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Abstract: Nowadays, sustained development of different social media can be observed 

worldwide. One of the relevant research domains intensively explored recently is analysis 

of social communities existing in social media as well as prediction of their future 

evolution taking into account collected historical evolution chains. These evolution chains 

proposed in the paper contain group states in the previous time frames and its historical 

transitions that were identified using one out of two methods: Stable Group Changes 

Identification (SGCI) and Group Evolution Discovery (GED). Based on the observed 

evolution chains of various length, structural network features are extracted, validated and 

selected as well as used to learn classification models. The experimental studies were 

performed on three real datasets with different profile: DBLP, Facebook and Polish 

blogosphere. The process of group prediction was analysed with respect to different 

classifiers as well as various descriptive feature sets extracted from evolution chains of 

different length. The results revealed that, in general, the longer evolution chains the better 

predictive abilities of the classification models. However, chains of length 3 to 7 enabled 

the GED-based method to almost reach its maximum possible prediction quality. For 

SGCI, this value was at the level of 3–5 last periods. 
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1. Introduction 

Social networks—regarded as social relationships connecting human entities—have become a more 

and more popular research domain, mainly due to a considerable interest in the Internet social media, 

such as Facebook, Twitter or the blogosphere. The most popular definition of a social network 

describes it as a finite set or multimodal sets of actors combined with the relation or relations defined 

on them [1]. 

Existing social media provide access to rich information about individuals—users of various 

services and different kinds of relationships between them. Obtaining such information and its detailed 

analysis may support the understanding of social processes taking place in the virtual world. The data 

should be properly acquired, stored and organised. This information can be represented by means of a 

dependency graph and analysed using complex network methodologies.  

Social Network Analysis (SNA) utilizes methods coming from different domains such as graph 

theory, sociology, physics and computer science. Additionally, the real social networks are not 

homogenous—they consist of subareas where the density of internal connections is higher than 

external ones. Based on this observation, many algorithms for social groups’ identification in networks 

have been proposed. The majority of them assume a static character of networks, thus, they provide 

static analysis of social groups. It appears, however, that such assumption significantly simplifies the 

real world, in which users of social media and connections between them continually change over time. 

2. Problem Description 

Social communities are evolving together with the changes of the entire network; they appear, 

disappear, merge, split as well as new members join or leave existing groups. Developing methods to 

track such group evolution makes it possible to understand the background and reasons ruling human 

behaviour, and to use them in facing with many practical problems that arise in marketing, politics or 

public security domains.  

In the case of marketing, it may be related with the analysis of possible impact while introducing a 

new product or services, e.g., why some incentives reduce user interactions in web-based customer 

support services. In politics, it may embrace an observation of influences of given political programs 

or individual politicians on some social groups and the analysis of influence evolution in time. 

Particularly, it may be used to monitor collective reactions to the course of election campaign or to the 

introduction of changes in the law.  

In public security affairs, the observation of the group evolution may facilitate identification of 

users or groups who propagate or support dangerous or criminal ideas and behaviour, e.g., terrorism.  

Forecasting possible future behaviour of social groups based on the analysis of their history, would 

be another useful step after analysis of former group evolution. It may be considered as an advice 
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suggesting taking adequate actions to counteract the predicted direction of evolution. Hence, the main 

problem addressed in this paper is the development of effective methods that could be used to predict 

the evolution of social communities existing in the temporal social network in the nearest future, i.e., 

in the next period. 

Nowadays, there exist some algorithms for the identification of group state evolution in  

time–transition type detection, but there are no studies on prediction of future changes of the  

group states (next events) as well as their indicators. It is a very complex problem since it is influenced 

by behaviour of individuals, which is difficult to predict. Moreover, the human reactions may be 

triggered by events or external information, which are not monitored and cannot be reflected in the 

social network. 

At the initial stage of community evolution prediction, it is necessary to acquire and prepare the 

adequate data related to group evolution, i.e., we need to identify groups in particular periods, to 

determine transitions between groups and event types in subsequent time slots.  

To obtain a sufficient quality of prediction, it is essential to select a proper set of information 

(measures-features) characterising group states and historical events related to them. Additionally, it is 

necessary to select the most valuable features, to apply a suitable prediction method and to define the 

most appropriate history of group states–the number of time windows taken into consideration. It can 

be supposed that these choices should be interrelated to the general profile of group dynamics. It 

should be emphasized that no effective methods and algorithms to predict future changes of social 

communities have been proposed and deeply investigated so far. 

3. Related Work 

In recent years dozens of community extraction methods have been developed, also several methods 

to track changes of the group over the time have been presented. Lately, one of the most investigated 

aspect of social network analysis is prediction. The best investigated is link prediction problem [2–4]. 

It refers to predicting the existence of a link (relation) between two nodes (users) within a social 

network. Prediction is being made based on different network and group measures. For example 

Liben-Nowell et al. [2] focused on path and common neighbours between pair of nodes, while 

Lichtenwalter et al. [3] consider degrees and mutual information between them. Zheleva et al. [4] 

explored different combinations of descriptive, structural and group features (e.g., group membership) 

and proved that prediction accuracy is 15%–30% more accurate as compared to using descriptive node 

attributes and structural features. 

After successful results in link prediction the researchers have immersed in the problem to link sign 

prediction [5–8]. Sign in this context means that predicted relation between users may be positive or 

negative. Again the prediction is being made based on network and group measures.  

Symeonidis et al. [8] looked at paths between the node pair and used the notion of similarity to predict 

the sign. Leskovec et al. [7] used degree and mutual information between pair of nodes for link 

prediction and profits from the theory of balance and status to predict the link sign. Kunegis et al. [6] 

evaluated different signed spectral similarity measures to predict the sign of the link in Slashdot. 

Davis et al. [9] tackled the problem of multi-relational link prediction by extending the 

neighbourhood methods with weight and focusing on triads. Richter et al. [10] and Wai-Ho et al. [11] 



Entropy 2015, 17 3056 

 

 

faced the very important task of churn prediction. Wai-Ho et al. introduced a new data mining 

algorithm called DMEL (data mining by evolutionary learning), which estimates each prediction being 

made. Richter et al. presented a novel approach and tried to predict churn based on analysis of group 

behaviour. This approach touches another aspect, not well studied yet, where evolution of the whole 

group is being predicted, i.e., which event will be next in group lifetime.  

Some approaches regard forecasting of changes of groups in the future. Kairam et al. [12] 

investigated the possibility of prediction whether a community will grow and whether survive in the 

long term. They achieved a good accuracy—over 77% in predicting group growth over the following 2 

months, 2 years and group death within a year. Patil et al. [13] addressed a similar problem—whether 

a group will disappear or will thrive in the future and they obtained accuracy over 90%.  

Goldberg et al. [14] handled a problem of prediction of lifespan of evolution for a group. They 

indicated that there is a correlation between the lifespan of a community and its structural properties 

from early stages of evolution. Interesting question is if the evolution of the whole social network 

structure (i.e., the Matthew effect, describing phenomenon rich get richer [15]) affects changes on the 

groups level. However before answering this question the number of extensive researches on the 

evolution of groups has to be conducted in order to deepen the knowledge in this field. 

