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Abstract: We construct a model of Brownian motion in Minkowski space. There are two
aspects of the problem. The first is to define a sequence of stopping times associated
with the Brownian “kicks” or impulses. The second is to define the dynamics of the
particle along geodesics in between the Brownian kicks. When these two aspects are taken
together, the Central Limit Theorem (CLT) leads to temperature dependent four dimensional
distributions defined on Minkowski space, for distances and 4-velocities. In particular, our
processes are characterized by two independent time variables defined with respect to the
laboratory frame: a discrete one corresponding to the stopping times when the impulses
take place and a continuous one corresponding to the geodesic motion in-between impulses.
The subsequent distributions are solutions of a (covariant) pseudo-diffusion equation which
involves derivatives with respect to both time variables, rather than solutions of the telegraph
equation which has a single time variable. This approach simplifies some of the known
problems in this context.
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1. Introduction

Brownian motion is one of the cornerstones of statistical mechanics. Einstein successfully used it to
give a rational proof of the existence of atoms [1,2], and since then it has been used as a paradigm to
model systems in contact with a heat reservoir. It has also been used as a stochastic model to represent
a variety of different phenomena in such diverse fields as physics, chemistry, biology, finance etc.
Indeed, its universal character rests on it being the simplest model available for describing time evolution
implied by a combination of random and deterministic factors [3–5]. In the case of Einstein’s theory, the
deterministic factor is given by the Stokes force exerted on pollen grains by a liquid, seen as a continuum
macroscopic medium; while the random factor represents the impulses given to the same pollen grains
by the myriad of fluid molecules colliding with them. Einstein’s ingenuity consisted in understanding
that water could be seen as acting on pollen grains in two almost antithetical ways: as a continuum with
its viscosity (systematic component), and as a collection of many interacting particles (chance).

Many phenomena can be interpreted as the result of the cooperation of systematic and random events,
hence the success of this simple model in combining the two. For example, in the case of a tagged
molecule of a gas, the free flights between collisions with other molecules constitute the systematic
part, while the chance collisions with other molecules which interrupt the free flights, constitute the
non-systematic component of the motion causing it to move in a random environment [6,7]. In principle,
this picture applies to all forms of dynamics, including special and general relativity, provided a
universal time parameter is defined. In the case of relativity, this universal time was first introduced by
Stueckelberg [8,9] and later developed by Oron and Horwitz to define Relativistic Brownian Motion [10].
The results of this paper have some similarity with theirs, although the approach is quite different.

We can, therefore, explore the possibility of addressing the relativistic Brownian motion, as a random
process with stationary independent increments, in which a Brownian particle travels on a geodesic until
it is dislodged by the interaction with another (moving or standing) object, which shifts it onto a new
geodesic. Seen from this perspective, there are two aspects to consider. One is connected with the
specific dynamics of the particle along the smooth parts of its piecewise smooth trajectory, while the
second is connected with the random fluctuations that occur as the particle bounces from one smooth
section of the trajectory to another. In practice, the geodesic motion between the interactions obeys the
deterministic laws of relativistic dynamics, while the collection of impulses assigns random orientations,
positions, velocities and accelerations according to appropriate statistical laws. We will focus on two
of these statistical processes. One associated with particle position which will give a four dimensional
distribution defined on Minkowski space, the other associated with the 4-velocities. In this latter case the
velocity along geodesics will be a consequence of the proper time [11] being a function of a universal
time [12].

To fully implement this, it is necessary to separate the “random” parts from the deterministic parts
of the motion [13]. We do this by means of stopping times and then, in order to be coherent, we refer
all motions and stopping times to the same (laboratory) frame of reference by means of a universal
time parameter. The use of this parameter essentially transposes a three dimensional classical problem,
with an absolute time τ , into a four dimensional problem on Minkowski space, with τ now serving as a
universal (although not absolute) time parameter. Two cases arise:
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(1) A Brownian random walk in which a single time variable determines both the stopping times
and the time between jumps. For example, one could adapt Keller’s analysis [14] of the model
of a particle moving along the x axis such that during a time interval of duration ∆τ = 1 from
τ = i − 1 to τ = i, i = 1, 2, . . . , the particle moves with velocity ν = +1 or ν = −1, each with
probability 1/2.

