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Abstract: In this paper, we present connections between recent developments on the
linearly-solvable stochastic optimal control framework with early work in control theory
based on the fundamental dualities between free energy and relative entropy. We extend
these connections to nonlinear stochastic systems with non-affine controls by using the
generalized version of the Feynman–Kac lemma. We present alternative formulations of
the linearly-solvable stochastic optimal control framework and discuss information theoretic
and thermodynamic interpretations. On the algorithmic side, we present iterative stochastic
optimal control algorithms and applications to nonlinear stochastic systems. We conclude
with an overview of the frameworks presented and discuss limitations, differences and
future directions.
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1. Introduction

While the topic of nonlinear stochastic control has been traditionally studied within control and
applied mathematics, over the past 10–15 years, there has been an increasing interest by researchers
in machine learning and robotics communities to expand nonlinear stochastic optimal control in terms of
theoretical generalizations and algorithms. The main motivation for this increasing interest is the ability
to solve stochastic optimal control problems with forward sampling of stochastic differential equations
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(SDEs). There have been a few approaches in the literature on this topic, called path integral (PI)
control [1–3], Kullback–Leibler (KL) control or linearly-solvable control [4,5].

The PI control framework is derived for continuous time stochastic systems affine in controls
and noise and for finite horizon optimal control problems. In the KL control, the derivation is
in discrete time Markov decision processes (MDPs) and includes finite horizon, infinite horizon,
exponentially-discounted and first exit optimal control problems. The continuous time equivalent of the
KL control is recovered when transition probabilities are defined based on the corresponding SDEs. Due
the central role that linear partial differential equations (PDEs) play in the analysis of the aforementioned
approaches, we will refer to them as linearly-solvable optimal control (LSOC), and when necessary, we
will use the explicit names of PI or KL control. Moreover, we will restrict our analysis to the finite
horizon case. Similar connections have been identified for the infinite horizon case [6]. The analysis for
the infinite horizon case will be presented in a follow-up manuscript.

One of the important findings in the LSOC framework is the observation that under certain
conditions related to the process noise and control authority, stochastic optimal control problems
can be solved with forward sampling of SDEs and the evaluation of expectations. The fundamental
theorem that made this observation possible, especially for the continuous case, is the Feynman–Kac
lemma [7–9]. The Feynman–Kac lemma connects SDEs and linear backward PDEs by providing a
probabilistic representation of solutions of backwards PDEs. Alternative computational algorithms to
the sampling-based LSOC framework incorporate methods on low rank tensor approximation to find
solution of linear PDEs on a domain of interest [10].

With the goal to unify different views on stochastic optimal control as developed within different
disciplines in sciences and engineering, this work aims to present recent developments and to discuss
their connections with previous work using information theoretic concepts. In particular, we expand
upon our previous work on this topic [11] and present connections between the LSOC framework
as presented within the machine learning and statistical physics communities with the information
theoretic view of nonlinear stochastic optimal control theory using the free energy-relative entropy
relationship [12–15].

Below, we summarize the main points of our analysis:

(i) The PI and KL control framework can be derived using the relative entropy-free energy
relationship, and therefore, there are direct connections of the LSOC framework to previous work
in control theory. These connections were recently shown in [11]. From the epistemological stand
point, the aforementioned connections provide a deeper understanding of optimality principles and
identify the conditions under which these optimality principles emerge from information theoretic
postulates. Essentially, there are alternative views/methodological approaches of looking into
nonlinear stochastic optimal control that are illustrated in Figure 1.

(ii) The derivation of nonlinear stochastic optimal control using the free energy and relative entropy
relationship does not rely on the Bellman principle. In other words, one can derive the
Hamilton–Jacobi–Bellman (HJB) equation without using dynamic programming. When the form
of the optimal control policy has to be found, then the connection with stochastic optimal control
based on dynamic programming is necessary. In this paper, we generalize the connection between
free energy-relative entropy dualities and stochastic optimal control to systems that are non-affine
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in controls. The analysis leverages the generalized version of the Feynman–Kac lemma and
identifies the necessary and sufficient conditions under which the aforementioned connections are
valid. This generalization creates future research directions towards the development of optimal
control algorithms for stochastic systems nonlinear in the state and control. In addition, it shows
that there is a deeper relation between the Legendre transformation and stochastic control that goes
beyond the class of control affine systems.

(iii) While typically in stochastic optimal control theory, the cost function is pre-specified, this is not
the case when the stochastic optimal control framework is derived using the free energy-relative
entropy relationship. In the latter case, the form of the cost function related to control effort
emerges from the structure of the underlying stochastic dynamics. This observation indicates
that there are strong interdependencies between cost functions and dynamics and that the choice
of the control cost function is not arbitrary. Another way to understand the importance of the
aforementioned interdependencies is that, while in the traditional approach, the cost function is
imposed to the problem, in the information theoretic view of stochastic optimal control, the cost
function partially emerges from the formulation of the problem ( see Figure 1).

(iv) We illustrate connections between stochastic control and the maximum entropy principle. The
analysis relies on the generalized Boltzmann, Gibbs and Shannon entropy [16]. We show that
the stochastic control framework is recovered as the maximization of the generalized Boltzmann,
Gibbs and Shannon entropy subject to energy and probability measure normalization constraints.

(v) For the class of stochastic systems that are affine in control and noise, there are cost function
formulations that cannot be represented within the information theoretic approach. Thus, although
the information theoretic formulation of stochastic optimal control provides a general framework,
there are cases in which the a priori specification of the cost function and the use of dynamic
programming provide more flexibility.

(vi) Besides the analysis on the connections between different formulations of stochastic optimal
control theory, we also present iterative algorithms designed for stochastic systems and
demonstrate some examples.

Figure 1. An unified view of nonlinear stochastic optimal control theory based on dynamic
programming and free energy-relative entropy information theoretic dualities.

The paper is organized as follows. In Section 2, we provide the definitions of free energy
and relative entropy and derive their mathematical connection. In Section 3 we present
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the connection of the relative entropy and free energy relationship with the theory of stochastic
control. In particular, in Section 3.1, we apply the relative entropy and free energy relationship
to nonlinear stochastic dynamical systems affine in noise. In Section 3.2, the analysis on the
application of the aforementioned relationship to nonlinear stochastic dynamics affine in controls and
noise is presented together with connections to dynamic programming. In Section 4, we discuss
thermodynamic interpretations and connections to the maximum entropy principle. In Section 5,
we provide the derivation of the PI control as presented within the machine learning and statistical
physics. In Section 6, the discrete time formulation is derived, and in Subsection 6.1, the connections
to continuous time are shown. Finally in Section 7, we present algorithms, and in Section 8, we
conclude with a discussion on the equivalencies and differences between the different views of stochastic
optimal control.

2. Fundamental Relationship between Free Energy and Relative Entropy

In this section, we discuss the fundamental relationship between free energy and relative entropy [13].
This relationship is key for deriving the stochastic optimal control problem. Let (Ω,F) be a measurable
space, where Ω denotes the sample space and F denotes a σ-algebra, and let P(Ω) define a probability
measure on the σ-algebra F . For the concepts that we shall propose, we need the following definitions.

Definition 1. Let P ∈ P(Ω), and let the function J (x) : Ω → < be a measurable function. Then, the
following term:

E = loge

∫
exp(ρJ (x))dP, (1)

is called the free energy (the function loge denotes the natural logarithm) of J (x) with respect to P and
ρ ∈ <.