Although some methods concerning prediction of some aspects (e.g., determining lifespan) of group 

evolution have been proposed so far, the task of predicting future evolution event for a group was not 

studied so extensively, except for the methods presented in [16–18]. Methods described in [16,17] 

focus on predicting next event for a group based on its previous states (called also profiles). A group 

profile is described by a set of metrics (explained later in detail in Section 5.3) and prediction is 

conducted by the classifier. However, only two kinds of features: a group size and transition type were 

utilized in [16,17] for reasoning. To some extent a similar approach is proposed in [18], where the 

authors also consider group profiles, but they introduced more characteristics describing groups such 

as properties of influential members in a group and topics discussed by a group. They assumed that 

group events are independent (they use classifiers to predict absence or presence of a single event, i.e., 

binary prediction), but they did not investigate history of group states (only the previous change). In 

this paper, we concentrate on the in-depth analysis of reasoning process, in particular: (1) the 

evaluation of the influence of the number of previous group states (length of history) on quality of 

evolution prediction as well as (2) the selection of proper input features describing groups from the 

pool of diverse structural measures (31 for each time frame), including aggregated ones. 

4. General Concept 

Prediction of social community evolution consists of four main phases depicted in Figure 1:  

(1) collecting data and its splitting into time frames (Figure 1a); 

(2) extraction of social networks for each period and social community identification (Figure 1b); 

(3) detection of changes (events) in groups for the following time windows and identification of 

chains preceding the recent state of the group (Figure 1c); 

(4) building the predictive model (learning the classifier) and its validation (Figures 1d and 2). 
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Figure 1. The four main phases in prediction of social community evolution. 

First, some source data about common activities, collaborative work or mutual communication 

needs to be gathered from IT services or databases over reasonable long time to capture evolution in 

human behaviour and mutual relationships (Figure 1a). In the experimental part, three data sources 

were exploited: posts and discussions in blogosphere, co-authorship of scientific papers and Facebook. 

All of them correspond to different human activities over dozens of months with various engagement 

and variability in interpersonal contacts. 

 In the next stage (Figure 1b), a separate social network needs to be created from the source data 

separately for each time frame. In general, this network can form either a weighted or unweighted 

graph, either directed or undirected one. Weights in the weighted case reflect the intensity level of 

common activity. In the experimental studies (see Section 7) only weighted graphs were exploited 

even though their weights were used for prediction only (at evaluation of descriptive structural 

features)—not for community detection. Two of the graph time series were directed whereas one  

was undirected. 
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Figure 2. The last phase in prediction of social community evolution. 

Having the network, social community are discovered by means of any clustering method. In this 

research, the clique percolation method (CPM) [19,20] was used for extraction of overlapping groups, 

although one could utilize any other algorithm. 

The crucial goal of the third phase is to detect changes of social communities between following 

time frames: Tn-1→Tn, i.e., events like group splitting, growing, merging, dissolving and so on  

(Figure 1c). Two different algorithms developed by the authors were independently utilized for that 

purpose, see Section 5 for details:  

(1) Stable Group Changes Identification Algorithm (SGCI), 

(2) Group Evolution Discovery Algorithm (GED). 

Based on the changes identified, an evolution chain can be created for each group Gi from Tn. Such 

chain consists of all other preceding groups from the previous time frames (Tn-1, Tn-2, Tn-3, etc.) the 

recent group Gi comes from. Additional information (metrics described in section 5.3) about related 

changes that formed group Gi is added. Overall, it may happen that a group has been created from two 

or more other groups—through merging, e.g., group G3 came into being from G1 and G2. In such case, 

two separate evolution chains are being established for G3, one with group G1 and one with G2.  

It could be even multiplied by more merging events in the following time frames. In general, many 

evolution chains may be assigned to one group. 

The last, fourth stage is the prediction by means of machine learning methods (Figures 1d and 2). It 

has been performed independently for SGCI and GED algorithms to enable their comparison. For each 

group Gi in time frame Tn, a set of descriptive, mainly structural features is computed (see Section 5.3). 

These features correspond to both the state of group Gi within the social network in Tn (29 features for 
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SGCI and 2 more for GED), as well as its identified ancestors (previous groups) and transitions in the 

preceding periods Tn-1→Tn, Tn-2→Tn-1, Tn-3→Tn-2, …, etc. This calculation is based on the items 

coming from the group evolution chain detected in the third phase. Through this transformation of 

evolution chains into descriptive features (attributes, variables), we obtain even hundreds of features 

reflecting historical evolution of each group until Tn. For each period a separate feature set is 

calculated. In total, we obtain (no. of features for a period) × (no. of periods) features for each 

considered group in Tn. Groups with their descriptive features from each time frame Tn (except the first 

periods that possess too short history) are put into one set of group instances ready to build predictive 

model. Since there may be several evolution chains for a given group Gi, each of them corresponds to 

another case. As a result, group Gi occurs as many times in the learning set as many evolution chains 

were detected for it.  

To check usability of the features, an additional feature selection method is applied to remove 

unnecessary attributes and the ones that potentially provide too many awkward disturbances. 

Additionally, to enable application of various classification models, that may have some limitations 

related to feature domains, the normalization process is performed for each feature. It is carried out by 

linear transformation into the range [0;1] and min-max approach, i.e., the minimal value is moved to 0 

and maximal to 1. 

The groups from all periods (excluding the first ones) with their features (input) together with 

information about their following transition in Tn+1 (output) are used to learn the classifier, i.e., build a 

classification model. For the validation purpose (to evaluate a quality of prediction), the entire set of 

these cases (chains of groups) is randomly split into 10 partitions to enable 10-fold cross-validation: 

learning on nine sets, testing on the remaining 10th and repetition this process 10 times for another 

remaining testing set. 

Furthermore, to analyse the evolution chain profiles, independent classification models were built 

for various lengths of historical data (evolution chain) used to describe the group, i.e., we considered 

two, three, four, …, etc. previous changes of the given group. 

In general, a group may be involved in many events for a given transition Tn→Tn+1. For example, 

group G1 in Figure 1c was involved in both merging with G2 into G3 and splitting into G3 and G4.  

In this study, we used only typical multi-class classification method; its output is one out of  

many classes from the fixed set of event types. Hence, the learned model is able to predict only one 

future event for a given group described by the assigned features derived from one evolution chain. To 

enable multiple output (many possible events) another solution—multi-label classification would need 

to be applied [21,22]. This is, however, much more complex and is rather a matter of further research. 

5. Predicting Group Evolution in the Social Network 

In this chapter two approaches to group evolution prediction in social network are presented. Both 

approaches are similar but the first one is based on the SGCI method results and the second is based on 

the GED method results. The SGCI method was introduced in [23] (the concept of stable groups was 

used from the method described in [24]). In [25] authors of SGCI described a tool for visualisation of 

group evolution based on the SGCI method. A detailed explanation of the GED method can be found 

in [26], and in [23] both methods of identification events in group evolution are compared. 
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5.1. Predicting Group Evolution Using SGCI Results and the Notion of Dominating Event 

One of the algorithms used in presented research, which identifies groups of interacting users is the 

SGCI algorithm [23,24]. The main idea of the algorithm is finding groups in subsequent time frames 

and identification of their continuation. A particular feature of the algorithm concerns the identification 

of groups which fulfil the stability condition—their duration is longer than a given number of time. 

Different kinds of events were identified, which describe a method of transformation of stable 

groups between considered time frames and priorities of these events were defined as follows (starting 

from the highest one): constancy, change size, split, merge, addition, deletion, split_merge, decay. The 

reasons behind such choice of the order of importance of events were described in [17]. 

