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Abstract: Physical models and grey system models (GSMs) are commonly used to evaluate 

and predict physical behavior. A physical model avoids the incorrect trend series of a GSM, 

whereas a GSM avoids the assumptions and uncertainty of a physical model.  

A technique that combines the results of physical models and GSMs would make prediction 

more reasonable and reliable. This study proposes a fusion method for combining two trend 

series, calculated using two one-dimensional models, respectively, that uses a slope criterion 

and a distance weighting factor in the temporal and spatial domains. The independent  

one-dimensional evaluations are upgraded to a spatially and temporally connected  

two-dimensional distribution. The proposed technique was applied to a subsidence problem in 

Jhuoshuei River Alluvial Fan, Taiwan. The fusion results show dramatic decreases of 

subsidence quantity and rate compared to those estimated by the GSM. The subsidence 

behavior estimated using the proposed method is physically reasonable due to a convergent 

trend of subsidence under the assumption of constant discharge of groundwater. The 

technique proposed in this study can be used in fields that require a combination of two trend 

series from physical and nonphysical models. 

Keywords: time series; fusion technique; slope criterion; distance weighting; land subsidence 

 

1. Introduction 

Subsidence is a worldwide hazard [1–4]. Commonly used methods for studying land subsidence 

include data analysis [5–10], physical calculation [11–15] and numerical simulation [16–25]. Data 

analysis analyzes the monitoring data, and prediction is mainly used for evaluating the type or trend of 
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subsidence. The method used for prediction can be a black box model (e.g., regression analysis) or grey 

box model (e.g., grey system model (GSM)). Data analysis can avoid the assumptions in a physical model. 

However, the prediction results are easily affected by misleading monitoring data and the predicted series 

might deviate from physical behavior. Physical calculation uses experimental data, monitoring data of 

subsidence, or groundwater level data to determine subsidence using physics. The approach produces 

results that have physical support and are close to actual behavior. However, it is commonly used under a 

regular or simple conditions and uncertainty is introduced in the model assumptions and adopted 

parameters. Numerical simulation uses a physical theory to represent a complex situation. It is widely used 

in evaluating subsidence problems. Consolidation theory [26] and poroelastic theory [27] are commonly 

used physical theories for subsidence evaluation. A physical model avoids the incorrect behavior of a 

grey box model, whereas a grey box model avoids the assumptions and uncertainty of a physical model. 

Therefore, a technique that can fuse the results of physics-based and grey-box-based models would make 

the prediction of land subsidence more reasonable and reliable. 

Subsidence monitoring is commonly a point type system, with the data obtained in the temporal 

domain for each point [8]. A one-dimensional model is thus commonly used for subsidence investigation 

due to its simplicity and convenience [28]. However, uncertainty is embedded between monitoring 

points in the spatial domain, and the spatial information of subsidence is lacking between the data points 

in a one-dimensional model. A multi-dimensional model can be used but it is more complex and time-

consuming. A technique that can connect the one-dimensional points in the spatial domain would be useful. 

Previous studies on fusing different types of time series have focused on the temporal domain, with few 

considering the spatial domain [29–35]. The present study thus proposes a technique that can fuse two 

types of time series for subsidence prediction results in both the spatial and temporal domains. 

Poroelastic theory, proposed by Biot [27], is a rigorous physical theory for subsidence  

investigations [16–19,22–25]. This theory uses a coupled system that can solve soil deformation and  

pore water pressure at the same time and obtain the dynamic interaction between the variables [36].  

Soil deformation can change the hydrogeological and mechanical properties and affect the evaluation  

of subsidence quantity [37–39]. Wang and Hsu’s model, which considers the deformation effect on 

porosity, hydraulic conductivity, and Young’s modulus, are simpler and more complete than that of Kim 

and Parizek [37]. The nonlinear poroelastic model (NPM) developed by Wang and Hsu [38] has been 

used in subsidence estimation in Taiwan with good results [24,25]. The NPM is suitable for Taiwan 

subsidence problems and is thus adopted in this study to construct a physics-based subsidence model in 

Jhuoshuei River Alluvial Fan, Taiwan. 

