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Abstract: A projective synchronization scheme for a kind of n-dimensional discrete 

dynamical system is proposed by means of a linear feedback control technique. The 

scheme consists of master and slave discrete dynamical systems coupled by linear state 

error variables. A kind of novel 3-D chaotic discrete system is constructed, to which the 

test for chaos is applied. By using the stability principles of an upper or lower triangular 

matrix, two controllers for achieving projective synchronization are designed and 

illustrated with the novel systems. Lastly some numerical simulations are employed to 

validate the effectiveness of the proposed projective synchronization scheme. 
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1. Introduction 

Nearby trajectories of a chaotic system may experience exponential divergence, but two or more 

coupled dissipative chaotic systems evolving in synchrony might appear quite surprising. Furthermore 

the synchronization error system between the coupled chaotic systems may be asymptotically stable if 

some suitable control techniques are implemented on them. As a common multi-disciplinary 

phenomenon, chaos synchronization has broad range applications, such as secure communication [1], 
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chaotic economic systems [2], WINDMI systems [3], hyperchaotic complex-variable systems [4], 

chaotic complex networks [5], fractional-order chaotic neural networks [6], etc. 

Fujisaka and Yamada [7], and Pecora and Carroll [8] did some pioneering works for chaos 

synchronization. Mainieri and Rehacek [9] first proposed the chaos projective synchronization scheme 

in 1999, but it was still very difficult to achieve projective synchronization between two or more 

chaotic nonlinear systems until Wen et al. [10,11] presented an observer-based control scheme for 

projective chaos synchronization in 2004, whose prominent advantage is “no special limitation” for 

nonlinear dynamical systems to achieve projective chaos synchronization. Wen and co-authors also 

tried to explore the potential applications of projective synchronization to noise reduction in 

mechanical engineering [12,13], design bifurcation solutions [14,15] and so on. 

Projective chaos synchronization has been an active research topic in nonlinear science. A variety of 

control methods for projective chaos synchronization have been proposed for various kinds of 

nonlinear chaotic systems. Li et al. [16] proposed a backstepping control method to achieve adaptive 

function projective synchronization for a general class of the so-called strict-feedback chaotic discrete 

systems. Vasegh and Majd [17] presented a Takagi–Sugeno fuzzy model-based adaptive approach to 

synchronize two different chaotic discrete-time systems. Zhang et al. [18] designed an impulsive 

controller to achieve impulsive lag synchronization for a class of chaotic discrete systems. Zhang and 

Liu [19] presented an active robust model predictive control strategy for the synchronization of two 

discrete-time chaotic systems. Unfortunately, the aforementioned synchronization schemes are very 

complex and difficult to realize in the real world. In many real fields, there is an urgent need for us to 

develop, at least so far, a kind of simple and robust projective chaos synchronization schemes. 

Fortunately, the advantage of the linear feedback controller is that it is robust and linear, and moreover, 

it is easier to design and implement for chaos synchronization than the abovementioned schemes. 

Odibat et al. [20] studied synchronization for 3-dimensional chaotic fractional-order systems via linear 

control. Chen et al. [21,22] also did some sound work designing controllers which are less than the 

number of dimensions of the chaotic systems. By using linear state error feedback control technology, 

Xin et al. [2,3,23] studied the projective synchronization for three kinds of chaotic fractional-order 

systems. It is not difficult for us to extend the mentioned projective synchronization scheme from 

fractional-order systems to discrete dynamical systems. 

The remainder of this paper is structured as follows: in Section 2, a novel discrete dynamical system 

is proposed and a 0–1 test algorithm for chaos is redescribed. In Section 3, a synchronization scheme 

for n-dimensional chaotic discrete dynamical systems is proposed. In Section 4, the proposed 

projective synchronization scheme is applied to the novel discrete dynamical systems. Numerical 

simulations are conducted in Section 5 to illustrate the proposed synchronization scheme. Finally, the 

paper is concluded in Section 6. 

2. A Novel Discrete Dynamical System and 0–1 Test for Chaos 

2.1. A Novel 3-D Discrete Dynamical System  

To demonstrate mentioned projective chaos synchronization scheme, we first construct a novel  

3-dimensional chaotic discrete dynamical system as follows: 
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2( 1) ( ) ( ),

ˆ( 1) ( ) y( ) z( ) ( ) z( ),

z( 1) z( ) ( ) y( ),

x t y t ax t

y t bx t c t t x t t

t d t x t t

 + = − +
 + = − + − −
 + = − +

 (1)

where ˆ, , , 0a b c d ≥ . 

