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Abstract: The entropy production (inside the volume bounded by a photosphere) of  

main-sequence stars, subgiants, giants, and supergiants is calculated based on B–V 

photometry data. A non-linear inverse relationship of thermodynamic fluxes and forces as 

well as an almost constant specific (per volume) entropy production of main-sequence stars 

(for 95% of stars, this quantity lies within 0.5 to 2.2 of the corresponding solar magnitude) 

is found. The obtained results are discussed from the perspective of known extreme 

principles related to entropy production. 
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1. Introduction 

Entropy production is a crucial characteristic of a nonequilibrium system that has attracted the 

interest of scientists for many decades. In part, this can be explained by the close relationship of this 

quantity with a number of variational principles of nonequilibrium thermodynamics. Minimum and 

maximum entropy production principles are among the most well-known [1–4]. Despite a seeming 

mutual negation, these variational principles do not contradict each other but are complementary and 

OPEN ACCESS



Entropy 2015, 17 3646 

 

 

valid depending on the restricting conditions under which a system is considered [3,4]. The use of such 

variational principles proves to be important both for the foundation of nonequilibrium physics and for 

calculations: from heat-conduction problems to the solution of the Boltzmann equation [1–4]. It should 

be noted that the quantity of entropy production is convenient from the standpoint of theory and 

calculations but not always easy to determine in experiments: it is measured only indirectly and special 

conditions of a nonequilibrium system are preferable (for example, isolated or stationary). All these 

facts severely restrict the accuracy of determinations of this quantity and the range of systems for 

which it can be experimentally determined. In this regard, stars are extremely important. For such 

calculations, we believe they have the following advantages: (1) this nonequilibrium system remains in 

a nonequilibrium steady state for a long period of time because of the nuclear fusions in its core  

(see, for example, [5–9]); (2) entropy production can be easily calculated on the basis of experimental 

data of star luminosities and surface temperatures, and these data can be obtained from astronomical 

observations with a sufficiently high accuracy [8–12]; (3) there are reliable experimental data and 

developed theoretical models related to stellar evolution (see, for example, [11,12]); and (4) enormous 

number of stars and their photometric data represents an almost inexhaustible supply of statistical 

material which individual samples can be used to test various hypotheses regarding the behavior of 

entropy production, its extremeness included. 

In spite of the above, as well as an obvious interest in the stars themselves as crucial objects in the 

Universe (constituting its predominant visible part and having a great impact on its evolution), experts 

in nonequilibrium thermodynamics have previously paid little attention to them. The authors are aware 

of only two series of theoretical papers. The first one [5–7] considers the issues of steadiness of the 

stars with different reaction types (proton–proton and carbon–nitrogen–oxygen) from the viewpoint of 

Prigogine’s criterion, whereas in the second one [9], the four stellar structure equations are 

reformulated as two alternate pairs of variational principles related to entropy production. In fact, these 

studies use entropy production and principles based thereon to reformulate, in terms of nonequilibrium 

thermodynamics, laws and restrictions that are already known for stars. However, these papers have an 

important corollary: the contributions of nuclear burning in the core, of conductive, radiative and 

convective transfer, and neutrinos to the total entropy production of a star are estimated. As the 

analysis shows [9], the main contribution to entropy production is connected with the heat-transfer 

processes occurring near a photosphere's surface (their input is inversely proportional to the effective 

temperature of a star, whereas, for instance, the contribution of nuclear burning turns out to be 

inversely proportional to the temperature in a star’s core (Tcore), which is thousand times higher). 

We have recently started a systematic experimental study of entropy production and its dependence 

on various stellar characteristics for main-sequence (MS) stars in open clusters [10]. The most 

interesting result of this investigation is the found relatively narrow range of specific (per volume) 

entropy productions (0.5 to 1.8 solar magnitudes for 90% of all the studied MS stars). These data 

indicate the peculiarity of specific entropy production for the considered nonequilibrium objects. 

The objectives hereof are as follows: (1) additional check and substantiation, based on considerably 

larger statistics, of the peculiarity of specific entropy production previously found for the MS stars. 