(2) A Brownian random walk in which two independent time variables are used, the stopping times
and the the proper time difference between two consecutive stopping times, both of which are
measured with respect to the universal time τ .

For the purpose of this article, we focus on case (2). We shall assume that the second time variable
defines a stochastic process which obeys the Strong Markov property [15] indexed by the stopping times,
with the Brownian flights lying along a piecewise differentiable curve of random length each with its
own proper time. We propose a new perspective, based on combining the discrete stopping times and the
continuous time associated with the deterministic part of the motion. The proper time intervals between
two events are invariant by definition, while multiple events with respect to the same frame can be time
ordered by means of a universal time parameter [10,16]. Indeed, from the perspective of the rest frame
of the particle, Brownian impulses recorded at proper times τ̂1, τ̂2, . . . τ̂i, . . . , where each τ̂i is a function
of the universal time τ , can be transmitted to the laboratory frame, the frame in which the heat bath can
be considered at rest.

For τ̂ ∈ [τ̂i−1, τ̂i) let χ(τ̂) = τ̂ − τ̂i−1 be the proper time between two Brownian impulses, and
s(τ̂) = cχ(τ̂), where c is the speed of light. When τ̂ = τ̂i, let the numbers χi = τ̂i − τ̂i−1 and si = cχi

define two random variables χ and s, that represent the times between successive impulses as recorded in
the rest frame and the corresponding length between impulses respectively. Their variances, Var(χ) and
Var(s) = c2V ar(χ), depend on properties of the bath, such as its density % and temperature Θ, which we
assume to be constant; hence, for simplicity, we omit these parameters in our notation. Also, we assume
Var(χ) is positive and therefore that the trajectory segments between impulses are timelike.

As each time increment χi is a proper time (recall the local time of the rest frame is equivalent to
the proper time) it remains invariant in general relativity under coordinate transformations, which also
includes the laboratory frame. This is the only information transmitted from frame to frame. Moreover,
as the heat bath is held at a constant temperature, then it is reasonable to assume using the strong Markov
property that the set {χi}∞i=1 defines a set of stationary independent increments [17]. This statement is
independent of reference frames, and will be assumed throughout.

It is also true that from the laboratory frame’s perspective we do not know the local coordinates
(t, x, y, z) of the Brownian particle and that many options are possible. However, we can extract enough
information from the invariance of the set {χi}∞i=1 and calculate the probability of finding the particle
within the range of applicability of the Central Limit Theorem (CLT) [18]. This range is asymptotically
of the order of the standard deviation σχ of χ, and it contains most of the probability. Our approximation
of the density function will be Lorentz invariant (see below) and therefore will allow us to calculate
probabilities in any Lorentz frame.

To conclude, we will show how a relativistic Brownian motion can be described when motion
between the discrete random stopping times lies along a geodesic path. In doing so, within the range of
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applicability, we obtain a covariant description of the relativistic Brownian motion, as e.g., in [19], and in
the case of velocities we obtain a distribution which may be considered in place of the Maxwell-Jüttner
distribution, e.g., in [20,21]. Both cases presuppose the use of two independent time parameters, one
discrete and the other continuous. The novelty of our article is that relativistic Brownian motion can
be described by pseudo-diffusion in Minkowski space, as opposed to, e.g., telegraph transport in
3-dimensional space [5,22].

Unless one is interested in a detailed description of the interaction processes [20,23,24], this approach
constitutes one way to overcome some of the historical difficulties associated with relating the Brownian
Motion and a relativistic Markov process by focusing on local time rather than proper time [5,25–27].

2. Geodesics

“According to the Principle of Equivalence,” to quote Weinberg (p.70 in [28]) adjusted to our notation,
“there is a freely falling coordinate system xa in which its equation of motion is that of a straight line in
space-time, that is

d2xa

ds2
= 0

with ds/c the proper time”
ds2 = gijdx

idxj (1)

This can also be written as

ds = gij
dxi

ds
dxj .