2.2. 0–1 Test Algorithm for Chaos  

To identify the chaos existence of system (1), the 0–1 test algorithm for chaotic discrete dynamical 

system need redescription as follows [24–26]: consider the iteration times 1,  2,  ,  n N=   as the 

sampling times in discrete dynamical system (10), where N  is the total number of data points and 

( )nφ  is an observable data, one can get a discrete time series (1),  (2),  ,  (N)φ φ φ . The 0–1 test for 

chaos may be directly applied to the time series because there are no issues with oversampling: 

Step 1. Determine a random number ( 5, 4 5)c π π∈ , and construct a pair of new coordinates 

( ( ), ( ))c cp n s n  as follows: 

( )
1

( ) ( ) cos ( ) ,
n

c
j

p n j jφ θ
=

=  (2)

( )
1

( ) ( )sin ( ) ,
n

c
j

s n j jφ θ
=

=  (3)

Where: 

1

( ) ( ), 1, 2, , .
j

i

j jc j j nθ φ
=

= + =   (4)

Step 2. Define the mean square displacement ( )cM n  as follows: 

( ) ( )2 2

1

1
( ) lim ( ) ( ) ( ) ( ) , 1, .

10

N

c c c c c
N

j

N
M n p j n p j s j n s j n

N→∞ =

  = + − + + − ∈     
  (5)

Step 3. Define the modified mean square displacement ( )cD n  as follows: 

2

1

1 1 cos
( ) ( ) lim ( ) ,

1 cos

N

c c
N

j

nc
D n M n j

N c
φ

→∞ =

  −= −   − 
  (6)

Step 4. Define the median value of correlation coefficient as follows: 

(K ),cK median=  (7)

where: 

[ ]cov( , )
1,1 ,

var( ) var( )
cK

ξ
ξ

Δ= ∈ −
Δ

 (8)

where (1,  2,  ,  n )cut= ξ , ( )(1),  (2),  ,  ( )c c c cutD D D nΔ =  , ( 10)cutn round N= , and the covariance 

and variance are defined with vectors x , y  of length q  as follows: 
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( )( )
1

1
cov(x, y) ( ) ( ) ,

q

j

x j x y j y
q =

= − −  (9)

1

1
( ),

q

j

x x j
q =

=   (10)

var( ) cov( , ).x x x=  (11)

Step 5. Interpret the outputs as follows: 

(1) 0K ≈  implies that the underlying dynamics is regular (i.e., periodic or quasi-periodic), whereas 

1K ≈  implies that the underlying dynamics is chaotic; 

(2) Bounded trajectories in the (p, s)-plane indicate that the underlying dynamics is regular, whereas 

the Brownian-like (unbounded) trajectories indicate that the underlying dynamics is chaotic. 
As a binary test for chaos detection for deterministic dynamical systems, the 0–1 test is very simple 

but powerful. However, as stated in Ref. [24], in the case of periodic dynamics, most values of c yield 

0cK =  as expected, but there are isolated values of c for which cK  is large due to resonances: for such 

a c we expect ( ) 2~cM n n , irrespective of whether the dynamics is regular or chaotic. The occurrence 

of resonances for isolated values of c suggests using the median of the computed values of cK  as 

( )cK median K= . To get various values cK  versus c, 100 choices of c is sufficient in practice [25].  

The chaos phenomenon is shown in Figure 1. The chaotic attractors are respectively plotted in the 

original state spaces (x, y, z) and in the transformed coordinates variables (p, s), as shown in Figures 1a,b, 

accordingly. Brownian-like (unbounded) trajectories shown in Figure 1b denote there is a chaotic 

attractor in system (1). Figure 1c is the plots of correlation coefficient cK  vs. random number c, which 

shows the median value 1K ≈  implies that there exists chaotic dynamics in system (1). 

(a) The chaotic attractor 

 
(b) Plots in new coordinates (p, s) space (c) Plots of Kc versus c 

Figure 1. The chaos in system (1) vs. a = 0.4, b = 0.34, ĉ = 0.63 and d = 1.14. 
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3. A Synchronization Scheme of n-Dimensional Chaotic Discrete Dynamical Systems 

Definition 1. The projective synchronization is defined as the difference between two relative chaotic 

dynamical systems can approach to zero when time approaches to infinity with a desired scaling 

factor. 