This will be achieved by both considering the nearest star clusters (in order to study low-luminosity 

stars including red dwarfs) and calculating entropy productions of the stars belonging to globular 

clusters. (2) Calculation of entropy production for other types of stars (subgiants, giants, and super giants). 
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The obtained results can be used as a basis to analyze the validity of a number of variational 

principles related to entropy production with regard to stars. This issue is discussed in the concluding 

part hereof. 

2. Photometry-Based Technique of Entropy-Production Calculation 

This study uses photometric data of open and globular star clusters from the WEBDA and 

Exoplanets & Stellar Populations Group (ESPG) databases [13,14]. These databases contain the 

following data for every cluster star obtained from direct observations: apparent stellar magnitude V  
and color index )( VB − , as well as metallicity [Fe/H], color excess ( )E B V− , and distance modulus 

( )Vm M− . 

A detailed algorithm for calculating effective temperature effT  and luminosity L with reference to 

the observed photometric data is given in the paper [10]. Based on the values of effT  and L for each star, 

a simple formula for calculating the total entropy production Σ inside a star’s photosphere can be 

obtained. Indeed, using traditional assumptions that a star’s photosphere is, on the first approximation, 

an absolutely black body (see e.g., [8]), we can write the classical formula for an entropy flux leaving a 
star’s photosphere surface in the form: 4 / (3 )effL T . Then let us use the second commonly-accepted 

assumption [5–9] that, for the time interval under study, a star is in a nonequilibrium steady state. 

Therefore, we can neglect entropy change in a star with time, and according to the balance equation for 

entropy [1–3], an entropy flux from a star’s photosphere will be equal to the total entropy production Σ 

inside a star’s photosphere. As a result: 

4 / (3 )effL TΣ =  (1)

It should be noted that only entropy production related to the conversion of thermonuclear and 

mechanical energy to heat energy in the course of irreversible processes occurring inside a star is 

analyzed herein. Gravitational entropy and its change (as well as other generalizations of Clausius’s 

classical entropy that have recently appeared in a number of theoretical papers) are not considered in 

the present study. In addition to the total entropy production of a star, let us use the Stefan–Boltzmann 

formula to determine the specific (per unit volume) entropy production ΣV as [10]: 

LTeffV /5⋅=Σ χ  (2)

where 3/2 1/22χ σ π= ⋅ ⋅  and σ is the Stefan–Boltzmann constant. Whereas the total entropy production 

characterizes a star as a whole (independently of its mass), the specific entropy production is related to 

the rate of the heat released from the star's unit volume (this is an average local characteristic because, 

in reality, some local regions can have higher local entropy productions and some can have lower ones). 

As is seen from the above, the quantities Σ and ΣV can be obtained from direct photometric 

measurements. For this reason, only their values are calculated and analyzed below (mass-specific 

entropy production is not considered herein, because in order to determine a star’s mass, some stellar 

model must be used and, hence, additional assumptions are required).  

Based on the accuracy of the given photometric data and the calibration errors, the error of entropy 

production calculation can be found. The calculations show [10] that the entropy-production error is 

primarily connected with the accuracy of photometric data, so for the stars of the types considered 
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herein with the temperature of up to 5000 K, the error for Σ and ΣV does not exceed 19% and 15%, 

respectively; for the stars with the temperature of 5000 K to 10,000 K, the error does not exceed 17% 

and 32%, respectively; and for the stars with the temperature above 12,000 K, the error value is found 

to be higher than 23% and 40%, respectively.  

To facilitate the calculation of the temperature, luminosity, and entropy production of stars (and 

statistic characteristics thereof) based on the above algorithm, we have developed and used a special 

software complex, Star Clusters (SC) [15]. 

3. Research Data 

Stars are classified depending on their locations in the Hertzsprung–Russell (HR) diagram (Figure 1). 

The present study deals with main-sequence stars (including the so-called red dwarfs) as well as 

subgiants, giants, and supergiants. As is well known, stars of these classes have considerably different 

masses and types of nuclear fusions. We have used stars belonging to both open and globular clusters. 

