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Abstract: We present a very brief overview of entanglement swapping as it relates to
continuous-variable quantum information. The technical background required is discussed
and the natural link to quantum teleportation is established before discussing the nature of
Gaussian entanglement swapping. The limitations of Gaussian swapping are introduced,
along with the general applications of swapping in the context of to quantum communication
and entanglement distribution. In light of this, we briefly summarize a collection of
entanglement swapping schemes which incorporate a non-Gaussian ingredient and the
benefits of such schemes are noted. Finally, we motivate the need to further study and
develop such schemes by highlighting requirements of a continuous-variable repeater.
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1. Introduction

Information permeates through most, if not all, aspects of our everyday life. Sometimes it’s easy to
forget the value our culture places on information; for example, a fraction of a second can make the
difference between a profit or a loss as it does in high-frequency trading [1]. Communicating privately
in the presence of an adversary makes possible the on-line transactions we take for granted; however,
the methods we currently use to accomplish this rely on an assumption of the computational difficulty of
some problem. Quantum key distribution (QKD) harnesses the inherently “weird” properties of quantum
theory to provide a method of privately communicating which is based not on some assumption, but
instead on the laws of physics as we understand them [2,3].
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An important primitive in quantum communication is that of quantum teleportation [4,5]; this
provides a method of transferring an unknown quantum state from one party, Alice, to another, Bob,
given that they already share an entangled state. A closely related primitive is that of entanglement
swapping [6–8]. Suppose Alice and Bob share an entangled pair and Bob uses quantum teleportation
to teleport his half to a third party, Charlie. It can be shown that the resulting state between Alice and
Charlie is entangled. The ability to transfer the non-local correlations characterized by entanglement in
such a fashion has applications in quantum communication [9–11], where one cannot simply amplify a
quantum signal as one would do with a classical one.

In this paper we review entanglement swapping in the framework of continuous-variable (CV)
quantum information and how it relates to recent advances in the field. The paper is structured as follows:
In Section 2 we review the necessary formalism to discuss entanglement swapping. Next, we present
the general CV swapping protocol in Section 3. We discuss the special case of Gaussian entanglement
swapping in Section 3.1 in the covariance matrix framework. In Section 3.2 we discuss both hybrid
and non-Gaussian protocols and summarize their differences from the Gaussian protocol. Finally, in
Section 4, we summarize the various approaches and how such protocols are related to applications in
the field.

2. Formalism Review

In this section, we develop the necessary formalism to discuss CV entanglement swapping. A CV
system is a canonical infinite dimensional quantum system comprised of N bosonic modes with an
associated Hilbert space H = ⊗N

k=1Hk. Each of these modes Hk has an associated annihilation and
creation operator â, â† respectively. These operators obey the commutation relations [âi, â

†
j] = δij and

[âi, âj] = [â†i , â
†
j] = 0. The space Hk is spanned by the Fock basis {|nk〉}∞n=0 of eigenstates of the

number operator n̂k = â†kâk. These eigenstates have the property that n̂|n〉 = n|n〉, â|n〉 =
√
n|n − 1〉,

â†|n〉 =
√
n+ 1|n + 1〉, as well as the fact that the vacuum state |0〉 is annihilated by â|0〉 = 0. In the

absence of any interactions, these modes evolve according to the Hamiltonian H =
∑N

k=1(â
†
kâk + 1/2).

We can define two quadrature operators q̂k = âk+â†k and p̂k = i(â†k−âk) which act in a similar fashion to
the position and momentum operators in the quantum harmonic oscillator. These commutation relations
can be compactly written by defining

x̂ = (q̂1, p̂1, . . . , q̂N , p̂N) , (1)

so that we have [x̂i, x̂j] = 2iΩij where

Ω =
N⊕
k=1

(
0 1

−1 0

)
(2)

is the symplectic form.
Of particular interest in CV systems are Gaussian states and operations [12]. A Gaussian state, with

density matrix ρ̂, is completely characterized by its first two moments; the displacement vector

x̄ = 〈x̂〉 = Tr(x̂ρ̂), (3)
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and the covariance matrix

Vij =
1

2
〈∆x̂i,∆x̂j〉, (4)

where ∆x̂i = x̂i − 〈x̂i〉 and {., .} is the anticommutator. In this form, the uncertainty relation can be
expressed as V + iΩ ≥ 0. We can fully represent an arbitrary quantum state ρ̂ by its Wigner function,
defined as

W (x) =

∫
R2N

d2Nξ

(2π)2N
exp(−ixTΩξ)χ(ξ), (5)

where χ(ξ) = Tr[ρ̂D(ξ)] is the characteristic function and D(ξ) = exp(ix̂TΩξ) is the Weyl operator.
For Gaussian states the Wigner function can be written as

W (x) =
1

(2π)N
√

detV
e−(x−x̄)V −1(x−x̄)/2, (6)

and thus we have complete knowledge of the state from only the first two moments. It is convenient
for many purposes to deal only with the displacement vector and covariance matrix directly with the
knowledge that we can always express the state in another form if we so choose.