Definition 2. [13]: Let P ∈ P(Ω) and Q ∈ P(Ω); then, the relative entropy of P with respect to Q is
defined as:

KL (Q||P) =

{ ∫
loge

dQ
dP dQ, if Q << P and loge

dQ
dP ∈ L1 ,

+∞, otherwise,

where “<<” denotes the absolute continuity of Q with respect to P andL1 denotes the space of Lebesgue
measurable functions on [0,∞). We say that Q is absolutely continuous with respect to P, and we write
Q << P if P(H) = 0⇒ Q(H) = 0, ∀H ∈ F .

The free energy and relative entropy relationship is expressed by the theorem that follows.

Theorem 1. Let (Ω,F) be a measurable space, where Ω denotes the sample space and F denotes a
σ-algebra, and let P(Ω) define a probability measure on the σ-algebra F . Consider P,Q ∈ P(Ω) and
the definitions of free energy and relative entropy as expressed in Definitions (1) and (2). Under the
assumption that Q << P, the following inequality holds:

− 1

|ρ|
loge EP

[
exp(−|ρ|J )

]
≤
[
EQ (J ) + |ρ|−1KL (Q||P)

]
, (2)

where EP,EQ is the expectation under the probability measure P,Q, respectively, and ρ ∈ <− and
J : <M → < and M ∈ Z+. The inequality in (2) is the so-called Legendre transform.
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Proof. We express the expectation EP as a function of the expectation EQ. In particular,

EP

[
exp(ρJ )

]
=

∫
exp(ρJ )dP =

∫
exp(ρJ )

dP
dQ

dQ. (3)

Taking the logarithm of both sides of Equation (3) and using Jensen’s inequality yields:

loge EP

[
exp (ρJ )

]
= loge

∫
exp (ρJ )

dP
dQ

dQ ≥
∫

loge

(
exp (ρJ )

dP
dQ

)
dQ (4)

The inequality (4) can be written as:

loge EP

[
exp(ρJ (x, t))

]
≥
∫ (

ρJ + log
dP
dQ

)
dQ =

∫
ρJ dQ−KL (Q||P) . (5)

Multiplying Equation (5) with 1
ρ
, where ρ < 0 or ρ = −|ρ|, it follows Equation (2) with

EQ (J ) =
∫
J dQ.

Inequality (2) gives a dual relationship between relative entropy and free energy, which leads to the
minimization problem:

− 1

|ρ|
loge EP

[
exp(−|ρ|J )

]
= infdQ

[
EQ (J ) + |ρ|−1KL (Q||P)

]
, (6)

The infimum in Equation (6) attained at Q∗ is given by:

dQ∗ =
exp(−|ρ|J )dP∫
exp(−|ρ|J )dP

. (7)

To verify that the infimum is attained by Equation (2), we have the following lemma.

Lemma 1. Given the definitions of free energy and relative entropy and the assumption of absolutely
continuous measures Q << P, the LHS of the Legendre transformation in Equation (2) is attained by
the optimal measure in Equation (7).

Proof. The proof is rather, simple and it is based on the substitution of Equation (7) into Equation (2).
More precisely:

EQ∗ [J ] +
1

|ρ|
KL (Q∗||P) = EQ∗ [J ] +

1

|ρ|

∫
loge

dQ∗

dP
dQ∗

= EQ∗ [J ] +
1

|ρ|

∫
loge

exp(−|ρ|J )dP∫
exp(−|ρ|J )dP

dP
dQ∗

= EQ∗ [J ] +
1

|ρ|

∫
loge

exp(−|ρ|J )∫
exp(−|ρ|J )dP

dQ∗

= EQ∗ [J ] +
1

|ρ|

∫ [
− |ρ|J (x))

]
dQ∗

− 1

|ρ|

∫
loge

∫
exp(−|ρ|J )dP

]
dQ∗

=
1

|ρ|

∫ [
− loge

∫
exp(−|ρ|J )dP

]
dQ∗

= − 1

|ρ|
loge

∫
exp(−|ρ|J )dP

∫
dQ∗

= − 1

|ρ|
loge

∫
exp(−|ρ|J )dP
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In the case where ρ > 0, the inequality in (2) is flipped, and hence, the infimum in Equation (6)
reverts to a supremum.

3. The Legendre Transformation and Stochastic Optimal Control

With the goal to use the Legendre transformation and to show its connection to optimal control, we
define J as a state- and time-dependent cost function evaluated on trajectories starting at x(t) ∈ <n at
time t and with a time horizon tN ≥ t. More precisely, we have the mathematical form:

J = J (x(·), t) = φ(x(tN), tN) +

∫ tN

t

q(x, τ)dτ. (8)

where φ : <n × < → < is a state-dependent terminal cost and q : <n × < → < is state- and
time-dependent running cost. We also define the function ξ : <n ×< → < as follows:

ξ(x, t) =
1

ν
loge EP

[
exp(νJ (x, t))

]
, (9)

where ν ∈ <. Depending on the sign of ν, the function ξ(x, t) has different interpretations. For small
ν, Equation (9) is a function of the mean and the variance ξ(x, t) = EP (J (x, t)) + ν

2
VAR (J (x, t)).

For ν = |ρ|, Equation (9) is risk sensitive, whereas for ν = −|ρ|, it is risk seeking. For our analysis,
ν = −|ρ|. Next, we incorporate the state and time dependencies in the Legendre transformation in
Equation (6), and we have:

ξ(x, t) = − 1

|ρ|
loge

Desirability︷ ︸︸ ︷
EP

[
exp(−|ρ|J (x, t))

]
︸ ︷︷ ︸

Helmholtz Free Energy

= infdQ

[
EQ (J (x, t))︸ ︷︷ ︸

State Cost

+ |ρ|−1KL (Q||P)︸ ︷︷ ︸
Information Cost

]
. (10)

The RHS of the minimization problem in Equation (10) is the sum of a state-dependent cost and
the relative entropy between the two measures P,Q; moreover, the minimization is w.r.t the probability
measures Q. We assign the probability measures P and Q to passive, in the sense of uncontrolled
dynamics, and to controlled dynamics and consider the task of steering a dynamical system from an
initial to a target state. The goal in Equation (10) is to find the optimal probability measure/control
that steers the system from the initial to the terminal state by minimizing the state cost at the expense
of the information cost. The information cost is an implicit measure of control effort, and its final
formulation depends on the structure of the underlying dynamics. The LHS in Equation (10) corresponds
to Helmholtz free energy, while there is also a term that corresponds to the concept of the desirability
function. This concept was introduced in [4] and plays a key role in our derivations and analysis that
follow. In the next two sections, we apply the Legendre transformation to stochastic systems and identify
the cases where there is a direct relationship with dynamic programming and the LSOC.

3.1. Application to Nonlinear Stochastic Dynamics with Affine Stochastic Disturbances

In this section, we consider stochastic dynamics of the form:

dx = F(x,u)dt+ B(x)dw(1), x(0) = x0, t ≥ 0, (11)
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where x ∈ <n denotes the state of the system, u ∈ <m denotes the control vector, B(x) : <n → <n×p

is the diffusion matrix function, F(x,u) : <n × <m → <n are the drift dynamics and dw ∈ <p is a
Gaussian white noise disturbance. The diffusion matrix is partitioned as B(x) = [0T

(n−p)×p, BT
c (x)]T,

where Bc(x) : <n → <p×p is invertible and ΣBc(x) = B(x)BT(x) : <n → <p×p. Similarly, the drift
term is partitioned as F(x,u) = [FT

m(x,u), FT
c (x,u)]T, where Fm(x,u) : <n × <m → <(n−p) and

Fc(x,u) : <n ×<m → <p. Next, define the stochastic differential equation:

dx = A(x)dt+ B(x)dw(0), x(0) = x0, t ≥ 0, (12)

where the drift term A(x) : <n → <n is defined as A(x) , F(x, 0) and corresponds to the uncontrolled
dynamics in Equation (11). Here, we denote the expectations evaluated on the system trajectories
generated by the controlled dynamics and uncontrolled dynamics by EQ and EP, respectively. In addition,
∆Fm(x,u) , Fc(x,u) − Ac(x) = Fc(x,u) − Fc(x, 0). The definition of the Radon–Nikodym [17]
derivative for the stochastic differential Equations (11) and (12) has the form:

dQ
dP

= exp(ζ(u, t)), (13)

where the term ζ(u, t) is now defined as:

ζ(u, t) =

∫ tN

t

∆FT
c (x,u)Bc(x)−1(x)dw(1)dτ +

∫ tN

t

1

2
∆FT

c (x,u)Σ−1Bc
(x)∆Fc(x,u)dτ. (14)

Now, substituting Equations (13) and (14) into Equation (2), we obtain:

ξ(x, t) ≤ EQ [J (x, t)]︸ ︷︷ ︸
State Cost

+EQ

[
1

2|ρ|

∫ tN

t

∆FT
c (x,u)Σ−1Bc

(x)∆Fc(x,u)dτ

]
︸ ︷︷ ︸

Information Cost

. (15)

When the minimum is attained for Q∗ given by Equation (7), we have:

ξ(x, t) = EQ∗

[
φ(x(tN), tN) +

∫ tN

t

q(x, τ)dτ +
1

2|ρ|

∫ tN

t

∆FT
c (x,u∗)Σ−1Bc

(x)∆Fc(x,u
∗)dτ

]
, (16)

where the ∆Fc(x,u
∗) , Fc(x,u

∗) − Fc(x, 0) corresponds to the difference between the drift of
the optimally-controlled (i.e., u = u∗) and the drift of the uncontrolled (i.e., u = 0) dynamics.
Equations (15) and (16) demonstrate how the structure of the dynamics appears in the information cost
under minimization in the Legendre transformation. Therefore, there is a straight-forward relationship
between the structure of the stochastic dynamics under consideration and the form of the control cost
function under minimization. While this observation is not surprising when the Legendre transformation
is used, it suggests ways to design control cost functions in stochastic optimal control theory based on
the form of the stochastic dynamics. Another interesting observation is that the LHS of Equation (16)
is the minimum attained under the optimal, in the sense of the Legendre transformation, probability
measure Q∗.

A question that arises here is related to the connection between the two forms of optimality, namely
the optimality in the Legendre sense and the optimality in the dynamic programming sense. To further
investigate this connection, we will leverage the Feynman–Kac Lemma in its more general form for the
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case of backward PDEs [8]. We also consider the stochastic dynamics in Equation (11) under the optimal
control law u∗(x, t):

dx = F(x,u∗(x, t))dt+ B(x)dw(1), x(0) = x0, t ≥ 0, (17)

Under the assumptions of continuity and linear growth for F(x,u∗(x, t)),B(x) and the existence
and uniqueness of the weak solution of Equation (17) (see pages 364 and 366 of [8]), we have the
following theorem:

Theorem 2. Feynman–Kac: Let Ψ(x, t) : [0, tN ] × <n → < be continuous and Ψ(x, t) ∈ C1,2, and it
satisfies the Cauchy problem:

− ∂tΨ = −1

λ
`Ψ + FT (∇xΨ) +

1

2
tr
(
(∇xxΨ)BBT

)
+ L(x, t) (18)

in [0, tN)×<n×1 with the boundary condition:

Ψ(x, tN) = β(x) (19)

then Ψ(x, t) admits the stochastic representation:

Ψ(x, t) = E
[
β(xtN ) exp

(
−1

λ

∫ tN

t

`(xs, τ)dτ

)
+

∫ tN

t

L(x, t) exp

(
−1

λ

∫ s

t

`(x, τ)dτ

)
ds

]
(20)

∀t0 ∈ [0, tN ]. In particular, such a solution is unique. The expectation above is taken with respect to
sampled trajectories generated using (17).

Given the form of the Feynman–Kac lemma and the expectation in Equation (16), we set the terms
L(x, t), ` and β(xtN ) in Equation (20) as follows:

L(x, t) = q(x)+
1

2|ρ|
∆FT

c (x,u∗)Σ−1Bc
(x)∆Fc(x,u

∗)dτ, `(x, t) = 0, β(xtN ) = φ(x(tN), tN) (21)

Based on the Feynman–Kac lemma, the free energy term ξ(x, t) can be interpreted as the unique solution
of the backward PDE:

−∂ξ(x, t)
∂t

= q(x, t)︸ ︷︷ ︸
State Cost

+
1

2|ρ|
∆FT

c (x,u∗)Σ−1Bc
(x)∆Fc(x,u

∗)︸ ︷︷ ︸
Optimal Control Cost

+ξTx (x, t)F(x,u∗)

+
1

2
tr

(
ξxx(x, t)B(x)BT(x)

) (22)

with the boundary condition ξ(x(tN), tN) = φ(x(tN), tN). The interesting observation here is that
the PDE in Equation (22) is the optimal HJB PDE for a stochastic optimal control problem with
state cost q(x, t) and control cost term 1

2|ρ|∆FT
c (x,u∗)Σ−1Bc

(x)∆Fc(x,u
∗) subject to the dynamics in

Equation (11). It is clear therefore that there is a fundamental connection between the Legendre
transformation and dynamic programing for the general class of stochastic systems that are affine only
in the stochastic disturbances and nonlinear in controls and states. This observation generalizes our
previous work on identifying the connections between the relative entropy and free energy dualities and
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the PI and KL controls [11]. Essentially, the two methodologies result in the same HJB PDE when the
state and the control cost function are defined as:

State Cost = q(x, t), Control Cost =
1

2|ρ|
∆FT

c (x,u)Σ−1Bc
(x)∆Fc(x,u) (23)

The implications of this finding can be summarized as follows

(i) The Helmholtz free energy satisfies the HJB PDE for the case of systems that are non-affine in
controls and affine in stochastic disturbances. This observation has direct consequences to the
development of algorithms that can compute the value function for a stochastic optimal control
problem with forward sampling of SDEs. While this connection was known within the LSOC
framework for dynamics affine in controls and noise, it is the first time that this connection has
been derived for general classes of stochastic systems with dynamics nonlinear in state and control
and affine only in noise.

(ii) The optimal measure dQ∗ for the stochastic control problem with state and control cost as specified
in Equation (23) is given by Equation (7). Note that this is the probability measure that corresponds
to trajectories generated under the optimal control policy u∗(x, t). A fundamental question at this
point is related to how this optimal control can be numerically computed, such that dQ = dQ∗.
The difficulty arises from the fact that for the case of dynamic systems that are nonlinear in controls
and cost functions that are non quadratic, there is no explicit form for the optimal control policy
u∗(x, t). This difficulty could be addressed by an a priori specification of the structure of the
optimal control policy u(x, t) and then optimization of this structure, such that for any state x and
time t, the optimal probability measure dQ∗ = dQ∗(x, t) is reached.

Next, we discuss the connection between the free energy-relative entropy dualities and stochastic
optimal control of systems with dynamics affine in control and noise. Again, the Feynman–Kac lemma
plays a key role, but as will be shown, the way that it is applied differs from our analysis in this section,
since it is directly applied to the desirability function.