The chains of the following states of stable groups, with given length, are considered. The state is 

represented by values of the selected measures, described in Section 5.3. The applied prediction 

algorithm is based on finding next type of events transforming groups, taking into consideration their 

previous states in analysed chains. For each group in a given time frame there is a possibility to predict 

many events (which arise from different considered chains from the past), so a notion of a dominating 

event, defined on the basis of event priorities, was introduced. The reason for selected order is that 

some events, such as addition or deletion mean small change for groups. Moreover, some events 

cannot coexist with other ones (described in [17]) and position in order of such events is meaningless 

(such as the decay event). 

Figure 3a explains the main idea of the presented algorithm and the notion of the dominating events. 

Three sequences (labelled as seq1, seq2 and seq3) of the group states, each of them with the length 

equal two, are presented. Each state is described by a vector of measures. For instance the state of the 

group G1 in time Tn, called Gn,1, is expressed by a following vector: [L n,1, D n,1, Co n,1, S n,1, R n,1, {avg, 

sum, max, min}{Din
 n,1, Dout

 n,1, Dt
 n,1, B n,1, C n,1, E n,1}], where upper index of each measure concerns 

the number of time frame (n) and the number of the group (1). The values of functions (avg, sum, max, 

min) are calculated for values of given measure (Din
 n,1, Dout

 n,1, Dt
 n,1, B n,1, C n,1, E n,1) of all members 

of considered groups (see Section 5.3). 

In Figure 3a seq1 represents a sequence of states of groups Gn-2,1, Gn-1,1 and Gn,1 and we want to 

predict the next evolution event for sequence seq1 and group Gn,1. As we can see in Figure 3a, this 

group has two events assigned: constancy (transition between Gn,1 and Gn+1,1) and addition (transition 

between Gn,1 and Gn+1,2). According to the introduced concept of dominating events and chosen 

priorities of events, the predicted dominating event is the constancy. The table in Figure 3a 

summarizes the types of predicted events for each considered sequence. 
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Figure 3. Two approaches to group evolution prediction: (a) using the SGCI  

method—example with sequences of group measures from 3 time frames (1 present group 

state and 2 earlier group states) and predicted dominating event; (b) using the GED 

method—the sequence of events for a single group together with its profiles as well as its 

target class-event type in TnTn+1 (the chain corresponds to one case in classification). 

5.2. Predicting Group Evolution Using GED Results 

The idea of using the GED method results [26] to predict group evolution was presented in [16]. 

The initial idea was to use a simple sequence, which consists of groups size and events between 
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consecutive timeframes as an input for the classifier. The learnt model should be able to produce very 

good results even for simple classifiers. The initial results were quite encouraging especially for tree 

classifiers, thus the next step was to transform the initial concept into a method. 

Firstly, instead of simple group size, the entire group profile, consisting of dozens of metrics and 

their aggregations (centrality measures were aggregated on the level of a group-for details please see 

Section 5.3) was built. This profile describes the state of group in selected timeframe before and after 

particular transition (event). 

Secondly, instead of constant sequence length, the different chain lengths (sequence lengths) were 

introduced, to find out what would be the results if we use shorter/longer sequences (more preceding 

events and group measures). 

As an example, the 4-step sequence is used (Figure 3b). Obviously, the event types vary depending 

on the individual groups, but the time frame numbers were fixed, for one method execution. It means 

that for each predicted event, four group profiles in four previous time frames together with three 

associated events are identified as the input for the classification model, separately for each group. 

A single group in a given time frame (Tn) is a case (instance) for classification, for which its event 

TnTn+1 is being predicted. 

The sequence presented in Figure 3b is used as an input for classification. The first part of the 

sequence is used as input features (variables), i.e., (1) Group profile in Tn-3; (2) Event type Tn-3Tn-2;  

(3) Group profile in Tn-2; (4) Event type Tn-2Tn-1; (5) Group profile in Tn-1; (6) Event type Tn-1Tn;  

(7) Group profile in Tn. A predictive variable is the next event for a given group. Thus, the goal of 

classification is to predict (classify) Event TnTn+1 type–out of the six possible classes: i.e., (1) growing, 

(2) continuing; (3) shrinking; (4) dissolving; (5) merging and (6) splitting. The forming event was 

excluded since it can only start the sequence. 

Main differences between both methods to predict groups evolutions include: 

• usage of different methods of groups evolution (SGCI and GED, respectively) 

• the concept of dominating event in approach using SGCI method 

• usage of additional, specific measures for prediction of events in approach using GED 

method (metrics alpha and beta which are utilized internally in the process of determining 

groups transitions in consecutive time frames in GED method) 

• different generation of chains for split/splitting event (for GED if the last group in a chain 

has assigned splitting events with multiple groups in the next time frame, then for each 

splitting transition for the considered group the identical chain is generated, but with 

SGCI only one such chain is generated). 

5.3. Measures Used To Describe Group Profile 

There are up to 31 features extracted for each group and for each period, see Figure 2. They 

describe the group itself like its size, average density, cohesion, leadership, reciprocity and additionally 

for the GED method: alpha and beta. There are five such features for SGCI and seven for GED.  

Independently, the aggregated structural features for nodes that belong to a given group are 

computed. The following six measures were used for that purpose: node total degree, indegree, 

outdegree, betweenness, eigenvector and closeness. For each of these six features some aggregations 
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over all nodes in the group are calculated, namely: sum, average, minimum and maximum value.  

It means that in case of total degree and sum, the sum of total degree for all nodes in the group is 

computed. For a single measure four aggregations are created, i.e., for total degree we have: 

avg_total_indegree, sum_total_indegree, min_total_indegree and max_total_indegree. As a result, we 

obtain 6 × 4 = 24 aggregated features for each group.  

Together with the group features, it makes 5 + 24 = 29 features for SGCI and 31 features for GED. 

Their values are independently computed for each period in the evolution chain, e.g., for 5-period 

chain we have 29 × 5 = 145 features (SGCI) or 155 for GED, for each single group in Tn. The 

explanations for the features/structural measures are presented below: 

• group size—the number of nodes in the group, 

• density—a measure expressing how many connections between nodes are present in the group in 

relation to all possible connections between them [1]: 
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−
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 (4) 

where function a(i,j) has value 1 when there is connection from node i to node j, 

• cohesion—a measure characterising strength of connections inside the group in relation to the 

connections outside the group (incident with the group members) [1]: 

)(

),(
)1(

),(

nNN

jiw
nn

jiw

C

Gi Gj

Gi Gj

−

−=
 

 

∈ ∉

∈ ∈

 (5) 

where w is a function assigning the weight between nodes, G is a group, n is the number of nodes 

in the group and N is the number of nodes in the entire network, 

• leadership—a measure describing centralization in the graph or group (the largest value is for a 

star network) [27]: 
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where dmax means the maximum value of degree in the group and n–the number of nodes in  

the group, 

• reciprocity—a fraction of edges that are reciprocated [28]: 

=
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m

R ),(),(
1

 (7) 

where m is the total number of edges in the network and function a(i,j) has value 1 if there is a 

connection from node i to node j, 

• alpha—the GED inclusion measure of group Gi from time frame Tn in group Gj from time frame 

Tn+1 [26] (a measure used only in approach utilizing the GED method), 

• beta—the GED inclusion measure of group Gj from time frame Tn+1 in group Gi from time frame  

Tn [26] (a measure used only in approach utilizing the GED method), 
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• indegree—a node measure defining the number of connections directed to the node [27]: 

=
i

in ijaD ),(  (8) 

where function a(j,i) has value 1 if there is a connection from node j to node i, 

• outdegree—a node measure determining the number of connections outgoing from the node [27]: 

=
i

out jiaD ),(  
(9) 

where function a(i,j) has value 1 if there is a connection from node i to j, 

• total degree—sum of indegree and outdegree: 

outin DDD +=  (10) 

• betweenness—a node measure describing the number of the shortest paths from all nodes to all 

others that pass through that node [27]: 
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where )(vijσ  align is the total number of the shortest paths from node i to j and )(vijσ  is the 

number of those paths that pass through v, 

• closeness—a node measure defined as the inverse of the farness, which in turn, is the sum of 

distances to all other nodes [27]: 
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1
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where function d(i,j) is distance from node i to j, 

• eigenvector—a node measure indicating the influence of a node in the network [29]. 