Gaussian operations are those that take Gaussian states to other Gaussian states. They correspond to
Hamiltonians which are linear or quadratic in the quadrature operators. To every unitary transformation
US,d generated from a quadratic Hamiltonian there exists a symplectic operator S and vector d which
generate the mapping x̂ → Sx̂ + d. This transforms the moments of a Gaussian state as x̄ → Sx̄ + d

and V → SV ST .
The Einstein-Podolsky-Rosen (EPR) state

|λ〉 =
√

1− λ2
∞∑
n=0

(−λ)n|n〉a|n〉b, (7)

with λ = tanh r ∈ [0, 1], where r is the squeezing parameter, is one important example of a Gaussian
state. This two-mode state is entangled, and often used as a resource state in CV protocols. The EPR
state has zero mean and covariance matrix given by

VEPR =

(
νI

√
ν2 − 1Z√

ν2 − 1Z νI

)
, (8)

where ν = cosh 2r, I is the 2×2 identity matrix and Z is the Pauli matrix Z = diag(1,−1).
Quantum teleportation can be conveniently described in the Wigner function formalism, where one

makes a Bell measurement between the input state and half of the entangled pair [5]. Suppose we have an
input state described by a Wigner functionWin(x̂, p̂) and an EPR pair described byWEPR(x̂1, p̂1, x̂2, p̂2).
To teleport the state Alice mixes the input state and the first mode of the EPR pair on a 50:50 beam
splitter which performs the transformations: x̂→ X̂ = (x̂− x̂1)/

√
2, p̂→ k̂ = (p̂− p̂1)/

√
2, x̂1 → q =

(x̂ + x̂1)/
√

2, and p̂1 → P̂ = (p̂ + p̂1)/
√

2. Alice then measures the pair (X̂, P̂ ) and sends the result
(X̄, P̄ ) to Bob who displace his mode as x̂2 → x̂out = x̂2 +

√
2gX̄ , for some possible gain g > 0, and

similarly for p̂out. The final state is obtained by integrating over all measurement outcomes as

Wout(x, p) =

∫
dX̄ dk dq dP̄ Wt(X̄, k, q, P̄ , x−

√
2gX̄, p−

√
2gP̄ ), (9)
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where Wt(ζ, ζA, ζB) = Win[(ζ + ζA)/
√

2]WEPR[(ζA − ζ)/
√

2, ζB] is the Wigner function for the total
state with ζi = (x̂i, p̂i).

3. Entanglement Swapping

The entanglement swapping procedure follows the spirit of teleportation as presented in the previous
section, where one simply uses another entangled state as the input state; such schemes have been
experimentally demonstrated [13,14]. One can allow for a more general protocol by including
displacements on both remaining modes with different gains. Gain-tuning the displacements to improve
the fidelity of teleportation has been previously studied in the literature [7,15]. Furthermore, one need
not use an EPR state as the source of entanglement; one can consider protocols which use non-Gaussian
entanglement or hybrid approaches which make use of both discrete and continuous elements [16].

3.1. Gaussian

In the case of Gaussian quantum information it is convenient to discuss entanglement swapping in
the covariance matrix framework [8,17]. Supposed we have an entangled state with covariance matrix
described by

σ =


a 0 c+ 0

0 a 0 c−

c+ 0 b 0

0 c− 0 b

 , (10)

this is a suitable form to study as all two-mode Gaussian states can be brought into this form, with
zero displacement vector, by local Gaussian operations [18]. If we consider swapping modes 2,3 for
entangled pairs characterized by covariance matrices σ12 and σ34 we find that by choosing the gains on
both remaining modes in an optimal fashion we obtain the new covariance matrix [19]