3.2. Application to Nonlinear Stochastic Dynamics with Affine Controls and Disturbances

In this section, we apply the Legendre transformation for probability measures that correspond to
stochastic dynamics affine in control and stochastic disturbances. In particular, we consider the stochastic
dynamics [13,18]:

dx = f(x)dt+
1√
|ρ|

B(x)dw(0),x(0) = x0, t ≥ 0, (24)

dx = f(x)dt+ B(x)

(
udt+

1√
|ρ|

dw(1)

)
,x(0) = x0, t ≥ 0 (25)

where x ∈ <n denotes the state of the system, B(x) : < → <n×p is the control and diffusion
matrix function partitioned as B(x) = [0T

(n−p)×p, BT
c (x)]T, where Bc(x) : <n → <p×p is invertible,

f(x) : <n → <n denotes the passive dynamics, u ∈ <p is the control vector and dw ∈ <p is a Gaussian
white noise disturbance. Note that the difference between the two diffusion terms in Equations (24)
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and (25) is the fact that the control appears in Equation (25). This control, together with the passive
dynamics, defines a new drift term. Expectations evaluated on the system trajectories generated by the
uncontrolled and controlled dynamics are represented by EP and EQ, respectively. The corresponding
probability measures of the aforementioned expectations are P and Q. Next, we use Equation (10)
and the Radon–Nikodym derivative given by Equations (13) and (14), which now takes the form
dQ
dP = exp (ζ(u, t)) [8], where the term ζ(u, t) is given by:

ζ(u, t) =
1

2
|ρ|
∫ tN

t

uTudτ +
√
|ρ|
∫ tN

t

uTdw(1), (26)

Substituting dQ
dP into inequality (10) gives:

ξ(x, t) = − 1

|ρ|
loge EP

[
exp (−|ρ|J (x, t))

]
≤ EQ

[
J (x, t) +

1

|ρ|
ζ(u, t)

]
(27)

Substitution of ζ(u) in the last equation results in:

ξ(x, t) = − 1

|ρ|
loge EP

[
exp (−|ρ|J (x, t))

]
≤ EQ

[
J (x, t) +

1

2

∫ tN

t

uTudτ

]
. (28)

The last term in Inequality (28) corresponds to the cost function of a stochastic optimal control
problem and is bounded from below by the free energy. In addition to providing a lower-bound on
the objective function for the stochastic optimal control problem, Inequality (28) provides an explicit
construction on how this lower bound can be computed. This computation involves forward sampling
of the uncontrolled dynamics, evaluation of the expectation of the exponentiated state-dependent part,
φ(x(tN)) and q(x(t)), and the logarithmic transformation of this expectation. Note that Inequality (28)
is derived without relying on any principle of optimality and involves the application of Girsanov’s
theorem between controlled and uncontrolled stochastic dynamics, as well as the use of the dual
relationship between the free energy and the relative entropy needed to compute the lower bound in (28).
Inequality (28) defines a minimization problem where the RHS of the inequality is minimized with
respect ζ(u, t) and, hence, with respect to the control u. At the minimum u = u∗, the right part of the
inequality in (28) attains its optimal ξ(x, t). Under the optimal control policy u∗, the optimal distribution
takes the from:

dQ∗(x, t) =

exp

[
− |ρ|

(
φ(x(tN )) +

∫ tN
t q(x, τ)dτ

)]
dP

∫
exp(−|ρ|

(
φ(x(tN )) +

∫ tN
t q(x, τ)dτ

)]
dP
. (29)

An important question that arises is: What is the link between (28) and the principle of optimality
in dynamic programming? To address this question, one needs to show that ξ(x, t) satisfies the HJB
equation, and hence, ξ(x, t) is the corresponding value function [18]. More precisely, we introduce a
new variable Φ(x, t) defined as Φ(x, t) , EP(exp (ρJ (x, t))) and apply the Feynman–Kac lemma [7]
to arrive at the backward Chapman–Kolmogorov PDE:

−∂tΦ(x, t)=−|ρ|q(x, t)Φ(x, t)+fT(x)Φx(x, t)+
1

2|ρ|
tr
(
Φxx(x, t)B(x)BT(x)

)
. (30)
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Since ξ(x, t) = 1
ρ

log Φ(x, t) = − 1
|ρ| log Φ(x, t), it follows that ∂tΦ(x, t) = −|ρ|Φ(x, t)∂tξ(x, t),

Φx(x, t) = −|ρ|Φ(x, t)ξx and Φxx(x, t) = |ρ|Φ(x, t)ξxx(x, t) − |ρ|2Φ(x, t)ξx(x, t)ξTx (x, t). In this
case, it can be shown that ξ(x, t) satisfies the nonlinear PDE:

−∂tξ(x, t) = q(x, t) + ξTx (x, t)f(x)− 1

2
ξTx (x, t)B(x)BT(x)ξx(x, t) +

1

2|ρ|
tr
(
ξxx(x, t)B(x)BT(x)

)
. (31)

The nonlinear PDE in Equation (31) corresponds to the HJB equation [19] for the case of the
minimizing optimal control problem, and hence, ξ(x, t) is the corresponding minimizing value function.
It is important to note that the principle of optimality was not used to derive Equation (31). Furthermore,
while the mathematical analysis results in the HJB PDE, it does not explicitly provide the form of the
optimal control policy. This means that to derive Equation (31), it is not required to have an expression
for the optimal control policy. This observation is in stark contrast with the classical treatment of
stochastic optimal control theory, based on dynamic programming, where first the optimal control is
specified and then the final form of the HJB Equation (31) is derived.

The optimal control policy associated with Equation (31) is expressed as:

u(x, t) = −BT(x)ξx(x, t). (32)

To recover the optimal control policy Equation (32), one needs to be aware of the optimal control
derivation that is based on dynamic programming.

4. Thermodynamic Interpretations and Connections to the Maximum Entropy Principle

In this section, we discuss thermodynamic interpretations of nonlinear stochastic optimal control
theory using the relative entropy-free energy relationship. More precisely, we consider the Baroh–Jaunch
entropy or generalized Boltzmann–Gibbs–Shannon entropy [16] defined as:

S (Q||P) , −KL (Q||P) = −
∫

dQ
dP

loge
dQ
dP

dP, (33)

then Equation (2) takes the form:

− 1

|ρ|
loge EP

[
exp(−|ρ|J (x, t))

]
︸ ︷︷ ︸

F: Helmholtz Free Energy

= infdQ

[
EQ (J (x, t))︸ ︷︷ ︸

U: State Cost

− TS (Q||P)︸ ︷︷ ︸
S: Generalized Entropy

]
. (34)

At Q = Q∗, we have that:

− 1

|ρ|
loge EP

[
exp(−|ρ|J (x, t))

]
︸ ︷︷ ︸

F: Helmholtz Free Energy

= EQ∗ (J (x, t))︸ ︷︷ ︸
U: State Cost

− TS (Q∗||P)︸ ︷︷ ︸
S: Generalized Entropy

, (35)

The last equation has the form F = U −TS, where F is the free energy, T = |ρ|−1 is the temperature
and S is the generalized Boltzmann–Gibbs–Shannon entropy. Note that Baroh–Jaunch entropy is a
concave function, and it is a generalized form of entropy, since it incorporates the Boltzmann, Gibbs and
Shannon entropy [16]. In addition, it is negative, and its maximum is reached for P = Q. Minimization
of the KL(P||Q) is equivalent to maximization of the generalized Boltzmann–Gibbs–Shannon entropy



Entropy 2015, 17 3363

S(P||Q). In the absence of the state cost, the optimal measure is the one that maximizes the
Boltzmann–Gibbs–Shannon entropy, and therefore, P = Q. However, as it is shown next, in the
presence of the state-dependent cost constraint, the optimal measure Q∗ should be “far” from the baseline
probability measure P. When the probability measures Q and P are assigned to state distributions of
controlled and uncontrolled stochastic dynamical systems, the Kullback–Leibler divergence between Q
and P is an implicit measure of control effort. In this sense, minimization of the Kullback–Leibler
divergence or maximization of the generalized Boltzmann–Gibbs–Shannon entropy is equivalent to
minimization of the control effort.