6. Dataset and Experiment Setup 

6.1. Dataset Description 

Experiments were conducted on three different datasets. The first dataset is the DBLP network 

dataset which contains the undirected collaboration graph of authors of scientific papers. This dataset 

is publicly available [30] and the graph has 1,248,427 vertices and 17,631,144 edges. For the analysis 

we used data range from 1990 to 2009—this period of time was divided into 20 disjoint time frames 

lasting 1 year each. 

The second one is the Facebook dataset. It is also publicly available [31] and comprises directed 

network of posts to other user’s wall on Facebook. The network contains 46,952 vertices and 876,993 

edges. The analysis was conducted on the data from range 1 August 2005–11 February 2009 which 

was split into 42 overlapping time frames, each lasting 60 days and each overlaps 50% with the 

neighbouring one. 
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The last one is the Salon24 dataset which contains data from the www.salon24.pl portal consisting 

of blogs from different domains, most of them are political ones. The data consists of 26,722 users, 

285,532 posts and 4,173,457 comments. Tests were conducted on the data from range  

4 April 2010—31 March 2012. The analysed period of time was divided into time frames, each lasting 

7 days and neighbouring time frames overlap each other by 4 days. In this period of time there are 182  

time frames. 

6.2. Group Extraction 

After dividing data on time frames, the next step was discovering groups in each of them using. 

CPM method (CPMd version) from CFinder tool (http://www.cfinder.org/). CPM requires k parameter 

which decides about minimum size of groups. We set values for k equal to 3, 7 and 5 for the Facebook, 

DBLP and Salon24 dataset, respectively. Different values of this parameter were motivated by 

performance issues. 

6.3. Group Sizes 

Each dataset has different characteristics of groups (presented in Figure 4). Most medium size 

groups belong to the DBLP dataset (with 7–50 members). The smallest groups are from Facebook 

dataset. Contrary, Salon24 dataset contains the biggest groups. These differences could be explained 

by the different nature of these datasets. The collaboration network (DBLP dataset) and writing posts 

to other users’ wall in a social network service (Facebook dataset) cause the formed groups to not be large.  

 

Figure 4. The number of groups with a given size. 

6.4. Experiment Setup 

The experiments using the SGCI method were conducted using the following parameters (described 

in detail in [17]): ds = 50 (except for the Salon24 dataset, where this parameter had a value equal to 

25), sh = 10 and dh = 0.05. The value of parameter MJ was different for each dataset: for DBLP  

MJ = 0.4, for Facebook–0.5 and for Salon24–0.65. Different values of parameters were motivated both 

by performance issues and need to obtain sufficient number of events during groups evolution. 

The GED method was run on the datasets with all combinations of GED parameters [26] from the 

set {50%, 60%, 70%, 80%, 90%, 100%}. The social position measure [32] (measure similar to 
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weighted page rank) was utilized as the node importance measure. The Facebook and DBLP datasets 

needed additional run with parameters equal to 30%. 

To describe the group profile at specific time frame following measures were used: size, density, 

cohesion, leadership, reciprocity, avg_indegree, sum_indegree, min_indegree, max_indegree, 

avg_outdegree, sum_outdegree, min_outdegree, max_outdegree, avg_total_degree, sum_total_degree, 

min_total_degree, max_total degree, avg_betweenness, sum_betweenness, min_betweenness, 

max_betweenness, avg_closeness, sum_closeness, min_closeness, max_closeness, avg_eigenvector, 

sum_eigenvector, min_eigenvector, max_eigenvector. Additionally, both inclusions (alpha, beta 

measures) were used with the GED method. 

The experiment was executed in KNIME (www.knime.org) with Weka plugin. Four different 

classifiers were utilized with default settings (Table 1). To evaluate the quality of the methods, 10-fold 

cross-validation was used [33] with stratified sampling separately for the GED and SGCI results. The 

measure selected for presentation and analysis of the results was F-measure, which is the harmonic 

mean of precision and recall. 

Table 1. Classifiers used. 

Short Name Name 

J48-C4.5 decision tree C4.5 decision tree [34] 
RandomForest Random forest [35] 
AdaBoost(J48) Adaptive Boosting [36] 

Bagging(REPTree) Bootstrap aggregating [37] 

All classifiers were utilized for both approaches (SGCI and GED) and their results are presented below. 

7. Experiments 

7.1. Predicting Group Evolution Using the SGCI Results 

A distribution of events in all three considered datasets is presented in Figure 5. In the DBLP and 

Facebook datasets, change size is the most frequent event. Salon24 has a significantly different 

characteristic, it possesses much more events leading to several groups reorganisation (addition, 

deletion, merge and split). 

 

Figure 5. SGCI: distribution of the event types in all datasets. 
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In Table 2 there are overall numbers of chains identified in each analysed dataset, while detailed 

statistics regarding frequencies of types of events in datasets are presented in Tables 4–6. As one can 

see in Table 2 the overall number of chains in DBLP and Facebook decreases while the length of chain 

increases. In Salon24.pl the trend is inversed and, the number of chains decreases with the length of 

chains. This behaviour stems from the fact that the Salon24 dataset contains much more events that 

increase the number of chains when we consider longer chains, i.e., events such as deletion, split and 

spit_merge together constitute significantly higher part of all events in comparison with other datasets. 

Table 2. SGCI: the number of evolution chains for particular chain length. 

Chain Length DBLP Facebook Salon24 

2 2,980 3,027 2,119 
3 2,581 2,759 5,999 
4 2,051 2,094 5,005 
5 1,919 1,831 10,712 
6 1,754 1,575 9,895 
7 1,120 1,401 15,076 
8 744 1,314 18,735 
9 603 1,280 29,690 
10 417 1,141 - 

Table 3. SGCI: the number of evolution chains for particular event type and particular 

chain length in the DBLP dataset. 

Chain Length Addition Change Size Constancy Decay Deletion Merge Split 

2 7 981 340 846 5 471 330 
3 7 569 166 964 3 520 352 
4 4 431 126 548 3 516 423 
5 3 432 106 379 1 499 499 
6 0 428 82 296 1 532 415 
7 0 334 72 135 0 381 198 
8 0 219 39 146 0 229 111 
9 0 182 29 99 0 178 115 
10 0 106 16 82 0 135 78 

Table 4. SGCI: the number of evolution chains for particular event type and particular 

chain length in the Facebook dataset. 

Chain Length Addition Change Size Constancy Decay Deletion Merge Split 

2 23 1137 416 840 32 298 281 
3 17 854 286 1078 18 295 211 
4 23 680 202 714 20 247 208 
5 8 623 160 624 23 204 189 
6 11 541 134 499 11 215 164 
7 13 457 139 425 11 195 161 
8 14 434 118 389 11 170 178 
9 9 394 99 438 19 168 153 
10 5 324 87 426 16 147 136 
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Table 5. SGCI: the number of evolution chains for particular event type and particular 

chain length in the Salon24 dataset. 