σopt =


a− ξ 0 ξ 0

0 a− ξ 0 −ξ
ξ 0 b− ξ 0

0 −ξ 0 b− ξ

 , (11)

where ξ = c2/(a+ b) and where we have chosen c+ = −c− = c for simplicity.
Interestingly, it can be shown that the purity of the resulting state is equal to the purity of the initial

state. This could be used, for example to obtain a state of higher purity over a lossy channel by sending
half of two EPR pairs to the middle and swapping as opposed to directly sending half of an EPR pair
over the full length of the channel. One would hope that this would be useful for building a CV repeater,
however it has been shown that such direct transmission is always preferable for Gaussian entanglement
distribution when compared to the swapping scheme considered above [19]. This is different from the
case of discrete variable (DV) repeaters where swapping can actually be beneficial [20], therefore the
first building block of a CV repeater must be a distillation step.
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3.2. Non-Gaussian

We present here a brief summary of some alternative entanglement swapping protocols which make
use of non-Gaussian elements. Entanglement swapping is primarily useful as a primitive in quantum
communication, however, as seen in the previous section, it is necessary for many protocols of interest
to have a distillation process. An important result is that one cannot distill entanglement from Gaussian
states with only Gaussian operations and measurements [21,22]. It is fruitful to then consider schemes
which add a non-Gaussian element at some stage.

One such hybrid scheme was proposed by Loock et al. in 2006 [23]. In this scheme one mediates
entanglement between atomic qubits with a dispersive light-matter interaction and by sending the
resulting bright coherent states between stations. One advantage of this scheme is that the measured
light observable is a continuous phase, as opposed to a discrete occupation, which places less
stringent interferometric requirements on the experiment. Instead of performing the usual homodyne
detections in the swapping protocol, it can be advantageous to consider performing an unambiguous
state discrimination measurement. This measurement can allow one to eliminate bit-flip errors,
however it requires photon detectors [24]. Ideally, such a method could allow for long-distance qubit
communication with high fidelity.

Another scheme which uses CV states to mediate DV entanglement was considered by
Takeda et al. [25]; this method has also been investigated experimentally [26]. This scheme is all optical
and mediates photonic qubit entanglement, either single or dual-rail, through the use of CV entanglement
in the form of EPR pairs. By judiciously choosing the gain, one is able to teleport DV entanglement for
any non-zero amount of squeezing provided the loss on the initial states satisfies a constraint.

The reverse of this protocol has been studied by Andersen et al. where an all optical proposal for
teleporting CV entanglement with DV resources is discussed [27]. To approach unit fidelity with
Gaussian entanglement swapping one must continue to increase the squeezing of the EPR pairs, this
limit is unphysical in the sense that perfect entanglement requires infinite energy. This scheme attempts
to circumvent this issue by using a finite number of DV entangled pairs to faithfully teleport CV states.

A proposal by Brask et al. [28] investigates the nature of a CV repeater which uses non-Gaussian
states but only Gaussian measurements. In this approach, one uses entangled coherent states
superpositions, known as “Schrödinger cat states” to distribute entanglement. These states are useful
for a variety of quantum information protocols including fault-tolerant quantum computation [29] and
teleportation [30–32]. This scheme takes advantage of the deterministic nature of CVs and readily
available detectors to attempt to provide an experimentally feasible approach which is capable of
achieving similar rates to atomic-ensemble repeaters at long distances. The entanglement swapping relies
on the familiar Bell state measurement with homodyne detectors, and can be made near deterministic
with additional single-mode resource cat states.

It is also possible to simply take the Gaussian entanglement swapping protocol and add a
non-Gaussian element, such as photon subtraction or replacement as a distillation step. Such a notion
has been considered in detail as it relates to the notion of a CV repeater [33]. It is shown that one can
extend the maximum distance over which one can extract a secret-key from a noisy channel by using
such a repeater architecture.
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4. Summary

We have presented a collection, but by no means all, of CV entanglement swapping protocols
and briefly discussed their application to quantum key distribution and the notion of distillation and
quantum repeaters. While Gaussian entanglement swapping is desirable for its simplicity, one requires
non-Gaussian elements if one hopes to distill entanglement. Thus we presented a host of protocols
which make use of non-Gaussian states, either discrete or continuous variables, and which offer a
range of benefits. Such protocols are important in the advancement of continuous-variable quantum
communication, where there has been limited work on continuous-variable repeaters such as a full rate
analysis. We know that in order to achieve high key-rates over long distances we need repeaters; there
is a fundamental limit to the achievable rate over a lossy channel, i.e., its private capacity, which lies
between the lower bound of Ref. [34] and the upper bound of Ref. [35]. Furthermore, we know such
repeater stations must include a non-Gaussian element [36]. It will therefore be potentially fruitful going
forward to build off of the host of entanglement swapping protocols that exist in the literature today.
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