Grey system theory, proposed by Deng [40],is a grey box model that is used to study uncertain systems 

or systems with incomplete data. The GSM can be used to evaluate land subsidence for which the data set 

is limited [25]. Wang et al. [25] combined the GSM and NPM by using the technique proposed in this 

study to investigate the land subsidence problem in Tainan, Taiwan. The present study proposes a fusion 

technique and shows the difference between the results with and without fusion in a subsidence evaluation 

of Jhuoshuei River Alluvial Fan, Taiwan. The fusion method combines the advantages of physics-based 

and grey-box-based models and fuses the one-dimensional predicted subsidence results in the spatial and 

temporal domains. The independent one-dimensional evaluations are then upgraded to a spatially and 

temporally correlative two-dimensional distribution. 
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2. Study Background 

2.1. Study Area 

Jhuoshuei River Alluvial Fan, located in central Taiwan (see Figure 1), is the largest alluvial fan  

in Taiwan. Wu River and Beigang River flow through the north and south areas, respectively, and 

Jhuoshuei River flows across the middle of the alluvial fan. Changhua and Yunlin Counties are located 

in the north and south divisions of Jhuoshuei River Alluvial Fan, respectively. The western boundary is 

the Taiwan Strait and the eastern boundary is Bagua and Douliu foothills, which are the main areas for 

groundwater recharge.  

 

Figure 1. Study area of Jhuoshuei River Alluvial Fan, Taiwan, and distribution of leveling 

points and multi-level compaction monitoring wells. A-A’ is the line representing the 

hydrogeological profile shown in Figure 2. 

The Taiwan Water Resources Agency executed 93 hydrogeological drillings and setup  

70 groundwater monitoring stations with 188 monitoring wells at various depths to investigate the 

groundwater resources in Jhuoshuei River Alluvial Fan [41]. Each groundwater station includes one to 

five monitoring wells at different depths. The distance between each well is about 5 km. The sampling 

frequency for groundwater level monitoring is one hour. One of the hydrogeoloical profiles is shown in 

Figure 2. The hydrogeology formations can be separated into seven units within a depth of 300 m. They 

are referred to as aquifer one, aquitard one, aquifer two, aquitard two, aquifer three, aquitard three and 

aquifer four. The layer system is obvious in the mid and tail fans but not obvious in the top fan due to 
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its composite material being mostly gravel. The aquifers thin out beneath the Taiwan Strait and stretch 

from the tail fan. Detailed hydrogeological descriptions can be found elsewhere [8,21]. 

 

Figure 2. One hydrogeological profile of Jhuoshuei River Alluvial Fan, Taiwan. The profile 

trace is shown in Figure 1. 

Jhuoshuei River Alluvial Fan contains a great amount of groundwater. However, there is little surface 

water in this area due to industrialization and urbanization. Groundwater is thus mainlyover-pumped for 

public, irrigation and industrial usage, which has induced subsidence. According to an investigation by the 

Taiwan Water Resource Agency, there are about 182,000 wells in Jhuoshuei River Alluvial Fan, with a total 

pumping quantity of around 2.16 billion m3/year [8,21]. The maximum subsidence rate is 6.1 cm/year and 

the continuous subsidence area (subsidence rate larger than 3.0 cm/year) was about 309.1 km2 in  

2014 [42]. Taiwan High Speed Rail passes across the subsidence areas, which is a safety concern [43]. 

Subsidence in Jhuoshuei River Alluvial Fan is thus an important issue for the Taiwanese government. 

2.2. Subsidence Monitoring 

Four types of monitoring systems are used in Taiwan for subsidence investigation, namely leveling,  

Global Positioning System (GPS), multi-level compaction monitoring wells (MCMWs), and interferometry 

synthetic aperture radar (InSAR). Leveling and MCMW data are adopted in this study due to their 

relatively long monitoring periods. MCMW data provide compaction information at various depths, and 

the experimental data from the wells provide the physical properties. MCMW data are suitable for the 

study of NPMs. Leveling monitoring has been used for a long period for subsidence observation in 

Taiwan. The monitoring density is high and can compensate for the lack of MCMWs. The leveling data 

are suitable for GSMs. Detailed descriptions of the monitoring system can be found elsewhere [8]. 