Chain Length Addition Change Size Constancy Decay Deletion Merge Split 

2 185 615 72 683 255 125 184 
3 920 764 102 3,638 157 216 202 
4 603 1,098 68 2,280 444 214 298 
5 1,334 1,510 104 6,773 340 338 313 
6 1,064 2,170 138 5,201 398 464 460 
7 1,860 2,573 158 8,597 594 563 731 
8 2,065 3,357 365 9,917 912 920 1,199 
9 4,126 3,900 533 16,498 1,151 1,875 1,607 

In Figures 7–11, 13–19 and 21–27 F-measures for each dataset and each event are presented. For 

each datasets the RandomForest, J48-based AdaBoost, Bagging classifiers are used, for Facebook 

datasets, (Figures 21–27) Feature Selection classifier is also calculated. 

7.1.1. DBLP Dataset 

In Figure 6 and Table 3 one can see a distribution and numbers of each kind of events for given 

chain lengths. The number of events decreases with the increase in the considered chain length.  

The number of events is low in comparison to other datasets, especially addition and deletion events, 

which do not appear in 6-length or longer chains (thus we do not assess quality of prediction for them 

in this dataset). 

 

Figure 6. SGCI: distribution of the event types for events being predicted in the DBLP dataset. 

In Figures 7–11 F-measures for DBLP depending on chain length for each event are presented. For 

each case, the best accuracy is obtained for RandomForest and AdaBoost classifiers. The results differ 

regarding initial F-measure value for shortest chain length (equal 2) and the chain length value for 

which the maximum F-measure value is obtained. The highest accuracy is obtained for most frequent 

events, such as change-size and decay. 
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Generally, F-measure achieves very high quality for relatively short chains values (equal 5 or 6). All 

events are well classified (especially in longer chains)-only constancy event obtained a little worse 

results in short chains with comparison to other events. Please also note that constancy events are not 

as frequent as other ones.  

 

Figure 7. SGCI: results of event classification for change size event in the DBLP dataset. 

 

Figure 8. SGCI: results of event classification for constancy event in the DBLP dataset. 

 

Figure 9. SGCI: results of event classification for decay event in the DBLP dataset. 
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Figure 10. SGCI: results of event classification for merge event in the DBLP dataset. 

 

Figure 11. SGCI: results of event classification for split event in the DBLP dataset. 

7.1.2. Facebook Dataset 

The Facebook dataset has different a profile than the DBLP one. It contained much more groups, 

especially small ones and much more events. It is closely related with different nature of social media, 

especially their higher dynamics. The changes in group structures take place there faster and are more 

frequent. The characteristic of changes of F-measure is also different. Like the DBLP dataset, the 

number of events decreases with the increase in the considered chain length. As we can see in Figure 

12 and Table 4, change size and decay are the most frequent events. 

 

Figure 12. SGCI: distribution of the event types for events being predicted in the Facebook dataset. 
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Figure 13. SGCI: results of event classification for addition event in the Facebook dataset. 

Values of F-measure for the considered cases (Figures 13–19) have the shape different to the one 

for the DBLP dataset. Again, RandomForest and AdaBoost are the best classifiers. The highest 

differences between these two classifiers and J48 or Bagging are for addition (Figure 13) and deletion 

(Figure 17). It is connected with a relatively low numbers of these events. The best results (considering 

F-measure value of the shortest chain length and chain-length for which F-measure values are close to 

the maximum value) are obtained for split and change size events. 

 

Figure 14. SGCI: results of event classification for change size event in the Facebook dataset. 

 

Figure 15. SGCI: results of event classification for constancy event in the Facebook dataset. 
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Figure 16. SGCI: results of event classification for decay event in the Facebook dataset. 

 

Figure 17. SGCI: results of event classification for deletion event in the Facebook dataset. 

 

Figure 18. SGCI: results of event classification for merge event in the Facebook dataset. 
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Figure 19. SGCI: results of event classification for split event in the Facebook dataset. 

7.1.3. Salon24 Dataset 

The best results are achieved for the Salon24 dataset. This dataset is characterised by the higher 

number of large groups and high dynamics caused by high activity of bloggers intensively writing post 

and comments.  

In opposite to the described earlier datasets, the number of events is much higher for Salon24, and 

additionally, it rises together with the increase in the considered chain length (Figure 20, Table 5). The 

most frequent event in this dataset is the decay event. We can also observe that significantly higher 

number of addition and deletion events in comparison to other datasets appeared. There is a significant 

difference between the number of events for the shortest and the longest chains (Figures 21–27). For 

example, for the events which have the greatest influence on a group reorganisation, e.g., split, 

deletion, this increase reaches almost nine and five times, respectively. 

 

Figure 20. SGCI: distribution of the event types for events being predicted in the Salon24 dataset. 

  



Entropy 2015, 17 3074 

 

 

 

Figure 21. SGCI: results of event classification for addition event in the Salon24 dataset. 

 

Figure 22. SGCI: results of event classification for change size event in the Salon24 dataset. 

 

Figure 23. SGCI: results of event classification for constancy event in the Salon24 dataset. 
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Figure 24. SGCI: results of event classification for decay event in the Salon24 dataset. 

 

Figure 25. SGCI: results of event classification for deletion event in the Salon24 dataset. 

 

Figure 26. SGCI: results of event classification for merge event in the Salon24 dataset. 
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Figure 27. SGCI: results of event classification for split event in the Salon24 dataset. 

7.1.4. Features Selection 

For Facebook dataset, the Backward Feature Elimination (http://goo.gl/M4jpks) with J48 (C4.5 

decision tree), was carried on. The results of this method are presented in Figures 13–19 in comparison 

with other approaches. One can notice that future selection gives similar results (usually better than 

J48 and sometimes better than Bagging, but worse than RandomForest and AdaBoost) with smaller 

number of features, which means that the obtained results are easier for interpretation and analysis.  

Table 6 presents the number of features selected from different states taken from group history for 

chains with different length. The results indicate that features describing recent few states for the group 

have greater importance on prediction quality than the other ones. This observation is particularly 

evident for the longest chains. 

Table 6. SGCI: the number of features selected for particular chain length for Facebook dataset. 

State Chain 2 Chain 3 Chain 4 Chain 5 Chain 6 Chain 7 Chain 8 Chain 9 Chain 10 

n-1 3 14 20 17 21 24 19 18 17 
n-2 1 7 22 9 9 15 12 7 5 
n-3  2 24 9 7 13 8 4 7 
n-4   14 7 10 14 6 3 3 
n-5    3 9 14 7 6 5 
n-6     2 6 5 3 2 
n-7      6 6 6 1 
n-8       1 3 2 
n-9        1 0 

n-10         3 

7.2. Predicting Group Evolution Using GED Results 

The events distribution in all three examined datasets is presented in Figure 28. In the DBLP and 

Facebook datasets, forming and dissolving events are more frequent than others, which means that 

most of the groups in these networks live only for one time frame. There is a very small number of 

groups which last over several following time frames. On the other hand, in the Salon24 dataset 
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splitting and merging events dominate other events; groups in this network significantly change their 

structure, but they last over a longer period. 

 

Figure 28. GED: distribution of the event types in all datasets. 