For much of the analysis to follow, it will be more convenient to describe the Brownian motion from
the perspective of a single laboratory frame. Consequently, it will be important to not only associate
different proper times with each component of the paths connecting stopping times but also to choose
a common parametrization for all the curves (more details on curve parameters can be found in the
Appendix at the end). We will refer to this as the universal time parameter τ . This is equivalent to
the universal time parameter [29], first introduced by Stuekelberg in 1941 [8,9], and further developed
by Horwitz and Piron [30]. It could be chosen to be the proper time of a standard clock at rest in the
laboratory frame. It could also be taken as the time in the rest frame of the particle, as described in the
last section. Indeed, if both parameters are connected by an affine parameter then the same time scale
can be applied to both. However, in the case of non-affine parameters we have to allow for accelerations
in the system (for an affine parameter there is no acceleration which means s̈ = 0). Regardless of the
choice of parameter, the random variable cχi = si will be invariant under parameter and coordinate
transformations. In the case of a piecewise geodesic on the i-th component of the curve, we let

ds ≡ dsi .

Moreover, each component si can be synchronized with the laboratory frame by means of the expression

dsi =
dsi
dτ
dτ .

where τ is the universal time parameter. Denoting ṡ = ds/dτ , Equation (1) can be re-written as

ṡds = c2ṫdt− ẋdx− ẏdy − żdz . (2)
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For what follows, we will restrict the motion to piecewise geodesic curves with Var(χ) > 0; in other
words, to those curves for which the tangent is defined uniquely at every point along a (smooth) piece
of the trajectory inM, in between two instantaneous random events occurring at discrete times τ̂i−1(τ)

and τ̂i(τ). Here, each trajectory is a collection of random events mediated by the kicks which cause
random deviations at random times in the free motion. These kicks may be due to collisions with heat
bath particles or with various kinds of obstacles [6,31–33].

It follows that for each realization of the processes {τ̂i}∞i=1 defined with respect to the standard clock
in the rest frame of the laboratory, {si}∞i=1 and {ṡi}∞i=1 define a Markov random walk with respect to the
(well ordered) index set of stopping times τ̂i, where ṡi = ṡ(τ̂i) means that the left derivative is computed
at τ̂ = τ̂i.

As usual in Brownian motion theory, we assume that the only relevant parameter of the heat bath is its
temperature Θ. The above can then be considered to be stationary independent processes and the specific
forms of the resulting Markov processes are determined by their Θ-dependent distributions. Indeed, Θ

influences the time increments χi, and the measure of a universal unit of time [34].
In particular, {si}∞i=1 and {ṡi}∞i=1 will have Θ-dependent infinitely divisible distributions which can

be associated with Levy processes, while the variables s =
∑n

i=1 si and ṡ =
∑n

i=1 ṡi will converge in
distribution to Θ-dependent stable processes [35], for finite constant Θ.

We assume (as suggested also by molecular dynamics studies such as [25,26]) that the underlying
thermal bath state is characterized by the isotropy of test particle trajectories associated with the
independent and identically distributed (with Θ-dependent) time-like increments χi of the stopping times
(in this paper we do not investigate how the distribution of the increments χi depends on Θ, as we keep
Θ fixed.)

3. Brownian Motion from the Perspective of the Laboratory Frame

Consider the complex random 4-vector X indexed by the stopping times, representing the increments
Xj = (cTj, iXj, iYj, iZj) between two impulsive events, such that [36]:

s2j =
〈
Xj,Xj

〉
= c2T 2

j −X2
j − Y 2

j − Z2
j ≥ 0 . (3)

In the case of isotropy for the positions (X, Y, Z) and for the velocities (Vx, Vy, Vz), with V 2
x +V 2

y +V 2
z <

c2, we assume IE(X) = IE(Y ) = IE(Z) = 0, and IE(Vx) = IE(Vy) = IE(Vz) = 0, where IE denotes
expected value. The time elapsed between two impulsive events will be positive with mean µT > 0 if
we consider future events, but negative with mean µT < 0 if we consider the past. Therefore, we may
take µT = 0, there is no loss of generality due to this assumption, as µT 6= 0 merely implies a translation
along the time axis. We further assume a positive standard deviation σcT > 0 and σX = σY = σZ =