Another interesting connection with thermodynamics emerges from the fact that the optimal policy
can be derived using the maximum entropy principle. The form of entropy under maximization is the
generalized Boltzmann–Gibbs–Shannon entropy. To makes things concrete, lets consider the following
maximum entropy constrained optimization problem specified as follows:

max
dQ∗
S (Q||P)

Subject to: EQ[J (x, t)] = c and
∫

dQ = 1.
(36)

where c is positive constant. To find the solution, we form the augmented objective function by
incorporating the constraints with proper Lagrange multipliers:

L(Q, λ, µ, c) = S (Q||P) + λ

(
c− EQ[J (x, t)]

)
+ µ

(
1−

∫
dQ
)

= −
∫

dQ
dP

loge
dQ
dP

dP + λ

(
c−

∫
J (x, t)dQ

)
+ µ

(
1−

∫
dQ
)

= −
∫ (

loge
dQ
dP

+ λJ (x, t) + µ

)
dQ + λc+ µ. (37)

Next, we define the term:

L =

∫ (
loge

dQ
dP

+ λJ (x, t) + µ

)
︸ ︷︷ ︸

f

dQ (38)

Given the assumptions that f is Q-integrable and the signed measure L is absolute continuous with
respect to Q, (L << Q), the signed measure L is finite (see the general form of Radon–Nikodym
Theorem 5.5.3 in [20]). Later, it will be shown that L is a measure (positive-signed measure), but for
now, we consider the more general case of the signed measure. Under the aforementioned assumptions,
the Radon–Nikodym derivative dL(Q)

dQ is a well-defined operation. To find the optimal measure Q, we
apply the Radon–Nikodym derivative in Equation (38) and set it to zero. In mathematical terms, this
operation results in:

loge
dQ∗

dP
+ λJ (x, t) + µ = 0⇒ dQ∗ = exp(−λJ (x, t)− µ)dP.

Integration of the optimal measure dQ∗ to one gives an expression for µ:

µ = loge

∫
exp(−λJ (x, t))dP. (39)

Substitution of µ back in Equation (39) gives the optimal probability measure in Equation (7). There are
few interesting observations:
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(i) Substitution of the optimal measure dQ∗ in Lagrangian (37) results in:

L(Q∗, λ, µ, c) = λc+ loge

∫
exp(−λJ (x, t))dP.

Moreover, given a certain performance level c, the Lagrange multiplier λ can be found by using
the equation: ∫

J (x, t)dQ∗ − c = 0⇒
∫ (
J (x, t)− c

)
exp(−λJ (x, t)dP = 0. (40)

(ii) The term − 1
λ
µ = − 1

λ
µ(x, t) corresponds to the Helmholtz free energy, since:

− 1

λ
µ(x, t) = − 1

λ
loge

∫
exp(−λJ (x, t))dP. (41)

Therefore, for the case stochastic dynamics affine in control and noise, the term − 1
λ
µ is a value

function and satisfies the HJB equation.

(iii) Initially, we considered L as a singed measure. However, given the optimal measure Q∗ and the
form of the Lagrange multiplier µ, the signed measure L is positive, and therefore, it is a measure.
To show this, one can use the Legendre transformation between free energy and relative entropy.

The thermodynamic equilibrium of maximum entropy corresponds to maximization of the generalized
Boltzmann–Gibbs–Shannon entropy that is equivalent to minimization of control effort subject to the
performance and normalization constrains as expressed in the optimization problem in Equation (36).
Moreover, the equilibrium measure is the optimal measure as specified in Equation (7). For the case of
stochastic dynamics affine in controls and noise, this measure corresponds to trajectories sampled from
the stochastic dynamics under the optimal, in the sense of dynamic programming, control policy.

5. Bellman Principle of Optimality

In this section, we consider the classical stochastic optimal control problem as a constrained
optimization problem and derive the LSOC framework in continuous time. The analysis in this section
is more known under the name of PI control, and it has been presented mostly in the machine learning
and statistical physics communities [2,21].

Here, we present a generalized version, which was also derived in [11], which allows terms in the cost
function to be both state and control dependent. This formulation is important for our later discussion
on the generalizability of every approach (information theoretic, path integral, KL control) in the LSOC
framework. In particular, we start with the cost functional:

V (x(t), t) = min
u
J(x,u) = min

u
EQ

[
φ(x, tN) +

∫ tN

t

L(x,u, τ)dτ

]
. (42)

The expectation EQ in Equation (42) is evaluated on system trajectories generated by forward
sampling of the controlled diffusion process Equation (11). We assume that the function F(x,u)

is a nonlinear function of the state x ∈ <n and affine in the control u ∈ <m, and hence,



Entropy 2015, 17 3365

F(x,u) = f(x) + G(x)u. The matrix function G(x) : <n → <n×m is the control transition matrix, and
f(x) : <n → <n denotes the passive dynamics. Under the optimal control u = u∗, the cost function
J(x,u) is equal to the value function V (x, t). Next, let L(x,u, t) denote the running cost defined as
L(x,u, t) , q0(x, t) + qT1 (x, t)u + 1

2
uTRu, where q0(x, t) is a nonlinear, nonquadratic state-dependent

cost, qT1 (x, t)u is a cross-term depending on the state and control and 1
2
uTRu is a quadratic control

cost with R > 0. The stochastic HJB equation [15,19] associated with this stochastic optimal control
problem can be expressed as follows:

−∂tV (x, t) = min
u

(L(x,u, t) + V T
x (x, t)F(x,u) +

1

2
tr
(
Vxx(x, t)B(x)BT(x)

)
). (43)

The corresponding optimal control is given by:

u(x, t) = −R−1
(
q1(x, t) + GT(x)Vx(x, t)

)
. (44)

The optimal control drives the system dynamics in the direction opposite that of the gradient of the value
function Vx(x, t). Furthermore, the value function satisfies the nonlinear, second-order PDE:

−∂tV (x, t) = q̃(x, t) + V T
x (x, t)f̃(x, t)− 1

2
V T
x (x, t)G(x)R−1GT(x)Vx(x, t)

+
1

2
tr
(
Vxx(x, t)B(x)BT(x)

)
,

(45)

where q̃(x, t) , q0(x, t) − 1
2
q1(x, t)

TR−1q1(x, t) and f̃(x, t) , f(x) − G(x)R−1q1(x, t), and the
boundary condition is V (x(tN), tN) = φ(x(tN), tN). Given the exponential transformation and the
relationship between control authority and noise:

V (x, t) = −λ logψ(x, t),

λG(x)R−1GT(x) = B(x)BT(x) = Σ(x),
(46)

the PDE in Equation (45) yields:

−∂tψ(x, t) = −1

λ
q̃(x, t)ψ(x, t) + f̃T(x)ψx(x, t) +

1

2
tr (ψxx(x, t)Σ(x)) , (47)

with boundary condition ψ(x, tN) = exp
(
− 1
λ
φ(x, tN)

)
. Now, applying the Feynman–Kac lemma to the

Chapman–Kolmogorov PDE Equation (47) yields a solution in the form of an expectation over system
trajectories; namely:

ψ (x(t), t) = EP̃

[
exp

(
−
∫ tN

t

1

λ
q̃(x, τ)dτ

)
ψ(x(tN ), tN )

]
. (48)

The expectation EP̃ in Equation (48) is taken on sample paths generated with the forward sampling of
the uncontrolled diffusion equation dx = f̃(x)dt+ B(x)dw, and the optimal control is given by:

u(x(t), t) = −R−1
(
q1(x, t)− λGT(x)

ψx(x, t)

ψ(x, t)

)
. (49)