There were 29 MCMWs and 708 leveling points in 2011 in Jhuoshuei River Alluvial Fan, Taiwan, as 

shown in Figure 1. The measurement frequencies are monthly for the MCMWs and yearly for leveling 

in this area. The land subsidence data from 2007 to 2011 are adopted, and thus the subsidence quantities 

shown in this study are relative to the level in 2007. Only 26 MCMWs and 452 leveling points are used in 

this study due to a lack of monitoring data. The basic information for the 26 MCMWs is listed in Table 1. 

The monitoring depth is 200 to 330 m. The earliest installed monitoring wells are Haifeng, Lunfeng, 
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Jianyang and Jinhu wells, which were installed in December 1994 at a depth of 200 m. Three recently 

installed wells (in August 2009), namely Dongguang, Yiwu and Zhengmin wells, are not adopted in this 

study due to their short monitoring period. Zhengmin well has the largest monitoring depth (=330 m). 

Table 1. Basic information for multi-level compaction monitoring wells (MCMWs) adopted 

in this study. 

County MCMWName Monitoring Depth (m) 
Install Time 
(month-year) 

E (TWD97) N (TWD97) 

Changhua 

Xinjie 300 May-98 179967 2644391 
Xigang 300 May-97 177633 2639733 
Xinghua 300 October-03 188363 2643201 
Xinsheng 300 April-08 188341 2648279 

Hunan 300 September-05 196984 2649404 
Xizhou 300 October-07 198873 2638772 
Zhutang 300 October-07 191773 2639649 

Yunlin 

Feng’an 300 July-96 171858 2631893 
Haifeng 200 December-94 171149 2629139 
Xinxing 300 July-96 170720 2626355 
Lunfeng 200 December-94 169441 2624157 
Jianyang 200 December-94 163505 2614756 

Dongguang* 300 August-09 175782 2616754 
Jinhu 200 December-94 163597 2608018 

Yiwu* 300 August-09 167840 2604973 
Chanlin 300 April-08 173087 2608156 
Erlun 300 April-08 190428 2629865 

Fengrong 300 April-08 179784 2632015 
Yuanchang 300 January-03 179484 2616803 

Kecuo 300 October-03 182074 2613831 
Neiliao 300 October-07 184141 2611722 
Tuku 300 September-03 187771 2620610 

Xiutan 300 August-06 183651 2617396 
Huwei 300 March-06 192040 2623605 

Guangfu 300 October-07 189083 2626507 
Zhengmin* 330 August-09 189570 2622974 

Longyan 300 March-06 179249 2624490 
Zhennan 300 October-07 202938 2621719 
Jiaxing 300 April-08 194874 2616145 

* Stations not adopted in this study due to short monitoring period. 

From the 26 monitoring wells, the subsidence quantity at the ground surface is the largest at Yuanchang 

well (= 0.252 m) and the smallest is at Jiaxing well (=0 m) in 2011 based on 2007. However, the 

compaction quantity at different depths can be different. Figure 3 shows the monitoring data for two of the 

MCMWs as anillustration. Figure 3a shows the compaction in the spatial domain at various periods at 

Xinghua well, which has the largest land subsidence quantity in Changhua County. The slope of the curve 

represents the compaction rate. Therefore, the main compacted formation in 2011 is at about 100–250 m, 

contributing 80% of total land subsidence. Figure 3b shows the compaction at various depths at Yuanchang 
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well, which has the largest land subsidence quantity in Yunlin County. The compaction at different 

depths of Yuanchang well is more uniform than that of Xinghua well. The main compacted formation 

in 2011 was at about 50–280 m, contributing 89% of total land subsidence. 

Figure 3. Monitoring data from MCMWs at (a) Xinghua and (b) Yuanchang wells in spatial 

domain at various periods. 

3. Methodology 

3.1. Nonlinear Poroelastic Model 

The nonlinear poroelastic model (NPM) was developed by Wang and Hsu [38]. The governing 

equations for the one-dimensional poroelastic model can be written as [44]: 
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where w is the vertical displacement; P is the change in pore water pressure; z is the vertical direction;  

t is time; a is called the final compressibility with a−1 = λ + 2μ, where λ and μ are Lame’s constants  

(μ = E/2(1 + ν), and λ = Eν/(1 + ν)(1 − 2ν), where E is Young’s modulus, and ν is Poisson’s ratio); α is 

the dimensionless coefficient of the effective stress; Q−1 is the compressibility introduced by Biot; and 

κ is the Darcy conductivity, which is related to hydraulic conductivity K by K = γwκ, where γw is the unit 

weight of water (= 9810 N/m3).  

