min{(n − 1)1+α, n

2
(even n), n−3

2
+

21+α(odd n)}; for α ∈ (−∞,−1), the maximum value of Rα is n
2

(even n) or n−3
2

+ 21+α (odd n), and
the minimum value is n(n−1)1+2α

2
.

(ii) Among all trees with n vertices, the star graph Sn attains the minimum value of Rα for α < 0 and
Rα(Sn) = (n − 1)α+1; the path graph Pn attains the maximum value of Rα for α ∈ [−1/2, 0] and
Rα(Pn) = 2α+1 + (n − 3)4α; the subdivided star attains the maximum value of Rα for α ∈ [−∞,−2]

when n ≥ 7, and the Rα-value of the subdivided star is n−1
2

((n− 1)α + 2α) (odd n) or n−2
2

((n− 2)α +

2α) + 4α (even n).

Let G be a graph with n vertices. The Laplacian matrix of G is L(G) = D(G)− A(G), where A(G)

and D(G) = diag(d1, d2, . . . , dn) denote the adjacency matrix of G and the diagonal matrix of vertex
degrees, respectively. Let λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G) = 0 be the eigenvalues of L(G), which are
also called Laplacian eigenvalues of G. In [59], the authors proved the following result.
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Lemma 2 ([59]). Let G be a simple connected graph with n vertices. Then:

1

2

n∑
i=1

d2α+1
i − k

2
λ1(G) ≤ Rα(G) ≤ 1

2

n∑
i=1

d2α+1
i − k

2
λn−1(G),

where k =
n∑
i=1

d2αi − 1
n
(
∑n

i=1 d
α
i )2.

Let I(G,α) be the entropy I(G,w) based on the above stated weight, i.e.,

I(G,α) = −
∑
uv∈E

(d(u)d(v))α∑
uv∈E(d(u)d(v))α

log

(
(d(u)d(v))α∑
uv∈E(d(u)d(v))α

)
.

The above equality can also be expressed as:

I(G,α) = log(Rα(G))− α

Rα(G)

∑
uv∈E

(d(u)d(v))α log(d(u)d(v)).

Now, we can establish inequalities between I(G,α) and Rα.

Theorem 2. Let G be a connected graphs with n vertices. For α < 0, we have:

log(R′)− α ≤ I(G,α) ≤ log(R)− 2α log(n− 1),

where R′ = minRα(G) and R = maxRα(G).

Proof. Since α < 0, we have:

I(G,α) ≤ log(R)− α

R

∑
uv∈E

(d(u)d(v))α log((n− 1)2) = log(R)− 2α log(n− 1)

and
I(G,α) ≥ log(R′)− α

R′

∑
uv∈E

(d(u)d(v))α log(2) = log(R′)− α.

The proof is completed.

From the above stated theorem representing an upper or a lower bound of Rα for α < 0, we can
obtain an upper bound or a lower bound of I(G,α). As an example, we can get some bounds of Rα from
Lemmas 1 and 2.

Corollary 1. (i) Let G be a graph with n vertices and no isolated vertices. For α ∈ (−1/2, 0), we have:

log

(
min{(n− 1)1+α,

n

2
(even n),

n− 3

2
+ 21+α(odd n)}

)
− α ≤ I(G,α) ≤ log (n(n− 1))− 1;

for α ∈ (−∞,−1), when n is even, we have:

log
(
n(n− 1)1+2α

)
− α− 1 ≤ I(G,α) ≤ log (n)− 2α log(n− 1)− 1,

when n is odd, we have:

log
(
n(n− 1)1+2α

)
− α− 1 ≤ I(G,α) ≤ log

(
n− 3 + 22+α

)
− 2α log(n− 1)− 1.
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(ii) Let T be a tree with n vertices. For α ∈ [−1/2, 0], we have:

(α + 1) log(n− 1)− α ≤ I(G,α) ≤ log(1 + (n− 3)2α−1)− 2α log(n− 1) + α + 1;

for α ∈ [−∞,−2], when n is odd, we have:

(α + 1) log(n− 1)− α ≤ I(G,α) ≤ log ((n− 1)α + 2α) + (1− 2α) log(n− 1)− 1,

when n is even, we have:

(α + 1) log(n− 1)− α ≤ I(G,α) ≤ log

(
n− 2

2
((n− 2)α + 2α) + 4α

)
− 2α log(n− 1).