It is very convenient and informative to analyze the samples of cluster stars because, according to the 

modern concepts, stars of a single cluster have approximately the same and relatively easily 

determinable ages and chemical compositions. Globular and open clusters have an important 

difference in age (9–14 billion years in the case of globular clusters, and 10 million to 8 billion years in 

the case of open ones) and in the number of stars (104–106 in globular clusters, and 10–103 in  

open ones). 

 

Figure 1. Hertzsprung–Russell diagram of 15 clusters considered herein. The diagram is 

plotted in the following coordinates: color index (B–V) versus absolute stellar magnitude 

MV. Blue circles indicate main-sequence stars, red circles indicate subgiants, black circles 

indicate giants, and black stars indicate supergiants. 

To select clusters from the WEBDA [13] and ESPG [14] databases for investigation, the following 

main criteria were applied: (1) availability of all the necessary photometric information (see Section 2); 

(2) availability of information on the probability that stars belong to a cluster; and (3) the HR diagrams 
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of clusters must be well approximated by theoretical isochrones [16,17] using the corresponding values 

of age and metallicity. 

As a result, the data of the stars belonging to 13 open clusters (NGC 884, NGC 869, IC 4725,  

NGC 2516, NGC 1039, NGC 3532, NGC 2099, NGC 2281, NGC 2506, NGC 2682, NGC 188,  

NGC 2632, Hyades) and two globular clusters (NGC 6121 and NGC 6656) were used. Stars were 

chosen for investigation if their membership probability was above 0.5 and the root mean square error 

in the B and V magnitude was 0.02 mag. 

The total number of the stars was 10,017 main-sequence stars (including 64 red dwarfs), 1018 

subgiants, 816 giants, and 36 supergiants. The age of the studied clusters expressed in the 

logarithmical form (log10 (t, year)) was: 7.10 (NGC 884), 7.28 (NGC 869), 7.83 (IC 4725), 8.08 (NGC 

2516), 8.42 (NGC 1039), 8.45 (NGC 3532), 8.54 (NGC 2099), 8.70 (NGC 2281), 8.896 (Hyades), 8.9 

(NGC 2632), 9.05 (NGC 2506), 9.41 (NGC 2682), 9.80 (NGC 188), 10.098 (NGC 6121) and 10.103 

(NGC 6656). 

4. Results and Analysis 

For ease of analysis, the data below were normalized to solar magnitudes. Their values are as 

follows: Teff ʘ = (57 ± 2) × 102 K, Lʘ = (3.8 ± 0.6) × 1026 W, Σʘ = (9 ± 1) × 1022 W·K−1, and  

ΣV ʘ = (6 ± 2) × 10−5 W·K−1·m−3. 

Calculation results of Σ and ΣV for the stars are shown in Figures 2–7. Using these results, the 

following conclusions can be reached: 

(1) In the case of the main-sequence stars, the distribution intervals of entropy productions show a 

considerable difference for the globular and open clusters (Figure 2). In the case of the globular 

clusters, this interval is especially narrow covering the domain of smaller values of Σ (and smaller 

luminosities, according to Equation (1)). 

 

Figure 2. Bar chart showing the distribution of entropy productions Σ for the main-

sequence stars. Wide bars correspond to the open-cluster data and the narrow ones 

correspond to the globular-cluster data. The number of the stars is 3074 and 6943 in the 

open and the globular clusters, respectively. 

This is connected with the fact that globular clusters, as opposed to open ones, have older ages. 

Correspondingly, the stars with large masses (and, accordingly, large luminosities) belonging to 
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globular clusters have already left the main sequence after evolving. The bar chart (Figure 2) is the 

only case when the globular and open clusters have different distributions. Other entropy-production 

distributions (for the subgiants, giants, and supergiants) of both the globular and the open clusters are 

the same; for this reason, the bar charts of Figure 3 summarize the samples of stars for the globular and 

open clusters. As is seen, when transiting from subgiants to supergiants, the entropy production grows, 

and every type of stars has its own interval which does not overlap the neighboring one. 

 

Figure 3. Bar chart showing the distribution of total entropy productions Σ for the 

subgiants, giants, and supergiants. The number of the stars: 1018 subgiants, 816 giants, and 

36 supergiants. 

