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Abstract: This paper develops a class of density regression models based on proportional
hazards family, namely, Gamma transformation proportional hazard (Gt-PH) model . Exact
inference for the regression parameters and hazard ratio is derived. These estimators enjoy
some good properties such as unbiased estimation, which may not be shared by other
inference methods such as maximum likelihood estimate (MLE). Generalised confidence
interval and hypothesis testing for regression parameters are also provided. The method
itself is easy to implement in practice. The regression method is also extended to Lasso-based
variable selection.
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1. Introduction

Many regression models can be derived by allowing probability distribution parameter(s) to depend
on covariates, such as generalised linear model (GLM) [1] which typically assumes the mean of a
distribution depends on covariates via a link function. Examples include scale parameter regression [2–6]
and variance function regression [7]. In particular, scale parameter is often well-defined when variance
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function may be infinity under heavy tail circumstance. Scale function provides a more nature dispersion
measure than variance for the non-Gaussian case [8]. Moreover, scale function is a robust measure [2,9]
of loss amounts paid by an insurance company and demand of a product as depicted by its sales via the
popular ‘The SEVERITY Procedure’ in software SAS (www.sas.com).

In this paper we propose a class of density regression models based on proportional hazards family,
which is introduced via the scale parameter of the proportional hazards distribution. The distribution
family is defined as follows: assume that the response variables Y has the probability distribution belong
to proportional hazards family F (y;λ, θ) or proportional reverse hazards family Fr(y;λ, θ) below:

F (y;λ, θ) = 1− [1−G(y;λ)]θ,

Fr(y;λ, θ) = [G(y;λ)]θ, (1)

where θ is usually a scale parameter and G(·;λ) is a distribution function possibly dependent only on λ.
This family of distributions {F (y;λ, θ), θ > 0} is discussed in [10] (Section 7.E. ff.). In general,
we will call θ the proportional parameter and λ the G-parameter. G(y;λ) could even belong to a
one-parameter exponential family: its density function is given by a(x) exp(λTT (x)−A(λ)). Therefore,
the distribution family (1) is indeed a big family of distributions. Examples of family (1) include
Weibull distribution, Gompertz distribution, Lomax distribution, Exponential distribution, Burr type XII
distribution, Kumaraswamy distribution and so on. For example, when G(y;λ) = 1 − exp{−yλ} in
family (1), we have the two-parameter Weibull distribution.

The proportional hazard family (1) has been extensively used to model failure time and carry out
survival analysis. For example, based on the proportional hazards family F (y;λ, θ) = 1− [1−G(y;λ)]θ,
the hazard rate of F equals to θ g(y;λ)

G(y;λ)
, which is proportional to the hazard rate g(y;λ)

G(y;λ)
of G. Where g is

the density function of G, and G(y;λ) = 1 − G(y;λ) is the survival function or reliability function of
G(y;λ).

Like GLM, the effect of covariates x on Y could be set up by modelling parameter θ as a function
of x. In this paper we model log(θ) as a linear regression function of covariates x, that is,

log(θ(x)) = xT β, (2)

where β standards for regression coefficients and xT is the transpose of x. Clearly, model (2) includes
the methods in the SAS SEVERITY procedure which can model the effect of exogenous or regressor
variables on a probability distribution, as long as it has a scale parameter.

Next we develop a method to inference β in Equation (2) via a combination of Gamma random
variable based transformation and ordinary least squares (OLS) estimate. This method is particularly
suitable for small sample without using bootstrap or Bayesian inference. This method is totally different
from existing methods used to fit parametric regression models such as maximum likelihood estimate
(MLE). Section 2 details the exact inference with known parameter λ or G(y;λ), including derivation of
an unbiased minimum variance estimate for β and hazard ratio of the family (1).Generalised confidence
interval estimation and hypothesis testing of regression models are also provided. Section 3 extends
the method to unknown parameter λ. Section 4 further introduces adaptive-Lasso based method for
the proposed Gamma transformation proportional hazard (Gt-PH) regression when variable selection is
required for checking the effect of a big number of covariates x. The numerical performance of the
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proposed regression model estimation, particularly, the algorithm and the comparison with MLE and
asymptotic confidence interval, as well as a real data analysis, are illustrated in Section 5. Finally, a brief
conclusion is presented in Section 6.