Following Wang and Hsu [38], the porosity (n), hydraulic conductivity (K), and Young’s modulus 

(E) under the deformation effect can be written, respectively, as: 
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where ε is the volume strain, and the subscripts 0 and 1 indicate before and after the deformation effect, 

respectively. The nonlinear parameters are embedded in the calculation during the modeling period.  

3.2. Grey System Model 

The GSM is based on the eigenvalue system and the model established based on the grey prediction 

theory. During the grey simulation, the accumulated generating operation is applied to the discrete and 

irregular initial number series to make the series generate an exponential rule, based on which the grey 

differential equation is established. The GSM can be established using data preprocessing and the grey 

differential equation. Generally, a method based on the time series model is used to process irregular data 

in order to smooth the series and increase prediction precision. 

The leveling data are limited due to the sampling rate being yearly in Jhuoshuei River Alluvial Fan, 

Taiwan, and the measurement points being different in each year. Most of the leveling data have only 

four subsidence measurement points in the temporal domain. Therefore, the GSM is a suitable model for 

subsidence prediction with the use of leveling data. 

Deng [45] proposed the grey system prediction theory. The GSM with one first-order variable is 

called the GM (1,1) model. The grey differential equation of the GM (1,1) model can be written as:  

(1)
(1)dx

ax b
dt

+ =  (5)

where a and b are coefficients often evaluated using the least squares error method by fitting the theory 

and observation data and x(1) is a canonical series written as: 

1 2
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where x(0) is the original data series (i.e., leveling data series in this study) and N is the data number. 

Substituting the evaluated a and b into Equation (5) and letting the initial condition be x(1)(1) = x(0)(1) yields: 

 (1)
0( 1) (1) anb b

x n x e
a a

− + = − +  
 (7)

where 
(1)

( 1)x n +  is the predicted value for x(1) at the n + 1 point. Using back differential for 
(1)

x  yields: 

  (0) (1) (0)
( 1) ( 1) ( )x n x n x n+ = + −  (8)

The predicted value 
(0)

( 1)x n + is thus obtained. Equation (8) is the basic equation for the  

GM (1,1) model. 

The GSM developed by Hung et al. [46] is used to construct a GM (1,1) grey prediction model of 

subsidence in this study. Four data points of a leveling time series are input into the GSM model, and then 

the point for the next time step is predicted. Considering the time interval and subsidence quantity of the 

leveling data, the subsidence time series is evaluated by the GSM at each leveling point, as shown in 

Figure 1. After the subsidence time series for all the leveling points have been evaluated, the results of 

the GSM are obtained. 
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3.3. Model Settings 

Land subsidence is mainly caused by surface loading and groundwater pumping. Considering both the 

mechanism of top loading and aquifer pumping, the conceptual model for a one-dimensional column is 

proposed [24]. The quantities of top loading and bottom discharge are evaluated by fitting the results of 

the NPM to the monitoring data. The adopted parameters for the NPM are listed in Table 2. The property 

at each MCMW in this study is assumed to be homogeneous in the vertical direction with the mean value 

of the parameters. The mean porosity and hydraulic conductivity are obtained from triaxial permeability 

tests. The Young’s modulus and Poisson’s ratio are taken from Das [47]. However, since some MCMWs 

do not have experimental data, mean values from the other MCMWs were used in the model.  

Table 2. Adopted parameters in nonlinear poroelastic model (NPM). 