The number of evolution chains created for particular dataset is showed in Table 7, while  

Tables 9–11 contain detailed statistics on the number of the particular event types being predicted. It is 

visible in Table 7 that the number of evolution chains for the DBLP and Facebook datasets decreases 

when chain becomes longer. It is a consequence of short lifetime of the groups in these datasets. The 

Salon24 dataset, where the splitting event is dominating, has the opposite tendency. Groups live longer 

resulting in more and more evolution chains with the increasing length. Thus, for evolution chain of 

length 6 only 10% and for evolution chain of length 7 only 5% of the total number of evolution chains 

were randomly selected (maintaining events distribution) as a input for the classifier. For the evolution 

chains at least as long as 8 or greater, processing of the results failed due to computational complexity, 

e.g., for evolution chain of length 8 there was 10 million of rows, each with 260 columns, most of 

them with float values. 

Table 7. GED: the number of evolution chains for particular chain length. 

Chain Length DBLP Facebook Salon24 

2 20,324 8,655 26,619 
3 2,480 3,618 25,136 
4 729 2,401 160,059 
5 281 1,838 163,723 
6 135 1,434 107,554 * 
7 73 1,249 42,284 ** 
8 45 1,069 - 
9 24 864 - 
10 9 677 - 

Note: * and ** denote that only 10% and 5% of the total number of evolution chains were selected as a input 

for the classifier. 
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Table 8. GED: the number of evolution chains for particular event type and particular 

chain length in the DBLP dataset. 

Chain Length Continuing Dissolving Growing Merging Shrinking Splitting 

2 1,063 16,875 1,075 135 977 199 
3 233 1,557 285 69 229 107 
4 73 337 119 41 128 31 
5 26 113 51 15 56 20 
6 8 39 33 15 29 11 
7 4 16 18 6 21 8 
8 3 9 12 5 12 4 
9 1 9 6 3 4 1 
10 1 2 0 1 4 1 

Table 9. GED: the number of evolution chains for particular event type and particular 

chain length in the Facebook dataset. 

Chain Length Continuing Dissolving Growing Merging Shrinking Splitting 

2 915 4842 826 359 916 797 
3 410 1193 512 257 642 604 
4 263 587 379 209 483 480 
5 191 388 300 160 399 400 
6 153 272 262 160 322 265 
7 129 205 218 124 259 314 
8 124 177 190 109 250 219 
9 89 176 149 121 166 163 
10 69 121 116 97 135 139 

Table 10. GED: the number of evolution chains for particular event type and particular 

chain length in the Salon24 dataset. 

Chain Length Continuing Dissolving Growing Merging Shrinking Splitting 

2 115 341 114 957 142 24,950 
3 214 1,179 230 10,517 249 12,747 
4 112 727 123 5,632 183 153,282 
5 1,090 8,724 1,019 66,511 1,542 84,837 

6 * 60 593 62 3,808 111 102,920 
7 ** 591 878 573 17,958 317 21,967 

Note: * and ** denote that only 10% and 5% of the total number of evolution chains were selected as a input 

for the classifier. 

The F-measure value for each dataset, each event type and all classifiers is presented in  

Figures 30–35, 37–42,44–49. As in case of SGCI method for all datasets classifiers RandomForest, 

J48, AdaBoost and Bagging were used. Additionally for Facebook dataset (Figures 37–42) Feature 

Selection mechanism was used. 
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7.2.1. DBLP Dataset 

For the first dataset, DBLP, GED parameters were lowered to 30% in order to not omitting small 

groups, which are majority of the DBLP dataset (Figure 4). For this dataset evolution chains of length 

from 2 to 10 were selected. While increasing the length of the chain the total number of evolution 

chains was decreasing (Table 8) as well as the number of dissolving events (Figure 29). 

 

Figure 29. GED: distribution of the event types for events being predicted in the DBLP dataset. 

For evolution chain of length 5, there were less than 300 evolution chains which resulted in failure 

of the Bagging classifier calculations for merging event (Figure 33). Results for evolution chains of 

length 5 and longer should not be considered and are presented only demonstratively.  

The F-measure comparison for all event types and all classifiers is presented in Figures 30–35. Each 

figure depicts F-measure value in relation to different evolution chain lengths for one specific event 

type and all classifiers. It can be observed that until evolution chain of length 4, the F-measure value 

has tendency to grow. After that point the classifiers cannot handle too small amount of training data 

and provide poor results. 

 

Figure 30. GED: results of event prediction for continuing event in the DBLP dataset. 
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Figure 31. GED: results of event classification for dissolving event in the DBLP dataset. 

 

Figure 32. GED: results of event classification for growing event in the DBLP dataset. 

 

Figure 33. GED: results of event classification for merging event in the DBLP dataset. 
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Figure 34. GED: results of event classification for shrinking event in the DBLP dataset. 

 

Figure 35. GED: results of event classification for splitting event in the DBLP dataset. 

Figure 31 presents decreasing value of F-measure while the length of evolution chain increases. It is 

connected to events distribution (Figure 29). For evolution chain of length 2 dissolving event occurs 

much more often than other events (83% of all events), however with longer evolution chains 

domination of dissolving event decreases (63% for chains of length 3 and 46% for chains of length 4). 

The Bagging classifier seems to be more vulnerable to the insufficient number of training data than 

other classifiers. 

7.2.2. Facebook Dataset 

For the second dataset—Facebook, the GED parameters were also lowered to 30% in order to cope 

with unstable network. Again evolution chains of length from 2 to 10 were selected. Similarly to 

DBLP dataset, while increasing the length of the chain the total number of evolution chains was 

decreasing (Table 9). 

Apart from running four classifiers, Backward Feature Elimination block from KNIME was used. 

The basic classifier used to select features was J48 decision tree. The comparison between classifiers 

with all features and J48 with feature selection is presented in Figures 37–42. Each figure shows  

F-measure value across different evolution chain lengths for one specific event type. Aside from 
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dissolving event relationship between longer evolution chains and higher value of F-measure can be 

seen as in case of DBLP dataset. 

The F-measure for dissolving event is initially at level of 0.8 but then drops below 0.7 (Figure 38). 

It is again related to the events distribution, where for evolution chain of length 2 dissolving has great 

advantage over other events but while evolution chains are getting longer the events distribution 

becomes flat (Figure 36). 

 

Figure 36. GED: distribution of the event types for events being predicted in the Facebook dataset. 

 

Figure 37. GED: results of event classification for continuing event in the Facebook dataset. 

 

Figure 38. GED: results of event classification for dissolving event in the Facebook dataset. 
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Figure 39. GED: results of event classification for growing event in the Facebook dataset. 

 

Figure 40. GED: results of event classification for merging event in the Facebook dataset. 

 

Figure 41. GED: results of event classification for shrinking event in the Facebook dataset. 
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Figure 42. GED: results of event classification for splitting event in the Facebook dataset. 

For evolution chains of length 8 and longer the value of F-measure is not gaining as significantly  

as for shorter chains. This might be due to the less number of evolution chains in training dataset  

for classifiers. It is impossible to state whether J48 classifier or J48 preceded by feature selection 

mechanism gives better results. In general results for all classifiers are very similar. Broader analysis 

on feature selection is described in further Section 8.2. 

7.2.3. Salon24 Dataset 

For the last dataset, Salon24, the GED parameters equal 70 where utilized, which means high 

similarity between groups in consecutive time frames within the same evolution chain. 

For Salon24 dataset evolution chains of length from 2 to 7 were selected. In opposite to previous 

datasets, while increasing the length of the chain the total number of evolution chains was rapidly 

growing (Table 10). The most frequent event types for this dataset are splitting and merging (Figure 43). 

 

Figure 43. GED: distribution of the event types for events being predicted in the Salon24 dataset. 