2. Inference Method for the Proportional Hazard Model

From now on we focus on proportional hazards family F (y;λ, θ) = 1− [1−G(y;λ)]θ but the method
can be applied to proportional reverse hazards family without much change, see the brief discussion in
Section 6.

First assume that λ or G(y;λ) is known for the proportional hazards family (1). Given independent
observations {xi, Yi}ni=1 of (x, Y ), the MLE of regression coefficient β in Equation (2) is usually derived
by a likelihood function L(β) such as

L(β) =
n∏
i=1

exp(xTi β) [G(Yi;λ)]exp(xTi β)−1g(Yi;λ).

The MLEs of β have no explicit form and only asymptotic unbiased under some regular conditions.
In this section we aim at a simply explicit estimation of β and derivation of its best linear unbiased

estimators (BLUE). Here “best” means the lowest variance of the estimate among linear unbiased
estimates.

Note that Y ∼ F (y;λ, θ), so F (Y ;λ, θ) ∼ U [0, 1), and − log[1 − F (Y ;λ, θ)] ∼ Exp(1). That is,
−θ log(G(Y ;λ)) ∼ Exp(1).

Given {xi, Yi}ni=1, let θi ≡ θ(xi), Si = − log(G(Yi;λ)) then 2 θi Si ∼ χ2(2). As the distribution
χ2(2) is a special case of a Gamma distribution from a Gamma random variable, saying, Γ, and note that
a Gamma distribution is the maximum entropy probability distribution of Γ for which E(log(Γ)) =

ψ(shape − parameter) − log(1/(scale − parameter)) is fixed, where ψ(t) = d log(Γ(t))/dt is the
digamma function. Therefore we have

E[log(Si) + log(θi)] = ψ(1), (3)

V ar[log(Si) + log(θi)] = ψ′(1),

where ψ′(t) = d2 log(Γ(t))/dt2, ψ(1) = −γ with the Euler-Mascheroni constant γ ∼ 0.5772 and
ψ′(1) = π2

6
.

Let
Ui = − log(Si)− γ, (4)

then Equation (3) can be re-written as a standard GLM:

E(Ui) = xTi β, V ar(Ui) = ψ′(1).

Or, in terms of vector and matrix, we have that the regression parameter vector β satisfies GLM

E(U) = Xβ, V ar(U) = ψ′(1)1, (5)

with known model variance ψ′(1). Where X is the matrix consisting of observations on covariates and
has 1 as the 1st column, U is the vector consisting of observations of Ui. We name this method as
Gt-PH model.
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Therefore, according to the Gauss-Markov theorem, an exploit form of the BLUE of regression
parameter vector β and the variance of the estimators of Gt-PH Model can be obtained as follows:

Theorem 1. Under the distribution family (1) and Gt-PH Model (2), the BLUE of β is given by

β̂ = (XTX)−1XTU ,

and the variance of this estimator is given by

V ar(β̂) = ψ′(1) (XTX)−1.

Specially, under a simple linear model of (2): log(θ) = β0 + β1x, we have β̂0 = Ū − x̄β̂1 =

− 1
n

∑
i log(Si) − γ − x̄β̂1 and β̂1 =

∑n
j=1(x1j−x̄)Uj∑n
j=1(xj−x̄)2

= −
∑
j(xj−x̄) logSj∑
j(xj−x̄)2

. var(β̂0) = ψ′(1) x̄2∑n
j=1(xj−x̄)2

,

var(β̂1) = ψ′(1)∑n
j=1(xj−x̄)2

, cov(β̂0, β̂1) = −ψ′(1) x̄∑n
j=1(xj−x̄)2

.