MCMW Name 
Hydraulic 

Conductivity (m/s)a 
Porositya 

Young’s Modulus 
(N/m2)b 

Poisson’s Ratio b 

Xinjie 8.17 × 10−8 0.449 1.00 × 107 0.3 
Xigang 8.17 × 10−8 0.449 1.00 × 107 0.3 

Xinghua 5.39 × 10−8 0.421 1.00 × 107 0.3 
Xinsheng 8.17 × 10−8 0.449 1.00 × 107 0.3 

Hunan 8.17 × 10−8 0.449 1.00 × 107 0.3 
Xizhou 8.54 × 10−7 0.469 1.00 × 106 0.3 
Zhutang 8.17 × 10−8 0.449 1.00 × 107 0.3 
Feng’an 8.17 × 10−8 0.449 1.00 × 107 0.3 
Haifeng 8.17 × 10−8 0.449 1.00 × 107 0.3 
Xinxing 8.17 × 10−8 0.449 1.00 × 107 0.3 
Lunfeng 8.17 × 10−8 0.449 1.00 × 107 0.3 
Jianyang 8.17 × 10−8 0.449 1.00 × 107 0.3 

Dongguang 5.34 × 10−8 0.452 1.00 × 107 0.3 
Jinhu 8.17 × 10−8 0.449 1.00 × 107 0.3 
Yiwu 4.05 × 10−9 0.474 1.00 × 107 0.3 

Chanlin 8.17 × 10−8 0.449 1.00 × 107 0.3 
Erlun 8.17 × 10−8 0.449 1.00 × 107 0.3 

Fengrong 8.17 × 10−8 0.449 1.00 × 107 0.3 
Yuanchang 1.66 × 10−7 0.431 1.00 × 107 0.3 

Kecuo 8.17 × 10−8 0.449 1.00 × 107 0.3 
Neiliao 8.17 × 10−8 0.449 1.00 × 107 0.3 
Tuku 4.48 × 10−6 0.447 1.00 × 106 0.3 

Xiutan 8.17 × 10−8 0.449 1.00 × 107 0.3 
Huwei 3.88 × 10−8 0.453 1.00 × 107 0.3 

Guangfu 5.43 × 10−8 0.461 1.00 × 107 0.3 
Zhengmin 5.27 × 10−8 0.467 1.00 × 107 0.3 
Longyan 1.36 × 10−7 0.411 1.00 × 107 0.3 
Zhennan 6.62 × 10−8 0.443 1.00 × 107 0.3 
Jiaxing 8.17 × 10−8 0.449 1.00 × 107 0.3 

a Hydraulic conductivity value of 8.17 × 10−8m/s and porosity value of 0.449 were calculated their means for 

other MCMWs. b Values of Young’s modulus and Poisson’s ratio were taken from Das [47]. 
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The settings of the NPM are similar to those in Wang et al. [24] except for the adopted parameters, 

and those of the GSM are the same as those in Wang et al. [25] except for the monitoring data. Detailed 

descriptions of the NPM and the GSM for subsidence evaluation can be found elsewhere [24,25].  

3.4. Fusion Method 

The subsidence predicted using the GSM shows a continuous increasing (or decreasing) trend due to 

the use of monitoring data from leveling, whereas that predicted using the NPM shows a convergence trend 

due to physical behavior. Based on the physical mechanism, the subsidence rate should decrease and tend 

to be stable if the driving force is constant. Therefore, the converging results of the NPM are reasonable, 

and thus the slopes in each time step of the convergent curve are adopted for the combination. The 

subsidence predicted using the GSM follows the monitoring data. The subsidence quantities in the initial 

period evaluated by the GSM should be reliable and are thus adopted for the combination. The number 

of leveling points is larger than the number of MCMWs in Jhuoshuei River Alluvial Fan, Taiwan. The 

fusion results thus can provide a better estimation than using each of the models. 

The fusion concept is to use the results of the NPM to re-evaluate the results of the GSM under a slope 

criterion of the subsidence trend in the temporal domain and a weighting factor between the monitoring 

points in the spatial domain. Figure 4 shows a schematic map of the distribution of monitoring points 

(one for the GSM and three for the NPM). The distances from GSM1 to NPM1, NPM2, and NPM3 are d11, 

d12, and d13, respectively (i.e., dij is the distance from GSMi to NPMj). The slopes of the subsidence trend 

for GSMi and NPMj between time t and t − 1 can be written, respectively, as: 

( ) ( )i
GSMi

d GSM
S t

dt
=  (9)

( ) ( )j

NPMj

d NPM
S t

dt
=  (10)

where GSMi and NPMj are the evaluated subsidence values for the GSM at position i and the NPM at 

position j, respectively. 