Consider a chaotic discrete dynamical system as follows:  

( ) ( )( 1) ( ) ( )x t L x t N x t C+ = + +  (12)

where C  is an 1n×  constant matrix, 1 2( ,  ,  ,  )T n
nx x x x= ∈   is an n-dimensional state vector of 

system (12), and , : n nL N →   are linear and nonlinear functions of states respectively 

Correspondingly, one may construct the following discrete dynamical system: 

( ) ( ) ( )( )1 ( ) ( ) (t)y t L y t k N x t C u+ = + + +  (13)

where 1 2( ,  ,  ,  )T n
ny y y y= ∈   is an n-dimensional state vector of system (13), k  is a desired 

scaling factor, and ( )u t  is a linear state error feedback controller. 

Defining the synchronization error between the master system (12) and the slave system (13)  

as follows: 

( ) ( ) - ( ) , 1, 2, ,e t y t kx t i n= =   (14)

The linear state error feedback controller ( )u t  is defined as: 

ˆ( ) ( )u t Ae t=  (15)

where Â  is an n n×  linear constant matrix. 

Subtracting (12) from (13), one get the following error system: 

( )1 ( 1) - ( 1) ( ) ( ) ( )e t y t kx t Le t u t Ae t+ = + + = + =  (16)

where ˆA L A= +  is an n n×  linear constant matrix. Obviously the original point is the equilibrium 

point of system (16).  

Using the stability criterion of linear discrete dynamical systems, one may directly get the following 

theorem: 

Theorem 1. If A  is an upper or lower triangular matrix and all eigenvalues simultaneously satisfy 

i 2,  ,  ,  <1nλ λ λ , then the fixed point of synchronization error ( )e t  is asymptotically stable and 

lim ( ) 0
t

e t
→∞

= , i.e., systems (12) and (13) achieve projective synchronization. 

4. Application to the Novel Discrete Dynamical System 

In order to analyze the projective synchronization behaviors of master-slave systems, one may 

regard system (1) as the master system and construct the slave system (denoted by the subscript s )  

as follows: 
2

1

2

3

( 1) ( ) ( ) u (t),

ˆ( 1) ( ) y ( ) z ( ) ( ) z( ) u (t) ,

z ( 1) z ( ) ( ) y( ) u (t),

s s

s s s s

s s

x t y t kax t

y t bx t c t t kx t t

t d t kx t t

 + = − + +
 + = − + − − +
 + = − + +

 (17)
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where , ,s s sx y z ∈  have the same meanings as , ,x y z  of system (1), k  is a desired scaling factor, 

1 2 3, ,u u u  are linear state error feedback controllers. 

Proposition 1. If anyone of the two following control laws holds, the master-slave systems (1) and (17) 

will finally achieve global projective synchronization for any initial condition: 

1 1

2 2

3 3

( ),

( ) ( ),

( ),

s

s s

s

u h x kx

u b x kx h y ky

u h z kz

= −
 = − + −
 = −

 (18a)

or: 

1 1

2 2

3 3

( ) ( ),

( ) ( ),

( ),

s s

s s

s

u h x kx y ky

u h y ky z kz

u h z kz

= − + −
 = − + −
 = −

 (18b)

where 1 1h < , 2 ˆ 1h c+ < , 3 1h d− < . 

Proof. One can define the synchronization errors between the master-slave systems (1) and (17) as 

follows: 

1

2

3

- ,

- ,

- .

s

s

s

e x kx

e y ky

e z kz

=
 =
 =

 

Subtracting systems (17) from (1), one can get the error system as follows: 

1 2 1

2 1 2 3 2

3 3 3

( 1) ( ) (t),

ˆ( 1) (t) (t) (t) (t),

( 1) (t) ( ),

e t e t u

e t be ce e u

e t de u t

+ = − +
 + = − + − +
 + = − +

 (19)

Case 1: 

For the first control law in Proposition 1, substituting Equation (18a) into the error system (19), one 

can get the following error system: 

( )
( )

1 1 1 2

2 2 2 3

3 3 3

( 1) (t) ( ),

ˆ( 1) (t) (t),

( 1) (t),

e t h e e t

e t h c e e

e t h d e

 + = −


+ = + −
 + = −

 (20)

which has only one equilibrium point at * (0,0,0)E = . Evaluating its Jacobian matrix at *E , one can 

get the upper triangular matrix as follows: 

1
*

2

3

1 0

ˆ( ) 0 1

0 0

h

J E h c

h d

− 
 = + − 
 − 

,   (21)

whose eigenvalues simultaneously satisfy 1 1= <1hλ , 2 2 ˆ 1h cλ = + <  and 3 3 1h dλ = − < . 
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Case 2: 

For the second control law in Proposition 1, substituting Equation (18b) into the error system (20), 

the system (20) can be re-depicted as follows:  

( )
( )

1 1 1

2 1 2 2

3 3 3

( 1) (t),

ˆ( 1) ( ) (t),

( 1) (t),

e t h e

e t be t h c e

e t h d e

 + =


+ = − + +
 + = −

 (22)

which has only one equilibrium point at * (0,0,0)E = . Evaluating its Jacobian matrix at *E , one can 

get the lower triangular matrix as follows: 

1
*

2

3

0 0

ˆ( ) 0

0 0

h

J E b h c

h d

 
 = − + 
 − 

,   (23)

whose eigenvalues can also satisfy 1 1= <1hλ , 2 2 ˆ 1h cλ = + <  and 3 3 1h dλ = − <  simultaneously. 