When Theorem 1 provides the BLUE of regression parameter β, we should discuss the estimation of
θ(x0) = exp(xT0 β) at covariates x = x0 and the hazard ratio HR = exp((xa−xb)Tβ) at covariates xa
and xb, which are often interests of practical issues. Theorem 2 below gives the unbiased estimators of
θ(x0) and HR.

Theorem 2. Under the assumptions of Theorem 1, θ(x0) and hazard ratioHR are estimated by θ̂(x0) =

exp(xT0 β̂) and ĤR = exp((xa − xb)T β̂), respectively. And their unbiased estimators are provided
as follows.

For i = 1, · · · , n, let the indicator vector ei = (0, · · · , 0, 1, 0, · · · , 0)T with ith component as
non-zero value 1 only, and let constant ci = −xT0 [XTX]−1XTei, di = −(xa − xb)T [XTX]−1XTei,
then

(1) if all 1 + ci > 0, the unbiased estimator of θ(x0) is given by

θ̃(x0) = exp(−γ
n∑
i=1

ci)
θ̂(x0)∏n

i=1 Γ(1 + ci)
,

with variance (if 1 + 2ci > 0):

V ar(θ̃(x0)) =
n∏
j=1

(
Γ(1 + 2cj)

Γ2(1 + cj)
− 1

)
θ(x0)2.

(2) if all 1 + di > 0, the unbiased estimator of HR is given by

H̃R = exp(−γ
n∑
i=1

di)
ĤR∏n

i=1 Γ(1 + di)
,

with variance (if all 1 + 2di > 0):

V ar(H̃R) =
n∏
j=1

(
Γ(1 + 2dj)

Γ2(1 + dj)
− 1

)
HR2.
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Proof. When λ is known, we try to derive the expectation of θ(x0) at covariate vector x0 =

(1, x01, · · · , x0n)T .
From

log θ̂(x0)− log θ(x0) = xT0

(
β̂ − β

)
= xT0 [XTX]−1XT [U − E(U)],

and note that
U = −(logS1, · · · , logSn)T − γ,

and
E(U) = (log θ1, · · · , log θn)T .

where each Si ∼ Exp(θi).

Let constant ci = −xT0 [XTX]−1XTei, then

log θ̂(x0)− log θ(x0) = γ
n∑
i=1

ci + log

( n∏
j=1

(θjSj)
cj

)
.

Note that each θjSj ∼ Exp(1) and all θjSj are independent, so

θ̂(x0)

θ(x0)
= exp(γ

n∑
i=1

ci)
n∏
j=1

(θjSj)
cj .

E

(
θ̂(x0)

θ(x0)

)
= exp(γ

n∑
i=1

ci)
n∏
j=1

Γ(1 + cj),

subject to all 1 + cj > 0.

V ar

(
θ̂(x0)

θ(x0)

)
= exp(2γ

n∑
j=1

)
n∏
j=1

(
Γ(1 + 2cj)− Γ2(1 + cj)

)
.

subject to all 1 + 2cj > 0. Therefore, the unbias estimator of θ(x0) in Theorem 2 can be obtained from
a simple modification of the estimator θ̂(x0). Along the exact same line, the unbias estimator of HR in
Theorem 2 can be obtained from a simple modification of the estimator ĤR = exp((xa − xb)T β̂).

Clearly, these estimators provide exact estimation while exact statistical inference is preferable for
many reasons, particularly when the sample size is small or not big enough.

2.1. Confidence Intervals

Confidence intervals (or prediction intervals) for fitting a regression function xT0 β of xTβ at x = x0

are useful and often required in practice. Recall an asymptotic normal based confidence interval is given
by point estimate ± (critical value) (standard error of the estimate). The asymptotic normality based
confidence interval can also be derived for xT0 β and θ(x0) = (exp(xT0 β)). In fact, as the BLUE of a
regression function xT0 β could be estimated by xT0 β̂ with known variance π2

6
xT0 (XTX)−1x0, given a

significant level 0 < α < 1, the approximate (1 − α)% confidence interval of the regression function
xT0 β is given by
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(
xT0 β̂ − Zα/2 π

√
xT0 (XTX)−1x0/6, x

T
0 β̂ − Z1−α/2 π

√
xT0 (XTX)−1x0/6

)
.