(2) Bar charts of the distribution of specific entropy productions ΣV of various types of stars are the 

same for the open and globular clusters and they are therefore combined in Figures 4 and 5. It is 

important that ΣV, as compared with Σ, has a very narrow range of the possible values of specific 

entropy production for the stars belonging to the main-sequence (see Figures 2 and 4). Thus, 95% of 

ΣV values fall within the range of 0.5 to 2.2 ΣVʘ, which is 200 times less than the corresponding 

interval for Σ. 

 

Figure 4. Bar chart showing the distribution of specific entropy productions ΣV for the main-

sequence stars. The total number of the MS stars is 10,017. 
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This conclusion repeats the one stated in our previous paper [10] but now is based on considerably 

larger statistics. As in the case of Σ, the distribution of ΣV values for the subgiants, giants, and 

supergiants is within their typical and rather wide domains (Figure 5). 

 

Figure 5. Bar chart showing the distribution of specific entropy productions ΣV for the 

subgiants, giants, and supergiants. The number of the stars: 1018 subgiants, 816 giants, and 

36 supergiants. 

(3) The entropy production considerably depends both on the luminosity and the temperature 

(Figure 6). The dependence on the luminosity is very close to the power-law one. So, it has the form 
88.01

103 L
−×=Σ  for the MS stars, 

10.17
104 L

−×=Σ  for the subgiants, and 
03.15

104 L
−×=Σ  for the giants 

(with R2 above 0.99). It should be noted that in the case of the supergiants, one cannot make a 

statistically grounded conclusion on the type of dependence due to a small number of points. 

 

Figure 6. Dependence of the total entropy production Σ on the luminosity L (a) and the 

effective temperature Teff (b). Blue circles indicate main-sequence stars, red circles indicate 

subgiants, black circles indicate giants, and black stars indicate supergiants. 

Since a star’s luminosity can be considered (if the terms of nonequilibrium thermodynamics are 

used) a thermodynamic flux J, then, taking into account the fact that XJ ×=Σ  (where X is a 

thermodynamic force) [3,4], 
12.01

103)(
−−×= JJX  for the MS stars, 

10.07
104)( JJX

−×=  for the 

subgiants, and 
03.05

104)( JJX
−×=  for the giants. From the standpoint of nonequilibrium 
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thermodynamics, the dependence 
12.0

)(
−∝ JJX  found for the MS stars is rather unusual. Indeed, if the 

heat flux (luminosity) grows, then the thermodynamic force decreases. This fact is explained by the 

corollary of the well-known virial theorem for stationary self-gravitating systems according to which 

the increase of heat emission (electromagnetic radiation of a star) results in the increase of the star’s 
heat energy (temperature) [11]. However, as is known [1–4], ( ) / 1/core eff core eff effX T T T T T∝ − ≈ , and 

therefore the thermodynamic force decreases with the growth of temperature.  

(4) For the main-sequence stars, the specific entropy production very little depends on the 

luminosity and the temperature (Figure 7). Indeed, if the luminosity changes from 10−3 to 106 Lʘ (and 

the temperature changes from 0.6 to 10 Teff ʘ), ΣV remains almost the same and lies within the range of 

0.5 to 2.2 ΣV ʘ. 

 

Figure 7. Dependence of the specific entropy production ΣV on the luminosity (L) (a) and 

the effective temperature (Teff) (b). Blue circles indicate main-sequence stars, red circles 

indicate subgiants, black circles indicate giants, and black stars indicate supergiants. 

The power-law decrease of ΣV in the domain of small values of L (from 10−3 to 10−1 Lʘ) and Тeff 

(from 0.6 to 0.7 Teff ʘ) found for the so-called red dwarfs is within the above range of ΣV values for the 

MS stars and requires an additional study using larger statistics (the mentioned values rely on the data 

of the stars belonging to two open clusters only: NGC 2632 and Hyades).  

The subgiants, giants, and supergiants have explicit power-law dependences of ΣV(L) and ΣV(Тeff ) 

(Figure 7). ΣV decreases with the increase of L (ΣV demonstrates the opposite behavior only for the 

supergiants), and ΣV increases with the growth of Тeff. 