Corollary 2. Let G be a simple connected graph with n vertices. Then:

log

(
1

2

n∑
i=1

d2α+1
i − k

2
λ1(G)

)
− α ≤ I(G,α) ≤ log

(
1

2

n∑
i=1

d2α+1
i − k

2
λn−1(G)

)
− 2α log(n− 1),

where k =
n∑
i=1

d2αi − 1
n
(
∑n

i=1 d
α
i )2.

From the proof of Theorem 2, we get the following result.

Corollary 3. Let G be a graph with n vertices. Let δ and ∆ be the minimum degree and the maximum
degree of G, respectively. Then, for α < 0, we have:

log(R′)− 2α log(δ) ≤ I(G,α) ≤ log(R)− 2α log(∆),

where R′ = minRα(G) and R = maxRα(G).

In the following, we will study some extremal properties of I(G,α) for some classes of graphs.

Theorem 3. Let G = (V,E,w) be a regular graph with n vertices and n ≥ 3. Then, we have:

log n ≤ I(G,α) ≤ log

(
n(n− 1)

2

)
.

The left equality holds if and only if G is the cycle graph, and the right equality holds if and only if G is
the complete graph.

Proof. Suppose G = (V,E,w) is k-regular. Then, k ≥ 2, since G is connected and n ≥ 3. Therefore,
we have:

I(G,α) = −
∑
e∈E

k2α∑
e∈E k

2α
log

k2α∑
e∈E k

2α
= log

nk

2
.

Since 2 ≤ k ≤ n− 1, we have:

log n ≤ I(G,α) ≤ log

(
n(n− 1)

2

)
.

The proof is complete.
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In the following, we prove bounds for complete bipartite graphs. However, it seems not easy to
determine bounds for the complete k-partite graphs.

Theorem 4. Let G = (V,E,w) be a complete bipartite graph with n vertices. Then, we infer:

log(n− 1) ≤ I(G,α) ≤ log
(⌊n

2

⌋ ⌈n
2

⌉)
.

The left equality holds if and only if G is the star graph, and the right equality holds if and only if G is
the balanced complete bipartite graph.

Proof. Suppose G = (V,E,w) is a complete bipartite graph with n vertices, and the two parts have p
and q vertices, respectively. Therefore, p+ q = n. We have:

I(G,α) = −
∑
e∈E

(pq)α∑
e∈E(pq)α

log
(pq)α∑
e∈E(pq)α

= log(pq).

Thus,

log(n− 1) ≤ I(G,α) ≤ log
(⌊n

2

⌋ ⌈n
2

⌉)
.

The left equality holds if and only if p = 1 and q = n− 1, i.e., G is a star. The right equality holds if and
only if p =

⌊
n
2

⌋
and q =

⌈
n
2

⌉
, i.e., G is the balanced complete bipartite graph.

A comet is a tree composed of a star and a pendent path. For any numbers n and 2 ≤ t ≤ n− 1 , we
denote by CS(n, t) the comet of order n with t pendent vertices, i.e., a tree formed by a path Pn−t of
which one end vertex coincides with a pendent vertex of a star St+1 of order t+1. Observe that CS(n, t)

is the path graph if t = 2 and is the star graph if t = n− 1. Then, for 2 ≤ t ≤ n− 2, we have:

I(CS(n, t), α) = log (2α + (2t)α + (t− 1)tα + (n− t− 2)4α)

− α (2α + (2t)α log(2t) + (t− 1)tα log t+ 2(n− t− 2)4α)

2α + (2t)α + (t− 1)tα + (n− t− 2)4α
.

By some elementary calculations, we get the following result.