Since the initial value function V (x, t) is the minimum of the expectation of the objective function
J(x,u) subject to controlled stochastic dynamics, it can be shown that:

V (x, t) = −λ loge EP

[
exp

(
−
∫ tN

t

1

λ
q̃(x, t)dτ

)
Ψ(x(tN ), tN )

]
︸ ︷︷ ︸

Helmholtz Free Energy

≤ EQ

[
J(x,u)

]
︸ ︷︷ ︸

Total Cost

. (50)
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Note that Equation (50) is a form of the Legendre transformation, and in fact, it is identical to
Equation (28) for the case where q1(x, t) = 0, R = I , λ = 1

|ρ| , G(x) = B(x) and B(x) = 1√
|ρ|
B(x). With

the derivation of the PI stochastic control starting with dynamic programming in continuous time, it is
obvious that the mathematical steps follow the opposite direction as in the section where the the same
framework is derived based on the relative entropy-free energy dualities; see Figure 1. Furthermore,
within the class of stochastic systems affine in controls and stochastic disturbances, the approach that
is discussed in this section provides more general formulations, since it allows cost functions with
terms that are both state and control dependent, such as the term qT1 (x, t)u. These terms cannot be
recovered when the information theoretic approach is used for the class of stochastic systems with
affine controls and disturbances. Therefore, under these certain conditions, the dynamic programming
approach provides more flexibility in designing cost functions for optimal control problems.

6. Kullback–Leibler Control in Discrete Formulations

The KL control was presented in its most generalized form in [4]. In this section, we will review the
KL control for the finite horizon case. A preliminary analysis on the information theoretic connection of
the KL control for the infinite horizon case can be found in [6]. Within the KL control framework, the
stochastic optimal control problem is formalized as a Markov decision process (MDP) with a stage-wise
cost described as:

`(x,u) = q(x) + KL
(
U (·|x)P (·|x)

)
= q(x) + Ex′∼U(·|x)

[
log

(
U (x′|x)

P (x′|x)

)]
.

The KL divergence in the last expression is applied to the one step ahead transition probabilities of the
control U (x′|x) and uncontrolled dynamics P (x′|x). Application of the Bellman principle of optimality
in the finite horizon case results in:

V (x, tk) = min
P(·|x)

(
q(x) + Ex′∼U(·|x)

[
log

(
U (x′|x)

P (x′|x)

)
+ V (x, tk + 1)

])
, (51)

where V (x, tk) is the time-varying cost-to-go function. The U (·|x)-dependent terms in the functional
above are minimized, and thus, we will have that:

Ex′∼U(·|x)

[
log

(
U (x′|x)

P (x′|x)

)
+ V (x′, tk+1)

]
= Ex′∼U(·|x)

[
log

(
U (x′|x)

P (x′|x)

)
+ log

(
1

exp (−V (x′, tk+1)

)]
= Ex′∼U(·|x)

[
log

(
U (x′|x)

P (x′|x) exp (−V (x′, tk+1))

)]
.

For these purposes, the normalization term Gtk [Φ](x) is introduced with Φ(x, tk) = exp (−V (x, tk))

being the desirability function. More precisely, we will have:

Gtk [Φ](x) =
∑
x′

P (x′|x) Φ(x′, tk+1) = Ex′∼P(·|x)

[
Φ(x′, tk+1)

]
. (52)

Therefore, we have:

Ex′∼U(·|x)log

(
U (x′|x)

P (x′|x)

)
+ V (x′, tk+1) = − log (Gtk [Φ](x)) + KL

(
U (·|x) ||P (x′|x) Φ(x′, tk+1)

Gtk [Φ](x)

)
.
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Substitution of the expression above into the Bellman minimization equation results in:

V (x, tk) = min
u∈U

[
q(x)− log (Gt[Φ] (x)) + KL

(
U (·|x)||P (x′|x) Φ(x′, tk+1)

Gtk [Φ](x)

)]
.

The minimum of the Bellman equation is attained by:

U∗ (x′|x) =
P (x′|x) Φ(x′, tk+1)

Gtk [Φ](x)
.

The equation above provides the transition probability under the optimal control law and, in that
sense, the optimal transition probability. Substitution of the optimal distribution above will result in the
linear Bellman equation:

Φ(x, tk) = exp (−q(x))Gtk [Φ](x). (53)

This can be used to prove the path integral representation of the desirability function:

Φ(x, tk) = Exτ+1∼P(·|xτ )

[
exp

(
−

T∑
τ=tk

q(xτ )

)]
. (54)

Thus, the desirability function is just the expectation under the uncontrolled dynamics of the
exponentiated path cost starting at state x at time t. This gives an expression for the optimally-controlled
trajectory distribution U (~x) for the trajectory ~x = {xti , ...,xtk , ..xtN} that is specified as follows:

U (~x) =
N∏
k=i

U∗ (x′|x) =
N∏
k=i

P (x′|x) Φ(xtk+1
, tk+1)

Gτ [Φ](x)

=

(P (xtk+1
|xtk
)

Φ(xtk+1
, tk+1)

Gtk [Φ](x)

)(P (xtk+2
|xtk+1

)
Φ(xtk+2

, tk+2)

Gtk+1
[Φ](x)

)
...

=

(P (xtk+1
|xtk
)

exp
(
−q(xtk+1

)
)
Gtk+1

[Φ](x)

Gtk [Φ](x)

)
×
(P (xtk+2

|xtk+1

)
exp

(
−q(xtk+2

)
)
Gtk+2

[Φ](x)

Gtk+1
[Φ](x)

)
...

=

( N∏
k=i

P
(
xtk+1

|xtk
))exp (−J (~x))

Gtk [Φ](x)
.

Therefore, the optimal trajectory probability has the form:

U (~x) =
P (~x) exp (−J (~x))

E~x′∼P(·)
[

exp (−J (~x′))

] . (55)

The optimal trajectory probability in the last expression is identical to Equations (7) and (29).

6.1. Connections to Continuous Time

The link of the discrete Bellman Equation in (53) to the corresponding HJB PDE is achieved
when expectations Ex′∼P(·|x) and Ex′∼U(·)x are computed using one step ahead states sampled from the
uncontrolled and controlled dynamics:

dx = f(x)dt+ C(x)dw

dx = f(x)dt+ C(x)(udt+ dw)
(56)

Due to space limitations, we summarize the derivation of the continuous time LSOC with the following
lemma. The derivation can be found in the Supplementary Material of [4].
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Lemma 2. Lets consider the dynamics in Equation (56) and the function V (x, t) : <n × < → < and
Φ(x, t) : <n ×< → < with Φ(x, t) satisfying the linear Bellman equation:

Φ(dt)(x, tk) = exp (−q(x)dt)Gtk [Φ(dt)](x). (57)

where q(x) is state-dependent cost and the operator Gtk [Φ(dt)](x) is defined as in Equation (52). If
V (x, t) = − loge Φ(x, t), then V (x, t) satisfies the HJB PDE of an optimal control problem.

V (x(t0), t0) = min
u

E
[∫ tN

t0

(
q(x) +

1

2
uTu

)
dt

]
(58)

subject to controlled dynamics in Equation (56).

This lemma can be seen as an alternative derivation of the Feynman–Kac lemma [9].