Figures 44–49 show the F-measure value behaviour while increasing the length of evolution chain 

for one specific event type and all classifiers. The figures clearly show that the value of F-measure 

grows with the length of the evolution chain. The exception is splitting event for which the value of  



Entropy 2015, 17 3085 

 

 

F-measure reaches almost 1 already for evolution chain of length 2. For evolution chain of length 7 the 

value of F-measures is close to 1 for all types of events and all classifiers. 

 

Figure 44. GED: results of event classification for continuing event in the Salon24 dataset. 

 

Figure 45. GED: results of event classification for dissolving event in the Salon24 dataset. 

 

Figure 46. GED: results of event classification for growing event in the Salon24 dataset. 
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Figure 47. GED: results of event classification for merging event in the Salon24 dataset. 

 

Figure 48. GED: results of event classification for shrinking event in the Salon24 dataset. 

 

Figure 49. GED: results of event classification for splitting event in the Salon24 dataset. 

As we can see each classifier achieves better results for splitting, merging and dissolving events and 

worse for continuing, shrinking and growing. This happens because of uneven distribution of different 

event types (Figure 43). The number of splitting events is much higher than the number of the other 

events. We think this is because the time frame size is too short for the most communities and they 

continuously splits and merge as service users migrates from one topic to another. Authors of the GED 

method suggests in [26] that increasing the size of the time frame increases the possibility for the 

emergence of persistent groups and this will be our next step in future work. 
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7.2.4. Features Selection 

Table 11 provides the number of features selected as an input for classifier. To determine which 

features should be selected Backward Feature Elimination mechanism implemented in KNIME was 

used. As the results shows for longer evolution chains less features were selected. Broader analysis of 

the results are in Section 8.2. 

Table 11. GED: the number of features selected for particular chain length for the 

Facebook dataset. 

State Chain 2 Chain 3 Chain 4 Chain 5 Chain 6 Chain 7 Chain 8 Chain 9 Chain 10 

n-1 12 21 23 10 16 26 12 14 14 
n-2 6 25 22 8 9 15 5 9 7 
n-3  8 24 10 11 8 7 4 3 
n-4   5 5 3 7 6 5 2 
n-5    0 7 7 6 1 0 
n-6     0 3 6 2 0 
n-7      0 4 1 0 
n-8       1 1 1 
n-9        0 0 

n-10         0 

8. Discussion 

8.1. Prediction 

The quality of prediction was evaluated using three datasets with different profiles (see Section 6). 

These differences can be especially perceived in the context of group characteristics and their 

dynamics. By dynamics of groups we mean both, the change in group profile and change of events.  

For both methods (SGCI and GED) the best results are achieved using RandomForest and 

AdaBoost classifiers while J48 and Bagging classifiers provided slightly worse results. However, the 

differences in F-measure value between all classifiers are not large, which is visible in all Figures from 

the previous Section 7. Sometimes, it is even hard to point out which classifier is better (see e.g., 

Figure 42), yet in general, the ensemble classifiers outperform the others. 

The clear observation from the charts presented is that the increasing length of the evolution chain 

improves prediction accuracy. It is hard to unequivocally state why this happens. The most intuitive 

and the first explanation tells that the longer evolution chains, the broader and more comprehensive 

history with more information about the group. In consequence the classifier has more potentially 

valuable features to predict the future event. However, the results obtained while applying the features 

selection mechanism also tend to have higher value of F-measure for longer evolution chains  

(Figures 13–19 and 37–42), even though the number of features selected to predict the future event is 

not increasing with the length of the evolution chain (Figures 50 and 51). Moreover, the features from 

the last three states (time frames) are selected most frequently (Figure 52), for details see Section 8.2. 

We can still try to consider why the results are better for longer evolution chain. Maybe, it is 

because the general number of evolution chains is greater for longer chains (Salon24, Tables 3 and 8)? 
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Regrettably, the other datasets do not match this explanation. Perhaps the event distribution in the 

training dataset becomes more balanced for longer evolution chains and this provides more accurate 

prediction? Unfortunately not, since this is valid only for the Facebook dataset and the GED method 

(Figure 36). This also can hardly result from the profile of the dataset since all three datasets are 

different and for all three the property “the longer chain, the better results” is visible. 

Despite several hypotheses, there is no clear and fully reliable explanation why the increasing 

length of the evolution chain improves the prediction accuracy. This issue requires further studies that 

will be carried out in the future. 

Another interesting question is why the results for the Salon24 dataset are better than results for 

DBLP and Facebook? It is particularly visible for the GED method: compare equivalent Figures 44–49 

with Figures 30–35 and 37–42. It may be related to the smaller number of evolution chains for datasets 

DBLP and Facebook (Table 7). However, the number of chains for the DBLP and Salon24 datasets are 

almost the same for their length of two (Table 7) and the results for Salon24 are still better. Furthermore, 

the event distributions are very similar—one event far outweighs the other events (Figures 29 and 43). 

Anyway, the type of the event may be also important. Event dissolving dominates other events in 

DBLP whereas split is most frequent for the Salon24 dataset. 

This leads to a general conclusion that the profile of the dataset really matters. The DBLP network 

consists of small groups which are alive for a small number of time frames. In the Facebook network 

groups are even smaller but survive a little bit longer. Finally, the Salon24 network is compounded of 

larger groups, which change their structure very often but they last over many time frames. It is easier 

to predict the future for long lasting groups. 

For the SGCI method, one can notice that an increase in chain length usually gives the better quality 

of prediction as long as the accuracy is not close to its maximum possible value. The possible 

explanation for this fact may be derived from the way the evolution chains are being built, i.e., for 

every possible path in group history starting from a given past group state to its current state, it is 

likely to pass through many different chains. Moreover, it may happen that some of these chains (for 

the same group) are in the training part of the dataset and some of them are used for testing. If 

classifiers use only features from the common part of these chains, they may produce too optimistic 

results. Typically, for many cases, especially for the SGCI method, there exists a certain chain length, 

for which the prediction quality (F-measure) is close to its maximum value. It means that the 

prediction quality cannot be significantly improved by increasing the evolution chain length. For 

example, this border chain length is four time frames for DBLP (Figures 7–11), and the same for 

addition event for Facebook (Figure 13). For Salon24, this point is at the level of three for events 

addition and decay (Figures 21 and 24), four in the case of deletion and split (Figures 25 and 27), and 

five for change size, constancy and merge (Figures 22, 23 and26). 

For the GED method, the quality of results can grow with the chain length to a given point and may 

drop for very long chains. However, it is valid only for the DBLP dataset, see the lower quality for 

lengths of 5–10 in Figures 30–35. It comes evidently from the very low quantity of long length chains 

(<30) for the DBLP dataset, see Table 7. For the other datasets, the increase in quality for longer 

chains is very stable, Figures 37–42 and 44–49 because the number of chains is much more balanced. 

Additionally, the usability of features extracted from older time frames is much lower than for younger 
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ones, see the next section. This is the real reason why the increase in the evolution chain length for 

longer values not significantly improves the prediction quality. 