Theorem 5. Among all comets with n vertices and parameter t,
(i) for α = 1, we have:

I(CS(n, t0), α) ≤ I(CS(n, t), α) ≤ log(n− 1),

the right equality holds if and only if t = n − 1, i.e., CS(n, t) is the star graph, and the left equality
holds if and only if t = t0, where t0 ≥ 3 is the root the equation ∂I(CS(n,t),1)

∂t
= 0, i.e.,

((t2 + t) log t− 6t+ 8n− 14)(2t− 3) = (t2 − 3t+ 4n− 6)((2t+ 1) log t− t− 4

ln 2
− 6).

(ii) For α = −1, we have:
I(CS(n, t), α) ≤ log(n− 1),

the right equality holds if and only if t = n − 1, i.e., CS(n, t) is the star graph, and the left equality
holds if and only if t = t′0, where t′0 ≥ 4 is the root the equation ∂I(CS(n,t),−1)

∂t
= 0, i.e.,

(1 + (2t− 1) log t+ (n− t)t)(2− t2) = (2t− 1 +
(n− t)t

2
)(−2− 2t2 + 2 log t+

4t− t2

ln 2
).
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By performing a numerical study, we also list some values of t0 and t′0 as follows in Table 1.

Table 1. Some values of t0 and t′0.

n 30 40 50 60 100 200 300 400 500 1000

t0 11 15 19 22 25 36 57 74 88 102 155
t′0 18 27 36 45 54 92 190 288 387 486 983

For most of the topological indices on trees with a given number of vertices, we obtain that the star
graph and the path graph are the extremal graphs maximal or minimal values. However, from Theorem 5,
the path graph is not the extremal graph among all trees, as the path graph is also a comet. It seems to
be intricate to determine extremal values of this entropy and to characterize the corresponding extremal
graphs among all trees with a given number of vertices for any real number α.

Similarly, by some elementary calculations, we get the extremal values of double stars.

Theorem 6. For Sp,q, we have that for α ∈ [0.5,+∞),

I(Sbn/2c,dn/2e, α) ≤ I(Sp,q, α) ≤ I(S1,n−1, α);

for α ∈ [−∞,−0.5),
I(S1,n−1, α) ≤ I(Sp,q, α) ≤ I(Sbn/2c,dn/2e, α).

We try to determine the bounds for all values of α. However, the problem seems quite complicated
when α ∈ (−0.5, 0.5).

In [20,60], the authors studied the extremal values of entropy based on different well-known
information functionals for dendrimers, which possess interesting applications in structural chemistry
and computational biology. We also consider the value of I(G,α) for dendrimers.

A dendrimer is a tree with two additional parameters; the progressive degree t and the radius r. Every
internal node of the tree has degree t+1. As in every tree, a dendrimer has one (monocentric dendrimer)
or two (dicentric dendrimer) central nodes; the radius r denotes the (largest) distance from an external
node to the (closer) center. If all external nodes are at a distance r from the center, then the dendrimer
is called homogeneous. Internal nodes different from the central nodes are called branching nodes and
are said to be on the i-th orbit if their distance to the (nearer) center is r. Every branching vertex has one
incoming edge, as well as t outgoing edges.

Let D(t, r) denote the dendrimer graph with parameters t and r. If D(t, r) has only one center, then
we have n = 1 + (t+1)(tr−1)

t−1 . If D(t, r) has only two centers, then we have n = 2(tr+1−1)
t−1 . Observe that

1 ≤ t ≤ n − 2 and 1 ≤ r ≤ bn−1
2
c. As an example, we show dendrimers with one center (left) and

two centers (right), such that t =3 and r = 3 in Figure 1. In addition, the graph is the star if r = 1 and
t = n− 2, while the graph is the path if r = bn−1

2
c and t = 1. In the following, we suppose D(t, r) has

only one center, since the other case is similar. We will show that for α ∈ (−∞, 0), the star graph and
the path graph attain the minimum and maximum value of I(G,α), respectively. However, it seems very
complicated getting such results for α ∈ (0,∞).
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Figure 1. The dendrimers with one center (left) and two centers (right), such that t =3 and
r = 3.

Theorem 7. Let D(t, r) be a dendrimer with n vertices with only one center. Then, for α ∈ (−∞, 0),
we have:

log (2 + (n− 3)2α)− α(n− 3)2α−1

1 + (n− 3)2α−1
≤ I(G,α) ≤ log(n− 1),

the left equality holds if and only if D(t, r) is the path graph, and the right equality holds if and only if
D(t, r) is the star graph.