7. Algorithms

In this section, we review the derivation of iterative PI control as shown in our previous work [3,11]
and also discuss applications and algorithms. In particular, we will start our analysis with the expectation
as expressed in Equation (48). Note that this expectation is evaluated over trajectories sampled via
forward propagation of uncontrolled diffusion dx = f̃(x)dt + B(x)dw(0)(t) in which f̃(x, t) = f(x)−
G(x)R−1q1(x, t). In this paper, we assume that the state of the stochastic dynamics is partitioned as
x = [xm xc]

T, and the drift and control transition terms are partitioned as follows f̃(x) = [f̃Tm(x) f̃Tc (x)]T

G(x) = [0T
(n−m)×m GT

c (xm)]T, with f̃m(x) : <n → <(n−p), f̃c(x) : <n → <p,Gc(xm) : <p → <m×m

and diffusion term B(x) = [0T
(n−p)×p BT

c (xm)]T with Bc(xm) : <p → <p. Note that systems such as
multi-body systems have this form. We also assume that:

λGc(xm)R−1GT
c (xm) = Bc(xm)BT

c (xm) (59)

To derive the iterative path integral control, we will start our analysis with the stochastic representation
of the solution of backward Chapman–Kolmogorov PDE:

Ψ (x(ti), ti) = EP̃

[
exp

(
−
∫ tN

ti

1

λ
q̃(x, t)dt

)
Ψ(xtN )

]
=

∫
exp

(
−
∫ tN

ti

1

λ
q̃(x, t)dt

)
Ψ(xtN )dP̃ (60)

Since at every iteration k, the sampling process takes place with the use of the control policy uk(x, t),
the expression above is formulated as:

Ψ (x(ti), ti) =

∫
exp

(
−
∫ tN

ti

1

λ
q̃(x, , t)dt

)
Ψ(xtN )

dP̃
dQ̃

dQ̃ (61)

where the Q̃ is the probability measure that corresponds to the diffusion process dx = f̃(x)dt +

G(x)uk(x, t)dt + B(x)dw(1). The terms uk(x, t) and dw(1) are the control and noise used at iteration
k. The ratio of the two probability measures dP̃

dQ̃ is the Radon–Nikodým. The aforementioned ratio for
stochastic dynamics is formulated as follows:

dP̃
dQ̃

= exp

[
− 1

2λ

∫ tN

ti

(
uT
k (t)Υuuuk(t)δt

)]
× exp

[
− 1

λ

∫ tN

ti

(
uT
k (t)Υuwdw(1)(t)

)]
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where the terms Υuu(x),Υuw(x) and Υ are defined as Υuu(xm) = GT
c (xm)Υ−1Gc(xm) and

Υuw(xm) = GT
c (xm)Υ−1Bc(xm) and Υ = Gc(xm)R−1GT

c (xm) = Bc(xm)BT
c (xm). After formulating

the probability measure P̃ and using the equation above, Equation (61) will take the form:

Ψ (x(ti), ti) = lim
dt→0

∫
1

D(~xi)
exp

(
− 1

2λ
Lk(~xi, ~u

(k)
i )

)
d~x (62)

where Lk(~xi, ~u
(k)
i ) plays the role of the Lagrangian at iteration k that is specified as follows:

Lk(~xk(ti), ~uk(ti)) = φ(x(tN)) +
1

2

N−1∑
j=i

q̃(x(tj), tj)dt

+
1

2

N−1∑
j=i

[wwwwxc(tj + dt)− xc(tj)

dt
−α(x(tj),uk(tj))

wwww2

Υ−1
tj

]
dt

+
1

2

N−1∑
j=i

uT
k (tj)

[
Υuuuk(tj) + 2GT

c (xm(tj))Υ
−1µ(xj)

]
dt

(63)

where the term α(x(tj),uk(tj)) is defined as α(x(tj),uk(tj)) = f̃c(x(tj)) − Gc(xm(tj))uk(tj) and
f̃c(x(tj)) is the drift term defined as f̃c(x(tj)) = fc(x(tj))−Gc(x(tj))R

−1q1(x(tj), tj). The terms
~uk(ti) = {uk(ti), ...,uk(tN−1)} and ~xk(ti) = {xk(ti), ...,xk(tN)} are the state and control trajectories
at iteration k. In addition, the term µ(xj) =

xc(tj+dt)−xc(tj)
dt

− fc(x(tj)) −Gc(xm(tj))uk(tj), and thus,
µ(xj)dt = Bc(xm(tj))dw(1)(t). In a more compact form, Equation (62) can be written as:

Ψ (x(ti), ti) = lim
dt→0

∫
exp

(
− 1

2λ
L̃k(~x(ti), ~uk(ti))

)
d~x (64)

where L̃k = Lk + 2λ logD.

Lemma 3. (Iterative path integral optimal control:) Given the form of the Lagrangian in Equation (63)
and the desirability function in Equation (64), the iterative optimal path integral control is specified as:

uk+1(x(ti), ti)dt = −R−1q1(x(ti), ti)dt︸ ︷︷ ︸
Cost Function

+ Ω(xm(ti))Gc(xm(ti))uk(x(ti), ti)dt︸ ︷︷ ︸
Previous Control

+ Ω(xm(ti))Bc(x(ti))δuPI(x(ti), ti)︸ ︷︷ ︸
Path Integral Correction

(65)

The path integral correction term δuPI is given by:

δuPI(x(ti), ti) = EP (~x)

(
dw(1)(ti)|x(ti)

)
(66)

where P (~x) = e−
1
λ
L̃(~xi)∫

e−
1
λ
L̃(~xi)d~x

(c)
i

, while the term Ω(xm(ti)) is defined as:

Ω(xm(ti)) = R−1GT
c (xm(ti))Υ

−1

Proof. The optimal controls based on Relation (49) is specified as:

u(x(t), t) = −R−1
(
q1(x, t)− λ[0k×p GT

c (xm)]
ψx(x, t)

ψ(x, t)

)
= −R−1q1(x, t) + λR−1GT

c (xm)
ψxc(t)(x, t)

ψ(x, t)
(67)
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Next, the term ψxc(t)(x,t)

ψ(x,t)
is computed where ψxc(t)(x, t) = ∇xc(t)ψ(x, t). In particular, by pushing the

gradient inside the expectation in the definition of the desirability function, we have that:

∇xc(t)ψ(x, t)

ψ(x, t)
= EP (~x)

(
∇xc(ti)L̃(~xi)

)
The term EP (~x) is the expectation under the probability P (~x), which is defined as P (~x) =

e−
1
λ
L̃(~xi)∫

e−
1
λ
L̃(~xi)d~x

(c)
i

. Based on the form of the Lagrangian in Equation (63), the term
(
∇xc(ti)L̃(~xi)

)
takes

the form: (
∇xc(ti)L̃(~xi)

)
= −Υ−1

(
Gc(xm(ti))uk(ti) + µ(xti)

)
+O(dt) (68)

The notation O(dt) is used for terms of order dt. We will keep this notation, as we will see that these
terms will cancel. The optimal control is expressed as:

uk+1(x(ti), ti)dt = −R−1q1(xti , ti)dt+ R−1GT
c (xm(ti))EP (~x)

(
∇

x
(c)
ti

L̃(~xi)
)

dt

≈ −R−1q1(xti , ti)dt+ EP (~x)

(
uL

)
+O(dt2) (69)

The term uL in the expression above takes the form:

uL = R−1GT(xm(ti))Υ(xm(ti))
−1
(

Gc(xm(ti)uk(ti)dt+ µ(xti)dt

)
(70)

The multiplication of the optimal controls with dt is done in terms of quadratic order with respect to dt.
These terms cancel out as dt → 0 or for very small dt. Finally, since µ(x)dt = B(x)dw(1)(t), we will
have that the final result is:

uL = R−1GT(xm(ti))Υ(xm(ti))
−1
(

Gc(xm(ti))uk(ti)dt+ Bc(xm(ti))dw(1)(t)

)
(71)

By combining Equations (69), (68) and (71), the final form for the iterative optimal control is expressed
in Equation (67).