Similarly, the approximate (1− α)% confidence interval of θ(x0) is given by(
θ̂(x0) e−Zα/2 π

√
xT0 (XTX)−1x0/6, θ̂(x0) e−Z1−α/2 π

√
xT0 (XTX)−1x0/6

)
,

where Zα is the α quantiles of standard normal distribution. Because θ̂(x0) ≡ exp(xT0 β̂) is
approximately log-normal while xT0 β̂ is approximately normal.

However, under the proposed approach, Generalised confidence intervals for the regression function
xT0 β and θ(x0) are available. In fact, under the assumptions and conclusions of Theorems 1 and 2,
note that xT0 β̂ − xT0 β − γ

∑n
i=1 ci =

∑n
j=1 cj log(ξj) with ξj = θjSj independently following Exp(1).

For a given dataset (n,x0, β̂), consider pivotal quantity for β: η = xT0 β̂ − xT0 β − γ
∑n

i=1 ci, which is
a log-linear function of independent Exp(1) variables. If ηα denotes the upper α percentile of η, then
the values η1−α and ηα can be obtained using Monte Carlo simulations, that is, repeatedly generating the
values of η m-times via sampling from log-exponential vector log ξ for the fixed values of (n,x0, β̂). Let
η1−α and ηα+ are the 1− α generalized lower and upper confidence limits for xT0 β̂ − xT0 β − γ

∑n
i=1 ci,

respectively. Therefore, the (1− α)% confidence interval for the regression function xT0 β and θ(x0) are
given respectively by (

xT0 β̂ − γ
n∑
i=1

ci − ηα/2, xT0 β̂ − γ
n∑
i=1

ci − η1−α/2

)
,

and (
θ̂(x0) exp(−γ

n∑
i=1

ci − ηα/2), θ̂(x0) exp(−γ
n∑
i=1

ci − η1−α/2)

)
.

Section 5 will illustrate the performance of asymptotic confidence intervals and exact
ones numerically.

2.2. Regression Parameter Testing

Theorems 1 and 2 give the estimation of regression parameter and hazard ratio. In this section we
discuss hypothesis testing for regression parameter.

In practice we could test a simple regression parameter or a subset of vector β. Without loss of
generality, consider a single regression parameter test: to test if the kth regression coefficient βk (k =

0, 1, · · · , p) equal to a known value βk0.

H0 : βk = βk0 vs H0 : βk 6= βk0.

Note that
βk = (0, · · · , 0, 1, 0, · · · , 0)Tβ,

and let β0 = β except kth component βk = βk0.

Let xk = (0, · · · , 0, 1, 0, · · · , 0)T , then the test is equivalent to

H0 : β = β0 vs H0 : β 6= β0.
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Consider the test statistic
−→
T of the from:

−→
T = xTk β̂ − xTkβ0,

For i = 1, · · · , n, let hi = −xTk
(
XTX

)−1

XTei. Note that, when H0 is true,

−→
T = γ

n∑
i=1

hi +
n∑
i=1

hi log ξi,

where ξi are independent Exp(1) variables.
For a given dataset (n,X,U), consider test statistic: η =

−→
T − γ

∑n
i=1 hi. If ηα denotes the upper α

percentile of η, then given a significant level 0 < α < 1, reject H0 when η > ηα/2 or η < η1−α/2.
The values ηα can be obtained using Monte Carlo simulations, that is, repeatedly generating the values

of η m-times via sampling from log-exponential vector log(ξ) for the fixed values of (n,X,U).

3. Estimation of G-Parameter λ

When λ or G is unknown, whatever the method to obtain λ or the survival function G of G, as long
as G then data U are available, Theorems 1 and can be applied to estimate regression parameter β and
hazard ratio HR respectively. Below provides a method to estimate both β and λ simultaneously.