Takaffoli et al. in [18] tested their method of prediction of communities evolution on the Enron and 

DBLP datasets. In this paper we conducted experiments on Facebook, DBLP and Salon24, so we can 

only compare our results on DBLP dataset, but such comparison is limited because the method of 

Takaffoli differs in many ways from GED and SGCI. Moreover, we used in experiments 20 slots of 

length one year, but authors in [18] carried out experiments on 10 slots of length equal to one year. The 

values of F-measure for DBLP achieved in Takaffoli method are similar to those best achieved using 

GED method (but with different values of chain lengths)—split event on the level about 0.8, merge 

event—0.6, survive (no strict equivalent in GED method)—0.6. For SGCI those results are better—for 

chains of length 4 those values are about 0.9 and are rising along with growing length of chains. In 

Takaffoli method [18] they also consider RSurvive event which referred to Survive events assigned 

only to groups which existed longer than one time slot. Interesting observation is that the F-measure 

values for RSurvive are higher than Survive. In SGCI there is similar concept but on the level of whole 

method and in experiments we assigned events to groups which existed at least in three time slots., but 

impact of this requirement for groups on results of prediction is limited only to chains with length 

equal two (because procedure of creation chains with length e.g., five considers only groups lasting at 

least in five subsequent timeframes). 

8.2. Features Selection 

The Backward Feature Elimination algorithm with J48 tree for all datasets has been applied for both 

methods (SGCI—Table 6 and GED—Table 11). Results for all used datasets differ, but some measures 

are repeatedly more often used than others and the tendency of choosing features in different chains is 

similar. Therefore, in this paper we present in detail only results for Facebook dataset. The Backward 

Feature Elimination algorithm extracts the best set of features for each chain length. The number of 

used features increases until the chain with the length equal to seven (with the exception of chain of 

length two) and then decreases gradually.  

 

Figure 50. The number of features selected from all features for the particular chain length 

for the Facebook dataset. 
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Since the number of features changes with the chain length, the percentage of total features selected 

by the algorithm was also analysed (Figure 51). It shows the same trend even more clearly. The 

intuition behind this is that the knowledge contained with the events chain fluctuation is enough for the 

classifier to learn and it does not need so many additional information to predict the future change. In 

general, SGCI takes into account more features for prediction than GED. It may be connected with 

more events to predict in SGCI method. Furthermore, the difference in features usage is the highest for 

the chain equal to two and possible explanation for this fact can be the concept of stable groups in 

SGCI which only affects results on chain of length 2 (the number of stable groups is smaller than the 

number of all groups and, therefore, smaller number of features may be sufficient). 

 

Figure 51. The percentage of features selected from all features available for the particular 

chain length for the Facebook dataset. 

Moreover, we have been able to notice another interesting behaviour. When, we checked how “old” 

are the features selected by the feature selection algorithm, we found out that most of them are from 

the last three time frames (see Figure 52).  

 

Figure 52. The percentage of features selected from the last 3 time frames for the 

particular chain length for the Facebook dataset. 

When we predict event Tn → Tn+1, most of features is from the group profiles extracted in states Tn, 

Tn-1 and Tn-2, see Figure 3 for the sequence of events for a single group. For example, when the 
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evolution chain length was 10 and upcoming change was predicted as many as 89% of features in case 

of GED and 64% in case of SGCI have been from the tenth, ninth and eighth group profile. 

Next, the effectiveness of all features was analysed to check if some of them are better for 

predicting community evolution (see Figure 53). For GED the most frequently used feature was size, 

for SGCI size was also chosen similar times, but there were some features more frequently used such 

as min_degree_in, min_betweenness, {avg,max,min}_eigenvector or {avg,max}_closeness. In general, 

SGCI selected more minimum and sum values of centrality metrics in groups, but GED–more average 

values of such metrics in groups. Another observation is that eigenvector centrality and closeness is 

much more often used in SGCI than in GED. 

 

Figure 53. The comparison of features usage in GED and SGCI after feature selection for 

the Facebook dataset. 

We decided also to compare errors of prediction of GED and SGCI events after feature selection 

(see Figure 54). The results for both methods are similar. At the beginning, errors of GED are smaller 

than SGCI ones, but starting from chain 4 the situation is different—SGCI has smaller errors than 

GED. Combining our results with previous observations regarding number of features selected by both 

methods, we can notice that, generally, SGCI uses more features than GED, but GED has bigger errors 

than SGCI. 

If we combine two main conclusions from this section, i.e., the longer chain the better results and 

that three last (youngest) windows are the most influential on the classifier results, we can conclude 

that we need the long history of changes but the profile for only few last group states. This could be 

useful if one has limited computational capabilities and cannot calculate group profiles for all groups. 



Entropy 2015, 17 3092 

 

 

 

Figure 54. Error in prediction of GED and SGCI events after feature selection for the 

Facebook dataset. 

9. Conclusions and Future Work 

In this paper two methods to predict the nearest future of the social group are presented and 

analysed. The first method utilizes the Stable Group Changes Identification algorithm (SGCI) while 

another one makes use of the Group Evolution Discovery algorithm (GED). Both methods differ in 

approach to community identification (fugitive or stable), event definition and kind of information 

delivered to learn and test classifier: either only recent and previous group attributes (SGCI) or also 

attributes describing previous group changes (the inclusion measure in GED). 

The experimental research was conducted on three real datasets with different characteristic: DBLP, 

Facebook, Salon24–Polish blogosphere, see Sections 7.1 and 7.2. Four classifiers and an additional 

Backward Feature Elimination mechanism were used in the process of predicting future event for the 

group. Evolution chains of length from two to ten time frames were evaluated as a group history. Each 

evolution chain contained information about previous group profile at that time, i.e., features such as 

group size, group density, group leadership, average degree, etc., as well as transitive changes between 

following time frames (only GED), see Section 5.3. 

The F-measure was considered as prediction quality measure and its value varied from 0.04 to 1.00 

depending on the method, dataset, length of the evolution chain and classifier used. The best results for 

the SGCI method were achieved for Salon24 dataset, evolution chains of length 6 and longer, using 

either RandomForest or AdaBoost (with J48 decision tree) classifiers. The GED method revealed its 

best predictive ability also on Salon24 dataset, evolution chains of length 7 and the same classifiers. 

Overall, RandomForest and AdaBoost classifiers were better than the other classifiers, however, the 

differences were not as significant as at extension of evolution chain length. Therefore, for both 

methods, the best results were for the Salon24 dataset, where groups last over many time frames and 

had longer history, RandomForest and AdaBoost classifiers as well as long evolution chains. For the 

short lengths of evolution chains all classifiers delivered rather poor results. 

Usually, the both methods reached their almost maximum quality for certain evolution chain length, 

depending on the dataset and predicting event type. It was at the level of 3 to 7 last time frames for the 

0
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GED-based method and 3 to 5 for SGCI. It means that extension of evolution chains beyond this 

border does not significantly improve prediction quality.  

Applying Backward Feature Elimination mechanism allowed to observe that: (1) the quality of the 

results was still at the same level even if only few (out of hundreds) features were selected; and (2) 

features were mainly selected from the last three time frames which means that most recent time 

frames has the biggest impact on its nearest future. After carrying out experiments with feature 

selection also on DBLP and Salon24 datasets, we can conclude that results varies between datasets, but 

some measures are more often used than others. In case of GED the most frequent are size and 

cohesion, but for SGCI—max closeness, min betweenness and size. 

Hence, the most important conclusions drawn from the experimental studies are: (1) the longer 

group history the greater prediction quality; (2) the most recent history of the group most influences on 

its next change and (3) extension the feature set with the information from periods older than a given 

threshold does not significantly improve prediction. 

Despite a lot of work performed in these studies, there is still a need to continue the research in this 

area; for example in order to examine other measures to describe group profile, particularly reflecting 

group dynamics, (e.g., change in size of the group between the following time frames, not only 

absolute size values) or to validate the results on the greater number of datasets. 
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