With Theorem 1, one can find the system (19) is asymptotically stable, i.e., the master system (1) and 

the slave system (17) finally achieve projective synchronization. The Proposition 1 is thus proved. □ 

5. Numerical Simulations 

In order to validate the effectiveness of the aforementioned projective synchronization scheme, one 

can set master-slave systems (1) and (17) with parameters 0.4a = , 0.34b = , ˆ 0.62c = , 1.14d = , 

0.5k = , 1 0.3h = , 2 0.2h = , 3 1h = , initial values (0) 0.3x = , (0) 0.2y = , (0) 0.1z = , (0) 0.3sx = − , 

(0) 0.2sy = − , (0) 0.3sz = . 

5.1. The first Control Law (Equation (18a)) 

According to the first control law of Proposition 1, one can set the linear controllers as the 

following form: 

1

2

3

0.3( 0.5 ),

0.34( 0.5 ) 0.2( 0.5 ),

0.5 .

s

s s

s

u x x

u x x y y

u z z

= −
 = − + −
 = −

 

In Figure 2a, the blue and red chaotic attractors are belong to the master-slave systems (1) and (17), 

respectively, and the former is twice as large as the later, i.e. the desired scaling factor 0.5k = . Figure 2b 
illustrates that the synchronization errors 1e , 2e , 3e  between systems (1) and (17) slightly oscillate up 

and down at the beginning then seem to rapidly converge towards zero and keep asymptotically stable. 
Figures 2c–e show the time series x , sx , y , sy , z  and sz , which demonstrate that they evolve 

proportionally well at the rate of 0.5k = . Obviously the five diagrams in Figure 2 are consistent with 

each other, i.e., Figure 2 shows clearly that the projective synchronization is achieved well with the 

first control law. 
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(a) Chaotic attractors of systems (1) and (17) 

 

(b) Errors between systems (1) and (17) (c) Time evolutions of x and xs 

 

(d) Time evolutions of y and ys (e) Time evolutions of z and zs 

Figure 2. Synchronization errors between systems (1) and (17) with the first control law. 

5.2. The Second Control Law (Equation (18b)) 

Based on the second control law of Proposition 1, the linear controllers can be set into the  

following form: 

1

2

3

0.3( 0.5 ) ( 0.5 ),

0.2( 0.5 ) ( 0.5 ),

0.5 .

s s

s s

s

u x x y y

u y y z z

u z z

= − + −
 = − + −
 = −

 

In Figure 3a, the blue chaotic attractor of the master systems (1) is twice as large as the red one of 

the slave systems (17). Their synchronization errors 1e , 2e , 3e  between systems (1) and (17) are shown 
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in Figure 3b, and keep asymptotically stable in the long run. Their time evolutions of x , sx , y , sy , z  

and sz  are shown in Figures 3c–e, which agree well with Figure 3b at the desired scaling rate of 

0.5k = . Figure 3 illustrates vividly that the projective synchronization is achieved well for all these 

values with the second control law. 

(a) Chaotic attractors of systems (1) and (17) 

 

(b) Errors between systems (1) and (17) (c) Time evolutions of x and xs 

 
(d) Time evolutions of y and ys (e) Time evolutions of z and zs 

Figure 3. Synchronization errors between systems (1) and (17) with the second control law. 

6. Conclusions  

(i) The proposed 3-dimensional chaotic discrete dynamical system (1) is enough to validate the 

main results of this work, and should be studied additional interesting topics in the future, and can play 

more roles. 

(ii) The proposed projective synchronization scheme via linear feedback control technique is really 

easy and robust to be implemented efficiently. 

(iii) Considering the advantage that the linear controller is easier to be designed than other 



Entropy 2015, 17 2686 

 

 

controllers, the proposed synchronization will be offered a great application potential, such as secure 

communications, information storage, message identification, and other kinds of coordination activities 

of interacting chaotic systems in living systems. 

(iv) It should be a quite interesting work to expand aforementioned results to study the  

anti-synchronization [27] of the discrete chaotic dynamic systems by using the linear state error 

feedback control. 
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