Let V (λ,β) ≡ 2
∑n

i=1 exp(xTi β) (− log(G(Yi;λ))), then conditional on x,

(1) V (λ,β) ∼ χ2(2n) and

(2) V (λ,β) is a monotone function of λ.

Because, conditional on x,

(1) 2 exp(xTi β) (− log(G(Yi;λ))) = 2θiSi ∼ χ2(2) from Section 2 and

(2) ∂V (λ,β)

∂λ
= 2

∑n
i=1 θi

g′(λ)

G(Yi;λ)
and assume g′(λ) = ∂g(Y ;λ)

∂λ
> 0.

Therefore, we may combine Theorem 1 and

V (λ,β) = 2(n− 1) (6)

to inference both β and λ simultaneously. The numerical studies in Section 5 provide the details of an
algorithm for obtaining λ̂ and β̂.

At the same time, the conditional interval estimate of λ can be given by(
V −1
λ (χ2

α/2(2n)), V −1
λ (χ2

1−α/2(2n))

)
.
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4. Regression Variable Selection Via Adaptive Lasso

If variable selection is required for the proposed Gt-PH model, we outline that any modern Lasso-type
of estimate for ordinary linear regression can be implemented here straightaway. We use the adaptive
lasso [11] to outline variable selection in the regression model.

The lasso estimates for a regression model E(y) = xTβ are defined as

β̂(lasso) = argminβ||y −
p∑
j=1

xjβj||2 + δ

p∑
j=1

|βj|, (7)

where δ is a nonnegative regularization parameter. The second term in (7) is the so-called L1 penalty,
which is crucial for the success of the lasso.

An ideal lasso procedure should be able to identify the true model with probability one, and provide
consistent and efficient estimators for the relevant regression coefficients. We use a convex adaptive
lasso penalty to illustrate its suitability of our regression model, but many penalties can be applied
with regression model (2). This adaptive penalty adapts each coefficient with a weight to reflect the
importance of the corresponding covariate, which is equivalent to using different tuning parameters for
different coefficients. The coefficients of unimportant covariates are assigned larger weights so that they
can be shrunk to zero more easily, leading to the oracle property [11].

When β in regression function (2) satisfies regression model (5), an adaptive lasso for estimating β
could be derived via

β̂(adaptlasso) = argminβ||U −
p∑
j=0

xjβj||2 + δn

p∑
j=0

wj|βj|, (8)

where w = (w0, .., wp)
T is a known weights vector. If the weights are data-dependent such as wj =

1/|β̂(initial)
j | with an initial estimator β̂(initial)

j , then the weighted lasso can have the oracle properties.
The reciprocal of any consistent estimator of β can be used as the adapting weights; here we may
suggest the maximum likelihood estimator of β.

That is, let A = {j : βj 6= 0} and assume that |A| = q < p, then the true regression model
depends only on a subset of x. According to Theorem 1 that the

√
n(β̂ − β) has zero bias and variance

ψ′(1)(X
TX
n

)−1, so that
√
n(β̂ − β) = Op(1) when n → ∞. According to the Theorem 2 in [11] we

have

Theorem 3. suppose that δn = o(
√
n) and δnn(ν−1)/2 →∞, then

(i) β̂(adaptlasso) can identify the right subset model A.

(ii) β̂(adaptlasso) has the optimal estimation rate,

√
n

(
β̂(adaptlasso)− β(adaptlasso)

)
→ N(0, Σ),

where Σ = ψ′(1)(X
T

AXA
n

)−1 with XA derived from a sub-matrix of X which corresponds to the true
subset model. Clearly,XT

AXA is a q × q matrix.
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Finally, existing algorithms and software for adaptive lasso such as the R-package Package
“parcor” [12] can be implemented for the proposed Gt-PH model straightaway.