7.1. Open Loop Formulations and Application to an Inverted Pendulum

One of the characteristics of the iterative optimal control in Equation (65) is that the control uk+1(x, t)

at iteration k + 1 requires the knowledge of the control uk(x, t) for every pair (x, t). While the iterative
characteristic of the proposed scheme improves scalability, the requirement for computing uk(x, t) for
any state and time (x, t) prohibits the application of this scheme to high dimensional systems. An
alternative approach to address this is to use a parametric or non-parametric approximation method to
represent uk(x, t) and apply iterative path integral control in its initial feedback form (65).

Here, we suggest a receding horizon open loop formulation and restrict our analysis to stochastic
systems with Bc(x(t)) = Bc, Gc(x) = Gc and q1(x(t), t) = 0. The algorithm is provided in Tables
Algorithm 1 and Algorithm 2 and consists of three procedures, namely FnSample_Trajectories,
FnUpdate_Controls and FnApply_Control_Dynamics. In particular, the functionality for the
procedure FnSample_Trajectories is to sample trajectories starting from state xk by using an initial
control trajectory ~u(:, k → T ) = (u(k),u(k + 1), ...,u(T )) and to return these sample trajectories and



Entropy 2015, 17 3371

noise profiles used for sampling dw(:, k → T ). The next procedure is FnSample_Update and has as
input the control trajectory ~u(:, k → T ), the sampled state trajectories Sampled_Trajectories and
the noise profiles dw(:, k → T ). Its functionality, illustrated in Algorithm 2, is to apply the iterative
path integral control in its open loop formulation and to compute the new control trajectory ~uupdated(:

, k → T ). In the open loop formulation, the state dependence of the correction term in Equation (66) is
dropped, and therefore, the term δuPI(t) becomes only time varying. In FnApply_Control_Dynamics,
the control is applied for one time step, and the overall algorithm repeats again.

Algorithm 1: Iterative stochastic optimal control.

Given the start state x0, initial control trajectory ~uk;
for k = 0 to T do

[Sampled_Trajectories, dw(k → T )] = FnSample_trajectories(~ucurrent(:

, k → T ),xk, k);
[~unext]= FnUpdate_Controls(~uk, Sampled_Trajectories, dw(k → T ));
[xk+1] = FnApply_Control_Dynamic(xk, ~unext(:, 1));
~ucurrent = ~unext;

end

Algorithm 2: Update_Controls.

FnUpdate_Controls(~uk, Sampled_Trajectories, dw(k → T ));
Given Sampled_Trajectories, and controls ~uk(:, k → T );
for i = 1 to Number_of_Iterations do

for t = k to T do
Compute the path integral correction term δuPI(t) = EP (~x)(dw(t)) in Equation (66) with
~xsampled ;
Compute ui+1(t) based on Equation (65);

end
end
~uupdated(:, k → T ) = ~uNumber_of_Iterations(:, k → T );
return ~uupdated(:, k → T )

Here, we apply the proposed algorithm to a swing up task of an inverted pendulum. The task is to
bring the pendulum from initial state x = [x1, x2] = [0, 0] to target state p∗ = [p∗1, p

∗
2] = [−π, 0]. The

pendulum has mass m = 1 kg and link length l = 0.5 m. The number of sampled trajectories returned
by the function FnSample_Trajectories is 200. The terminal cost is φ(xtN , tN) = 1, 000 ∗ (x1(tN)−
p∗1)

2 + 100 ∗ (x2(tN) − p∗2)2, and the state cost q(x) = 0 and control cost 1
2σ2u

2. The variance of noise
is σ = 0.5, and the time horizon used is tN = 300 ∗ 0.01 = 3 s. The state, control trajectories and the
cost are illustrated in Figure 2a–d. In particular, Figure 2a illustrates a set of 10 angular trajectories that
reach the desired state(red horizontal line), and Figure 2b illustrates the corresponding angular velocities
that also reach the desired state (red horizontal line). Figure 2c illustrates the stochastic iterative path
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integral control trajectories. Finally, Figure 2d illustrates the cost for the 10 trials as the system moves
towards the target state p∗ under the application of the iterative optimal path integral control.
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Figure 2. (a) Angle; (b) rotational velocity; (c) controls; and (d) cost trajectories.

8. Discussion

In this paper we present four different approaches to LSOC. In the first approach, which is also
the most traditional one, stochastic optimal control is formulated as the minimization of an objective
function J(x,u) in Equation (42) subject to the controlled dynamics. The HJB PDE is derived
based on the Bellman principle of optimality. The exponential transformation of the value function
V (x) and the connection between control cost and variance Equation (46) transforms the HJB into
the backward Chapman–Kolmogorov. The Feynman–Kac lemma is applied, and the solution of the
Chapman–Kolmogorov PDE together with the lower bound on the objective function are provided.

The second approach starts with the risk-seeking version of the cost J (x). This quantity has also
the form of the Helmholtz free energy. With the application of Girsanov’s theorem between controlled
and uncontrolled dynamics and the use of Jensen inequality, the Helmholtz Free energy is the lower
bound of the objective function that consists of a state-dependent cost and an information cost, which is
a measure of control effort. The link to Bellman optimality is established by showing that the Helmholtz
free energy satisfies the HJB equation, and therefore, it is a value function. It should be clear by now that
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steps to information theoretic representation are in the opposite direction, as shown in Figure 1. While in
the information theoretic approach, the analysis starts with the derivation of the Legendre transformation
and ends with the HJB PDE, in the traditional approach, the analysis starts from dynamic programming
and ends in a special case of the Legendre transformation.

In the third approach, the stochastic optimal control problem is derived using the maximum
entropy principle. The optimization problem is formulated as the maximization of the generalized
Boltzmann–Gibbs–Shannon entropy subject to performance constraints. The optimization is with respect
to a probability measure that corresponds to the controlled dynamics. At the thermodynamic equilibrium,
we have the maximization of the generalized Boltzmann–Gibbs–Shannon entropy, which is equivalent
to the minimization of the control effort subject to the performance and normalization constrains as
expressed in the optimization problem in (29).

In the KL stochastic optimal control framework [4], the treatment is for MDP. The analysis starts with
the construction of a cost function that consists of state cost and an information cost defined as the KL
divergence between the one step ahead transition probabilities of the control and uncontrolled dynamics.
Next dynamic programming is used to derive the Bellman equation in discrete time. The connection
to continuous time stochastic optimal control is performed when one step ahead transition probabilities
of the control and uncontrolled dynamics correspond to controlled and uncontrolled diffusion processes
with the same drift.

In this work, we present different views of nonlinear stochastic control and provide connections, new
generalizations and algorithms. Given all of the aforementioned approaches, it is clear that the idea
of exponential transformation of the value function existed already in the early work of control theory.
However, it was recently conceptualized as desirability and further explored in terms of algorithms,
quantum mechanical interpretations and discrete time formulations. While significant progress has been
made in both theory and algorithms, there are fundamental assumptions in the frameworks presented in
this work that restrict their applicability to systems where the uncertainty is only of a stochastic nature.
This means that there are assumptions on the structure of the dynamics that allow uncertainty only
due to noise. Given the progress on non-parametric regression methods in statistical machine learning
and the different ways to represent uncertainty, future work on stochastic control will focus on the
development of theory and algorithms for the stochastic control of systems with unknown and stochastic
dynamics. In these cases, uncertainty will not only incorporate stochasticity due to the existence of
noise, but it will also include probabilistic representations of the unknown dynamics. Finally, the
generalizations and thermodynamic interpretations presented in this work create new research directions
towards the development of stochastic control algorithms for general classes of stochastic systems and
for information theoretic measures, such as non-extensive entropies that go beyond the entropy measures
used in Boltzmann Gibbs statistical mechanics.
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