σ > 0, where the equalities are due to the assumed isotropy (the isotropy condition can be easily relaxed,
allowing different standard deviations for the different directions of space. However, we prefer to keep
our notation simple). It follows from Equation (3) that the expected value given by

IE(s2) = IE(T 2)− IE(X2)− IE(Y 2)− IE(Z2)

implies

σ2
s = σ2

cT − σ2
X − σ2

Y − σ2
Z = σ2

cT

(
1− 3σ2

σ2
cT

)
and σ2 ≤ σ2

cT

3
.
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Also the time-like condition implies that T,X, Y and Z are not independent random variables.
Nevertheless, they can be considered independent far from the light cone surface, where

(cT )2 � X2 + Y 2 + Z2 (4)

and the constraint (3) is only weakly perceived. As a matter of fact, given an initial distribution of
massive particles near the origin of Minkowski space, the probability of one such particle remaining
close to the light cone for a long time is small. Indeed, collisions are the characteristic feature of the
BM, and in that case they are more likely to slow down the particle than to preserve or increase its
speed. Therefore, condition (4) should be better and better verified for larger and larger τ . This assumed
independence extends a fortiori to the four components of the sum of the first n trajectory segments of a
Brownian particle:

Sn =
n∑
i=1

Xi (5)

with Xi corresponding to the impulse at time τ̂i. As the only constraint that our variables have to obey is
the time-like condition, we also assume the Xi and their components are i.i.d. variables, in accord with
the notion of the Brownian motion.

By the Central Limit Theorem (CLT) the joint distribution for the complex number components of
Sn is approximated at large n by the normal distribution in Minkowski space, (See Appendix 2 for a
justification of this form of CLT) with variance growing linearly with n, and density function given by

fSn(ct, ix, iy, iz;n) ∼
1

4π2n2σcTσ3
exp

{
− c2t2

2nσ2
cT

+
x2 + y2 + z2

2nσ2

}
=

e−〈q,q〉

4π2n2
√
|Σ|

(6)

where |Σ| is the determinant of the covariance matrix, i is the imaginary unit, and

q =
1√
2n

(
ct

σcT
, i
x

σ
, i
y

σ
, i
z

σ

)
The integration to compute probabilities is with respect to the volume element dt(idx)(idy)(idz) and

not dtdxdydz. This avoids issues of divergence and defines a probability measure in Minkowski space.
It should also be clear that s̃2 ≡ 〈q, q〉 is invariant. This follows by noting that s̃2 = Σ−1ij x

ixj expressed
in tensor notation, and that for the Lorentz transformation A = aij , (x′)i = aijx

j , and

s̃2 = ((Σ′)−1)ij(x
′)i(x′)j = aki a

l
j(Σ

−1)kla
i
qx

qajsx
s = (Σ−1)ijx

ixj .

In addition, the presence of the |Σ| term means fSn transforms as a tensor density under Lorentz
transformations, and fSndt(idx)(idy)(idz) is invariant.

Due to the presence of the two independent time variables t and n, expressing respectively the random
time between two Brownian impulses and the random number of impulses at a given universal time τ ,
fSn formally obeys a four dimensional pseudo-diffusion equation [37]:

∂

∂n
fSn =

[
σ2
cT

2c2
∂2

∂t2
− σ2

2

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)]
fSn (7)
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where the operator within square brackets is the Laplacian in Minkowski space, and n is treated like a
continuous variable representing the flow of time. This is indeed expected for a distribution arising from
the CLT, with time variable n.

It should be noted that in the discrete case discussed in this paper, the interval between stopping
times is a random variable which can be arbitrarily large. This means that even for finite n, the distance√
x2 + y2 + z2 traveled in 3-dimensional space can be arbitrarily large, which differs from the case in

which n is standard time, and the Brownian particle moves with finite speed.
Finally, it is important to recall that the Gaussian approximation implied by the CLT for large n

restricts the range of validity of this distribution, and its corresponding pseudo-diffusion equation, to
a timelike region of order O(

√
n `), where ` is the mean space-time distance traveled between two

Brownian impulses.
By a similar reasoning, one obtains a normal distribution for the momentum 4-vector