5. Numerical Analysis

In this section we first carry out some numerical analysis to illustrate the performance of the proposed
Gt-PH regression method and make some comparison with MLE-based inference, which we focus on
finite sample performance of estimators of regression parameter β and G-parameter λ. Then we apply
the proposed Gt-PH model to a real data analysis which models the effect of age, gender and body mass
index (BMI) on the length of stay (LOS) of heart attach patients.

Our algorithm for estimating λ and β in the proposed Gt-PH model is in Algorithm 1:
Algorithm 1: Algorithm for estimating λ and β in the proposed Gt-PH model.

(I) Given data (x,Y ), use Y only to fit F (y;λ, θ) by a method such as MLE with R-function fitdistr
to obtain an initial estimate of λ;

(II) known λ, obtain observed vector U from Ui = − log(G(Yi;λ)− γ;

(III) obtain the estimators of β via a linear regression model (5) with data (x,U) with R-function lm;

(IV) plug the estimators of β into (III) and estimate λ via Equation (6): V (λ,β) = 2(n− 1);

(V) repeat steps (II), III) and (IV) until convergence.

In contrast, given data (x,Y ) the MLE-based algorithm to fit regression model (2) is based on the
log-likelihood function of (β, λ), which is given by

l(β, λ) ∝
n∑
i=1

q∑
j=1

βjxij +
n∑
i=1

log g(Yi;λ) +
n∑
i=1

q∑
j=1

(βjxij) log(Ḡ(Yi;λ)).

Then MLEs of β and λ can be derived via the partial derivatives of l(β, λ).
For example, consider a simple linear regression model via parameter θ: θ = exp(β0 + β1x) depends

on x, for a Weibull distribution with Y ∼ F (y;λ, θ) = 1 − exp(−θyλ), then G(y;λ) = 1 − exp(−yλ)
and the (conditional) likelihood function is given by

L((x,y); β0, β1, λ) = λn
n∏
i=1

θiY
λ−1
i exp(−θiY λ

i ),

and then the log-likelihood function is given by

l(β0, β1, λ) = n log(λ) +
∑
i

log(θi) + (λ− 1)
∑
i

log(Yi)−
∑
i

θiY
λ
i .

= n log(λ) + nβ0 + β1

∑
i

xi + (λ− 1)
∑
i

log Yi + exp(−β0)
∑
i

exp(−β1xi)Y
λ
i .
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Then the MLEs for (λ, β0, β1) satisfy

0 = λ2 exp(−β0)
1

n

∑
i

exp(−β1xi)Y
λ−1
i + λ

1

n

∑
i

log(Yi) + 1

β0 = log(
1

n

∑
i

exp(−β1xi)Y
λ
i )

exp(β0)
∑
i

xi =
∑
i

xiY
λ
i exp(−β1xi). (9)

Now let the true values (β0, β1, λ) = (−1, −1, 0.5). We assess the performance of the proposed
Gt-PH algorithm and MLE via the experiment with three different sample sizes: n = 20, 50, 100 for data
(xi, yi) (i = 1, · · · , n). Table 1 summaries the biases and mean square error (MSE)s of each parameter
estimator from both Gt-PH model and MLE method under 2000 times of replications.

Table 1. The biases and mean square error (MSE)s of the estimators of the parameters
(λ, β0, β1).

n Parameter Method Bias MSE

Gt-PH –0.0081 0.0905
λ

MLE 0.0522 0.1083

Gt-PH 0.0036 0.0904
20 β0 MLE 0.0152 0.0989

Gt-PH –0.0014 0.0989
β1 MLE 0.01632 0.1231

Gt-PH –0.0032 0.0712
λ

MLE 0.0374 0.0923

Gt-PH 0.0020 0.0336
50 β0 MLE –0.0145 0.0892

Gt-PH –0.0054 0.0359
β1 MLE 0.0095 0.0892

Gt-PH 0.0018 0.0523
λ

MLE 0.0075 0.0801

Gt-PH 0.0001 0.0173
100 β0 MLE –0.0023 0.0154

Gt-PH 0.0001 0.0174
β1 MLE 0.0015 0.0452

Clearly, the Gt-PH model is premising for sample size less than 100, but it’s does not always
outperform over MLE for sample size equal 100 or more than 100.
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We have also checked the performance of new method with other values of λ = 1, 1.5. It seem that the
G-parameter has little impact on regression estimation. That is, given the regression model (2), selection
of λ = 1 or λ > 1 or λ < 1 has very little impact on the estimate of β.