Considering a distance weighting factor between the locations of GSMi and NPMj, the mean slope of 

the subsidence trend for NPMj with respect to GSMi can be written as: 

( ) ( )
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1 1

1 1
,

m m
j
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j jij ij

d NPM
S t d

dt d d=
= =

    = ×         
   (11)

where ( )1, ,NPMj mS t d=  is the mean slope of NPMj with respect to GSMi in the time interval dt and m is the 

number of monitoring points for the NPM (i.e., the number of MCMWs). A distance weighting between 

the points for the GSM and the NPM is considered in calculating the mean slope of the NPM. The 

influence decreases with increasing distance between the GSM and the NPM. 

It is assumed that the subsidence trends obtained from the results of the NPM and the initial subsidence 

quantities obtained from the results of the GSM are correct. The initial subsidence quantity of the GSM is 

kept but the slope of the subsidence trend obtained from the GSM is adjusted using the slope calculated 

from the NPM. If the slope of the subsidence trend obtained from GSMi in the time interval dt is larger 
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than the mean slope of NPMj in the same time interval, the slope of GSMi is substituted by the mean 

slope of NPMj. The slope criterion can be written as: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1,

1, 1,
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, ,

GSMi GSMi GSMi NPMj m

GSMi NPMj m GSMi NPMj m

S t S t if S t S t d

S t S t d if S t S t d

=

= =

 = ≤


= >
 (12)

The slope criterion is used to evaluate the slope of the subsidence trend in each time interval for each 

leveling point with respect to all MCMWs by considering the distance weighting factor. Both the spatial and 

temporal results are combined in the fusion technique. The independent one-dimensional evaluations in the 

NPM and the GSM are then upgraded to a spatially and temporally relative two-dimensional distribution. 

 

Figure 4. Schematic map of distribution of monitoring points. Grey system models (GSM)i 

and NPMj indicate monitoring points for grey system and poroelastic models, respectively. 

d11, d12, and d13 are distances from GSM1 to NPM1, NPM2, and NPM3, respectively. 

4. Results and Discussion 

4.1. Results for Nonlinear Poroelastic Model 

The MCMWs with maximum and minimum subsidence in Changhua and Yunlin, respectively, are 

chosen as examples for illustrating the fitting situation, as shown in Figure 5. The Xinghua and Xizhou 

MCMWs are in Changhua County and the Yunchang and Jiaxing MCMWs are in Yunlin County. The 

land subsidence in these four MCMWs shows a continuous increasing trend and fluctuation, which is 

due to the recurrent dry and wet seasons. The subsidence fluctuation is more dominant in Yunlin County 

(Figure 5c,d) than in Changhau County (Figure 5a,b) due to the large fluctuation of groundwater level 

in Yunlin County. The fitting for Jiaxing well is poor due to the negative subsidence and the adopted 

compaction NPM, as shown in Figure 5d. Negative subsidence indicates an uplift situation, which is not 

considered in the NPM in this study. From the data trend of Jiaxing well, the original land surface should 

be lower than the initial monitoring data in May 2008. The large fluctuation of the monitored land 

subsidence and the lack of the original land surface has led to the negative subsidence situation. If the 

original land surface can be found, the poor fitting situation can be improved. 

NPM2

NPM1

NPM3

GSM1

d11

d12

d13



Entropy2015, 17 3045 

 

 

Figure 5. Four MCMWs for demonstrating fitting results. (a) Xinghua; (b)Xizhou; 

(c) Yunchang; and (d) Jiaxing wells. White triangles show data used for model verification. 

From the results of the NPM, the subsidence trend in the calibration period shows both convergence 

and divergence. However, the land subsidence approaches an asymptotic value for a long period due to the 

constant driving forces. Based on physical behavior, subsidence should converge under a constant driving 

force in the steady-state condition.  