Un =
1

n

n∑
j=1


Ej/c

ipxj
ipyj
ipzj

 (8)

which takes the form

fU

(
E

c
, ipx, ipy, ipz;n

)
∼ n2

4π2σEσ3
p

exp

{
−n

2

[
E2

c2σ2
E

− px2 + py2 + pz2

σ2
p

]}
(9)

and may be considered as an alternative to the Maxwell-Jüttner distribution, that concerns the average
momentum 4-vector, rather than the momentum 4-vector. Since this is comparable in structure to (6),
it clearly satisfies a pseudo-differential equation with (E, ipx, ipy, ipz) replacing (t, ix, iy, iz) in (7).
Note, the distribution for the 4-vector (ct, x, y, z) is compatible but obtained without reference to the
distribution for the 4-momentum; it is only based on the validity of the CLT for (ct, x, y, z).

4. Concluding Remarks

Our approach leads to a characterization of the equilibrium state of the Brownian motion in the
framework of Special Relativity which, along the lines of classical statistical mechanics, requires almost
no information about the details of the interactions among the objects of interest [38]. Nevertheless,
these details are important and implicit in our formulation. In the first place they are the underlying
cause of the unpredictable motions associated with the random interaction times and are constitutive of
the phenomenon. In the second place, the statistics of these interactions depend on the characteristics
of the heat bath, such as its density % and its temperature Θ. As we consider them to be homogeneous
in space and constant in time, we only need to know that they are consistent with the strong Markov
property. Knowledge of these details is implicitly contained in the relation between the stopping times
and the laboratory frame time, and should be made explicit to fully characterize the relativistic Brownian
motion.
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To compare our approach with others in the literature mentioned above, let us consider an equivalent
interpretation of Equations (6) and (7), introducing the normalized variable Sn = Sn/n. For large n and
within the limit of applicability of CLT, Sn is distributed as:

fS(ct, ix, iy, iz;n) ∼ n2

4π2σcTσ3
exp

{
−n

2

(
c2t2

σ2
cT

− x2 + y2 + z2

σ2

)}
. (10)

because the standard deviations go as σt/
√
n and σ/

√
n. Then fS formally obeys the following equation:[

n2 ∂

∂n
+
σ2
cT

2c2
∂2

∂t2

]
fSn

=
σ2

2

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
fSn

(11)

In the case when t and n are directly related to each other, Equation (11) plays a role analogous to
that of the telegraph equation, which arises in various contexts concerning the Brownian motion. This
is the case, for instance, when t and n are proportional to each other (e.g., for simple random walks
in a classical framework or, more generally, when t is a monotonic function of n). In particular,
the telegraph equation arises when considering the large deviations of the position of a symmetric
random walk [14], where the telegraph equation constitutes a more accurate approximation than standard
diffusion, not being restricted to describe the small fluctuations of the process. The telegraph equation
is also commonly found in the treatment of the relativistic Brownian motion, because the fronts of
its solutions propagate at finite speed, as prescribed by relativity, cf. the very informative review [5].
However, these fronts are singular and look unphysical for massive particles [21]. For instance, one may
observe that the singularities emerge also in random walks in which the forward scattering probability
is larger than the backward scattering probability [39]. Moreover, the telegraph equation describes a
non-Markovian processes, in accord with results by Dudley [40] and Hakim [41], who proved that in
Minkowski spacetime there are no Lorentz invariant continuous Markov processes whose typical paths
have non-constant non-vanishing velocities.

To conclude, the main differences between our and other approaches is that we distinguish two time
variables, which allow us to preserve the Markov property and the diffusion law in Minkowski space. We
express the flow of time through the variable n, which grows with the universal time τ , thus preserving
the sequence of events observed in the laboratory frame, although n is a random function of τ , and it
is not related to the time between impulses t. Thanks to the additional time variable n, we can index
4-dimensional space-time events Xn = (ct, ix, iy, iz)n, with n ∈ N a function of the proper laboratory
time and not the local time variable t, which is part of the event. By doing this, we avoid the difficulties
that arise (for example in the telegraph equation) from using only the single time variable t as an index for
the 3-dimensional space events (x, y, z)t. Because of the second order time derivative, events described
by the telegraph equation do not enjoy the Markov property, in accordance with the aforementioned
theorem of Hakim [41]. Moreover the solutions of the telegraph equation do not necessarily remain
normalized and positive at all times [5].