In terms of confidence interval for regression function and hazard function, under the liner regression
log(θ(x)) = β0 + β1x, we have xT (XTX)−1x = X̄2−2xX̄+x2∑n

i=1(Xi−X̄)2
. Figure 1 at the bottom of this

paper plots the 95% confidence intervals for both fitted regression line and hazard function. Clearly,
generalised confidence intervals have good coverage properties and much shorter interval lengths than
approximate intervals.

Regression and Confidence Interval

x

Hazard fucntion and Confidence Interval

x

Figure 1. (Left): Fitted regression line (black line) for log θ(x) = −1 − x and its
95% generalised confidence intervals by the proposed method (blue lines) and normal
approximate method (red lines). (Right): Fitted hazard function θ(x) (black curve) and
its 95% generalised confidence intervals by the proposed method (blue curves) and normal
approximate method (red curves).

LOS of Worcester Heart Attack Study

Based on the Worcester Heart Attack Study [13] we aim to investigate how the age (years), gender
(female = 1 and male = 0) and BMI affect LOS. As the distribution of LOS is typically skewed, we use
a Weibull distribution to modeling LOS and then fit a regression of LOS over gender, age, interaction
of gender and age as well as BMI via the proposed Gt-PH regression, based on the data WHAS100
Data [13] whose size is 100.

The regression model (2) for this special case and aim is introduced as

log(θ) = β0 + β1Gender + β2Age+ β3Age×Gender + β4BMI.

We are then able to check and compare the effect of the factors on the distribution of LOS via the
estimators of these regression parameters.
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According to our algorithm, we first fit a Weibull distribution F (y;λ, θ) = 1 − exp(−θyλ) to obtain
an initial value of λ0 = 1.421, then replace the θ by the regression above and start the Gt-PH algorithm.
After around 10 times of iteration we observe the convergence and obtain the fitted regression model as

log(θ̂) = −2.745 + 25.825×Gender − 0.104× Age− 0.461× Age×Gender − 0.224×BMI.

and λ = 1.432. Then we could have many different ways for interpretation of the analysis. For example,
we could get proper interpretation of the analysis via the median of LOS: note that the logarithm of the
median of LOS under the Weibull assumption and fitted Gt-PH model is given by

log(median)

= (− log(θ) + log(2))/λ

= 2.610− 18.034×Gender + 0.0727× Age+ 0.322×Gender × Age+ 0.156×BMI.

Clearly, in terms of logarithm of the median of LOS, female patients stay about 18 days shorter than
male patients in hospital, and it increases 0.0727 days when patient age increases 1 year. Finally, the
interaction of gener and age as well BMI have positive effect on LOS.

6. Discussion

Regression analysis is one of the most important methods in statistics, which is widely used in
almost all science and social science research. The proposed Gt-PH (proportional hazard family-based
regression) models and their inference methods in this paper are suitable for not only small data analysis
but also big data based variable selection. The method and algorithm are easy to implement and have
good interpretation in practice.

The method can also be applied to the proportional reverse hazard family Fr(y;λ, θ) defined in (1)
straightway. In fact, if a random variable Y belongs to the family, then − log(Fr(Y ;λ, θ)) ∼ Exp(1), so
θ(− log(G(λ))) ∼ Exp(1). Let the random variable S = − log(G(Y ;λ)), then Equation (3) holds.

However, the new method is only suitable for the proportional hazard family and reverse hazard
family. Extension to more general family of distribution will be discussed in another paper.
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