Proof. If r = 1, i.e., D is a star, then we have I(D,α) = log(t + 1). Since D(t, r) has only one center,
we have n = 1+ (t+1)(tr−1)

t−1 = t+2, i.e., t = n−2. Therefore, in this case, we have I(D,α) = log(n−1).
If t = 1, i.e., D is a path, then by some elementary calculations, we have:

I(D,α) = log (2 + (n− 3)2α)− α(n− 3)2α−1

1 + (n− 3)2α−1
.

In the following, we suppose t ≥ 2, i.e., r ≤ bn−1
2
c − 1. Since D(t, r) has only one center,

then there are (t + 1)tr−1 leaves, and both end vertices of any other edge have degree t + 1. Set
A1 =

∑
uv∈E

(d(u)d(v))α∑
uv∈E(d(u)d(v))

α . Then, we infer:

A1 = (t+ 1)tr−1(t+ 1)α + (n− 1− (t+ 1)tr−1)(t+ 1)2α

= (t+ 1)tr−1(t+ 1)α +
t+ 1

t− 1
(tr−1 − 1)(t+ 1)2α.

Therefore,

I(D,α)

= − (t+ 1)tr−1 · (t+ 1)α

A1

· log

(
(t+ 1)α

A1

)
− (n− 1− (t+ 1)tr−1) · (t+ 1)2α

A1

· log

(
(t+ 1)2α

A1

)
= − (t+ 1)tr−1 · (t+ 1)α

A1

· log

(
(t+ 1)α

A1

)
− t+ 1

t− 1
(tr−1 − 1) · (t+ 1)2α

A1

· log

(
(t+ 1)2α

A1

)
= log

(
tr−1(t+ 1) +

t+ 1

t− 1
(tr−1 − 1)(t+ 1)α

)
− α(tr−1 − 1)(t+ 1)α log(t+ 1)

tr−1(t− 1) + (tr−1 − 1)(t+ 1)α
.
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By substituting n = 1 + (t+1)(tr−1)
t−1 into the above equality, we have:

I(D,α) = log

[
nt− n− 2

t
+

(−t2 + (n− 1)t− n− 2)(t+ 1)α

t(t− 1)

]
− α(−t2 + (n− 1)t− n− 2)(t+ 1)α log(t+ 1)

(nt− n− 2)(t+ 1) + (−t2 + (n− 1)t− n− 2)(t+ 1)α
.

By some elementary calculations, we infer that for α < 0 and a given n, I(D,α) is an increasing
function on t. Thus, I(D,α) attains the minimum when t = 1 and attains the maximum value when
t = n− 2. Thus, we have completed the proof.

4. Summary and Conclusions

Based on the contribution of Eagle et al. [47] investigating vertex entropies, we introduced in our
paper the concept of a graph entropy for weighted graphs. To the best of our knowledge, this problem
has received very little attention so far with only a few exceptions, e.g., [61]. We examined extremal
properties of our entropy definition for special graph classes. Specifically, in this paper, we placed our
emphasis on weighted graphs due to Bollobás and Erdös, which is also called the Randić weight.

As an open problem, it would be interesting to consider the extremal values of I(D,α) among all
dendrimers for α ∈ (0,∞). Furthermore, it is challenging to determine extremal values of I(T, α)

among all trees with n vertices for any real number α. One possible attempt to do this could be based on
establishing some graph transformations, which can increase or decrease the values of the entropy. This
leads to the formulation of the following open problem.

Problem 1. Determine extremal values of I(T, α) among all trees with n vertices for any real number α.

This paper mainly considered edge weights defined by Bollobás and Erdös. For future work, it would
be interesting to consider other edge weights of graphs, such as the sum-connectivity weight [62,63] and
the atom-bond connectivity (ABC) index [64–66], which are well studied with applications in chemistry.
Furthermore, it would be interesting to generalize our definition to (weighted) hypergraphs.

On the other hand, the entropy for vertex-weighted graphs can be defined similarly, which has already
been studied extensively; see [17,19].
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