The verification results of the NPM are shown in Figure 5. The subsidence data for 2012–2014 are 

adopted for model verification. However, the data from March 2012 to March 2014 are missing due to an 

equipment operation error. From the verification results in Figure 5, the subsidence predicted using the 

NPM in Changhau County shows an overestimated pattern (Figure 5a,b) and that in Yunlin County shows 

an underestimated pattern (Figure 5c,d). The verification results are consistent with the monitoring results, 

which showed that land subsidence (groundwater level) in Changhua is decreasing (increasing) and that in 

Yunlin is still increasing (decreasing) [42]. Therefore, the predicted subsidence in the following section 

might be overestimated in Changhua County and underestimated in Yunlin County. 

The best fits for the subsidence data from the MCMWs and the numerical results from the NPM are 

listed in Table 3. The fitting R2 values are good for the MCMWs except for the Jiaxing well. The reason 

for the poor fitting has been mentioned previously and is shown in Figure 5d. From the fitting results, the 

quantity of discharge is 0 to 2.58 × 10−9m/s and that of loading is 0 to 1.07 × 104 N/m2. Two and 15 MCMWs 

show zero discharge and zero loading, respectively. The main driving force for the land subsidence in 

Jhuoshuei River Alluvial Fan is groundwater pumping, which is expressed as discharge (pumping rate 

in unit area) in Table 3. The influence of top loading is relatively small, occurring only at 11 MCMWs. 

The quantities of loading are also small, lower than atmospheric pressure (= 1.013 × 105 N/m2). 
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Table 3. Calibration results for NPM at MCMWs. 

County Station Loading (N/m2) Discharge (m/s) R2 

Changhua 

Xinjie 1.07 × 104 0 0.945 
Xigang 6.64 × 103 0 0.710 
Xinghua 5.02 × 103 9.25 × 10−10 0.990 
Xinsheng 0 1.44 × 10−9 0.991 

Hunan 0 1.21 × 10−9 0.990 
Xizhou 0 4.46 × 10−10 0.980 
Zhutang 1.29 × 103 1.04 × 10−9 0.993 

Yunlin 

Feng’an 0 4.43 × 10−10 0.917 
Haifeng 0 2.52 × 10−10 0.795 
Xinxing 0 8.62 × 10−10 0.958 
Lunfeng 0 4.37 × 10−10 0.898 
Jianyang 7.77 × 101 3.03 × 10−10 0.887 

Jinhu 1.27 × 103 3.26 × 10−10 0.813 
Chanlin 0 4.45 × 10−10 0.505 
Erlun 1.38 × 103 3.14 × 10−10 0.962 

Fengrong 0 7.84 × 10−10 0.893 
Yuanchang 0 1.96 × 10−9 0.954 

Kecuo 3.53 × 101 1.37 × 10−9 0.972 
Neiliao 4.21 × 102 1.51 × 10−9 0.950 
Tuku 0 2.58 × 10−9 0.867 

Xiutan 0 1.29 × 10−9 0.948 
Huwei 4.22 × 103 7.87 × 10−10 0.985 

Guangfu 0 9.46 × 10−10 0.978 
Longyan 0 1.40 × 10−9 0.975 
Zhennan 1.95 × 103 7.78 × 10−11 0.639 
Jiaxing 0 6.80 × 10−11 0.101 

4.2. Results for Grey System Model 

The predicted subsidence of the GSM was calculated time period by time period and point by point. 

The predicted subsidence distribution in 2039 is shown in Figure 6, as obtained by applying the 

interpolation method. The main land subsidence areas are located in the central areas of Yunlin and 

Changhua Counties. The pattern is similar to that of the monitoring data (not shown here) due to the nearly 

linear increment of the GSM. The maximum subsidence estimated using the GSM (2.31 m) occurs in 

Yunlin County. The maximum subsidence rate is 7.4 cm/year, which is larger than the rate for serious 

hazard potential of subsidence (5.0 cm/year) [48].  

A relatively large subsidence for 2039 is obtained using the GSM due to the linear increasing trend 

of the monitoring data. Based on physical behavior, soil consolidation has a convergence trend if the 

exerted stress and/or pore water pressure changes are constant. A linear increasing subsidence trend is 

thus unreasonable under an unchanging driving force. Therefore, the predicted subsidence quantities 

shown in Figure 6 are overestimated. The fusion technique is thus applied to combine the two subsidence 

trend series from the NPM and the GSM in the spatial and temporal domains to obtain a reasonable and 

reliable estimation. 
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Figure 6. Subsidence distribution in Jhuoshuei River Alluvial Fan in 2039 obtained using 

GSM. Triangle symbols numbered #1 and #2 are locations of demonstration points used for 

fusion results in Figure 8. 