We argue that our restriction to a part of the timelike sector of Minkowski space is not a serious
limitation for massive particles [42]. Indeed, the relativistic nature of the process remains evident in our
distributions and equations. The above suggests that at the core of the molecular chaos hypothesis in
relativity are the stationary independent random events produced at stationary and independent random
stopping times.
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Appendix

A. Properties of Curves

In this appendix we introduce some notion that may be useful in the treatmet of the general relativity
case. In principle every non-null regular curve γ can be parameterized by its proper time parameter
τ̂ = s/c as γ(s) = (t(s), x(s), y(s), z(s)) such that |γ′(s)| = 1. Such a curve γ(s) is called a unit
speed curve. Also, in the rest frame, the standard clock will correspond to the proper times, which
remain invariant under coordinate transformations. However, when a tetrad is erected and we attempt
to compare two different line segments (geodesics), we are constrained to fix the coordinate system
(t, x, y, z) and distinguish their different proper times. We can interpret this in one of two ways: either
we have one tetrad and two proper times (one for each curve) or one proper time invariant with respect
to two tetrads. It cannot be both.

For example, consider the two metric equations

ds2 = c2dt2 − dx2 and ds′2 = c2dt2 − 2dx2 (12)

defined with respect to the coordinate axes (t, ix) in Minkowski space, where i =
√
−1. If we

assume that
d2t

ds2
=
d2x

ds2
= 0 (13)

then from the perspective of the coordinate axes (t, ix) these define two different geodesics in the space,
one parameterized by s and the other by s′ = s′(s). For instance, if ct = s/

√
2 and x = is/

√
2 then

ds′2 = ds2 − dx2 =
3

2
ds2 . (14)

On the other hand, they could also be seen as the same line segment but defined with respect to two
different (or re-scaled) coordinate axes. In this case, Equations (12) can be rewritten as

ds2 = dt2 − dx2 and ds2 = dt′2 − dx′2 respectively ,

with
dt =

ds′

ds
dt′ and dx =

1√
2

ds′

ds
dx′ .

We interpret this to mean that both of them determine the same geodesic.
Finally, we note that if s′ is a non-affine parameter of s then the geodesic equations, given in

Equation (13), expressed in term of s′ transform into

d2t

ds′2
= −

(
ds

ds′

)2(
dt

ds′

)
d2s′

ds2
and

d2x

ds′2
= −

(
ds

ds′

)2(
dx

ds′

)
d2s′

ds2
. (15)

In general the expression
d2xi

ds′2
= −

(
ds

ds′

)2(
dxi

ds′

)
d2s′

ds2
(16)

defines the acceleration along the geodesic with respect to the time parameter s′ and by definition of a
non-affine parameter both s and s′ if suitably chosen can be written as functions of one another.
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B. Central Limit Theorem in Complex Space

We begin by stating the standard form of the CLT defined over an n-dimensional complex space. If
X1, X2, . . . , Xn are independent and identically distributed with mean µ ∈ Rk and covariance Σ, where
Σ has finite entries then √

n(Xn − µ)→ N(0,Σ)

in distribution. In particular if X = (x1, x2, . . . , xk) and each xi is independent with IE(xi) = 0 then

Σ = diag(σ2
1, . . . , σ

2
k) .

In terms of the moment generating function

M(
√
n(Xn − µ)→ exp

(
r2
∑

σ2
i /2
)

Taking k = 4 and letting x1 = ct, x2 = ix, x3 = iy and x4 = iz we find using the standard
1-dimensional proof of the CLT that

M(
√
n(Xn − µ)→ exp

(
(σ2

ct − σ2
x − σ2

y − σ2
z)r

2/2
)

which is clearly invariant under Lorentz transformations. It also follows that

fSn(ct, ix, iy, iz;n) ∼
1

4π2n2σctσ3
exp

{
− c2t2

2nσ2
t

+
x2 + y2 + z2

2nσ2

}
=

e(−〈q,q〉)

4π2n2
√
|Σ|

which is Equation (6).
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