The obtained result with respect to the invariability (within the accuracy of the given calculations) 

of the specific entropy production of the main-sequence stars is rather surprising. Indeed, if nuclear 

fusions were the only contribution to the entropy production, then such a behavior could be supposed 

for all main-sequence stars with different masses (luminosities) based on the similarity of initial and 

final products of hydrogen-to-helium conversion. However, due to a considerably higher temperature 

Tcore (as compared with Тeff) in the zone of such a reaction, this contribution to the total entropy 

production of a star proves to be negligible, while ΣV is mainly contributed by the heat-transfer 

processes occurring near a photosphere’s boundary with the temperatures and sizes considerably 

differing for MS stars. 
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It follows from the obtained data that the stars with slightly different chemical compositions 

(belonging to different clusters) and considerably different masses (from 0.2 to 11.8 Mʘ) reach the 

main-sequence phase through a transformation (a very complex, according to the modern concepts, 

and still not fully understood process) with almost the same specific entropy productions close to the 

solar value. These stars remain in this MS phase for the most of their lives (in the case of the stars 

having a mass similar to the one of the Sun, about 10 billion years; and in the case of the stars having 

the mass of 10 Mʘ, about 50 million years) occupying a rather extensive region (Figure 1) in the HR 

diagram. It is natural to consider it as some steady state to which a system (some volume of galaxy 

from which a cluster was formed) transits and where stars co-exist for a relatively long time. Does this 

state correspond to the minimum or the maximum possible specific entropy production when stars 

evolve to the main sequence? Presently, it is difficult to answer this question using the experimental 

data (for a number of evolutionary tracks of cluster stars the specific entropy production may have 

some intermediate—neither maximum nor minimum—value). However, based on the obtained data, it 

is presently possible to point out a connection between the steady co-existence of stars in a formed and 

yet rather young cluster (where all the stars belong to the main sequence) and the equality of specific 

entropy productions of individual stars in this cluster. 
It is interesting to note that the equality of specific entropy productions needed for the co-existence 

of nonequilibrium subsystems (existing in approximately the same external conditions) was previously 

supposed as a corollary of the maximum entropy production principle and confirmed during the study 

of nonequilibrium crystallization and a process of hydrodynamic instability [3,4,18]. The same papers 

state that the maximum specific entropy production ensures the stability of a subsystem’s 

nonequilibrium state, whereas a smaller value of ΣV for a number of subsystems leads to their 

metastability, instability, and hence, considerably smaller lifetimes as compared with a subsystem 

having the maximum entropy production. Let us consider the data (Figure 7) from this perspective. The 

clusters in the considered moment of time (we have analyzed the clusters aging 12.6 Myr to 12.67 Gyr) 

contain the stars belonging to a number of subsystems of which we have studied the main-sequence 

stars as well as the subgiants, giants, and supergiants. The three latter types of stars (subsystems) have, 

according to our calculations, smaller specific entropy productions and, therefore, have to be less 

stable, observable for a smaller time, and transform into other objects. Indeed, as is well known from 

astrophysics [11,12,16,17], these star types do have considerably smaller lifetimes as compared with 

less massive MS stars and transform relatively fast into white dwarfs, neutron stars, etc. 

5. Conclusions 

The paper calculates entropy production for the main types of stars in a number of open and 

globular clusters on the basis of photometric data. From the standpoint of nonequilibrium 

thermodynamics, we have obtained the following main results: (1) the nonlinear dependence of the 

entropy production on the thermodynamic flux (particularly for the MS stars, 
88.01

103 L
−×=Σ ) and (2) 

an almost constant specific (per volume) entropy production of the MS stars (thus, 95% of all the 

studied stars fall within the interval of 0.5 to 2.2 ΣVʘ) which is higher than the specific entropy 

productions of the subgiants, giants, and supergiants. The latter result allows considering specific 
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entropy production as a parameter characterizing a stable state (attractor) during the formation and 

evolution of stars. 

The most interesting question arising from the present study is whether the specific entropy 

production is minimized or maximized (or maybe something different) during this evolution. The 

solution of this problem requires mathematical modeling based on the existing theories of stellar 

formation and evolution and represents an important task for future investigations.  
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