4.3. Subsidence Fusion Results 

The slope criterion for the subsidence trend series (Equation (12)) is adopted to re-calculate the results 

of the GSM by considering the mean slope calculated from the NPM with a distance weighting factor. 

The fusion results for subsidence distribution in Jhuoshuei River Alluvial Fan for 2039 are shown in 

Figure 7. Note that the subsidence distribution in Figure 7 is not an interpolated result but the fusion 

result. The pattern of the subsidence distribution is slightly different from that in Figure 6 but the quantity 

has dramatically decreased. The maximum subsidence decreases from 2.31 m to 0.59 m. The areas with 

subsidence quantities larger than 0.3 m are mainly located in the southwest areas of Changhua County 

and south-central areas of Yunlin County. 

Comparisons of the results obtained with and without fusion for two leveling points are shown in 

Figure 8. The locations of the two leveling points are marked in Figures 6 and 7. The subsidence predicted 

using the GSM for the leveling points shows a linear increasing trend. The subsidence quantities for Points 

#1 and #2 are 0.71 and 1.23 m, respectively, for 2039. After using the fusion technique, both subsidence 

curves show convergence trends. The subsidence quantities are 0.55 and 0.53 m, respectively, and the 

differences are 0.16 and 0.70 m, respectively. The decreases vary with leveling point. The maximum 

subsidence is 0.59 m and the maximum subsidence rate is 1.0 cm/year for 2039. The subsidence behavior 

becomes reasonable for both the subsidence quantity and subsidence rate. Note that the subsidence trend 

for Fusion #2 in Figure 8 still increases with time. This fusion result indicates that the cumulative 

subsidence in Jhuoshuei River Alluvial Fan will increase in some areas after 2039 but will converge in 

the future, due to the application of physical theory. 
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Figure 7. Subsidence distribution with fusion in Jhuoshuei River Alluvial Fan in 2039 

obtained using NPM and GSM. Triangle symbols numbered #1 and #2 are locations of 

demonstration points used for fusion results in Figure 8. 

  

Figure 8. Comparison of results obtained with and without fusion for two leveling points 

marked in Figure 7. 

The subsidence predictions in this study include some assumptions and uncertainties. A one-dimensional 

NPM is adopted and lateral deformation is not considered in the estimation, which might have an influence 

on the predicted subsidence quantities. The adopted parameters were from laboratory tests and a previous 

study and thus might not represent the behavior in the field. The subsidence monitoring data may also 

have measurement errors. Further investigations are required for better estimation of land subsidence. 

Nevertheless, although the proposed subsidence models have their limitations and disadvantages, the fusion 
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method can still work. The defects of the subsidence models do not affect the use of the proposed fusion 

technique. An improved fusion result can be obtained after the predicted subsidence results from the 

models being improved. 

5. Conclusions 

This study proposed a technique that fuses two trend series in the spatial and temporal domains using a 

slope criterion and a distance weighting factor and then applied it to investigate subsidence in Jhuoshuei 

River Alluvial Fan, Taiwan. The linear increasing trend of subsidence predicted using a grey-box-based 

GSM was corrected to a convergence trend with a physics-based poroelastic model. The fusion results 

show dramatic decreases of subsidence quantity and subsidence rate. The maximum subsidence quantity 

decreased from 2.31 to 0.59 m and the subsidence rate decreased from 7.4 to 1.0 cm/year for 2039. The 

subsidence behavior became physically reasonable for both the subsidence quantity and subsidence rate 

due to the convergence trend of subsidence under the assumption of constant discharge of groundwater 

and top loading. The proposed fusion technique upgrades the independent one-dimensional evaluations 

to a spatially and temporally connected two-dimensional distribution. The proposed method can also 

improve the subsidence distribution prediction when there are few subsidence monitoring wells. The 

proposed fusion method can be used for areas that require a combination of trend series in the spatial 

and temporal domains. 
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