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Abstract: After collecting data from observations or experiments, the next step is to analyze
the data to build an appropriate mathematical or stochastic model to describe the data so that
further studies can be done with the help of the model. In this article, the input-output
type mechanism is considered first, where reaction, diffusion, reaction-diffusion, and
production-destruction type physical situations can fit in. Then techniques are described to
produce thicker or thinner tails (power law behavior) in stochastic models. Then the pathway
idea is described where one can switch to different functional forms of the probability density
function through a parameter called the pathway parameter. The paper is a continuation of
related solar neutrino research published previously in this journal.
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1. Introduction

After collecting data from experiments or from observations, the next step is to analyze the data
and make inference out of the data. This can be achieved by using mathematical methods and models
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if the physical situation is deterministic in nature, otherwise create stochastic models if the physical
situation is non-deterministic in nature. If the underlying phenomenon, which produced the data, is
unknown, possibly deterministic but the underlying processes and the ways in which these processes act
are unknown, thereby the situation becomes random in nature. Then, we go for stochastic models or
non-deterministic type models. One has to know or speculate about the underlying processes as well as
the ways in which these processes act so that one can decide which type of models are appropriate. If
the observations are available over time then a time series type of model may be appropriate. If the time
series shows periodicities then each cycle can be analyzed by using specific types of stochastic models.

Here we will consider models to describe short-term behavior of data or behavior within one cycle
if a cyclic behavior is noted. As an example, when monitoring solar phenomena, specifically solar
neutrinos, it is seen that there is likely to be an annual cycle and within each cycle the behavior of the
graph is something like slow increase with several local peaks to a maximum peak and slow decrease
with humps back to normal level [1]. In such situations, what is observed is not really what is actually
produced. What is observed is the residual part of what is produced minus what is consumed or converted
and thus the actual observation is made on the residual part only. Many of natural phenomena belong to
this type of behavior of the form u = x−y where x is the input or production variable and y is the output
or consumption or destruction variable and u represents the residual part which is observed. A general
analysis of input-output situation may be seen from [2]. In many situations one can assume that x and y

are statistically independently distributed and that u ≥ 0 means production dominates over destruction
or input dominates over the output.

In reaction rate theory, when particles react with each other producing new particles, for example
neutrinos, we may have the following type of situations. Certain particles may react with each other
in short-span or short-time periods and produce small number of particles, others may take medium
time intervals and produce larger numbers of particles and yet others may react over a long span
and produce larger number of particles. For describing such types of situations in the production of
particles the present authors considered creating mathematical models by erecting triangles whose ares
are proportional to the neutrinos produced, see [1,3–5].

Another approach we adopted was to assume x and y as independently distributed random variables,
then work out the density of the residual variable under the assumption that x−y ≥ 0. The simplest such
situation is an exponential type input and an exponential type output. Then we can look at the sum of
such independently distributed residual type variables. This is a reasonable type of assumption. Then the
input-output model has the Laplace density, when x and y are identically and independently distributed
and the density is given by,

f1(u) =
β1

2
e−β1|u−α1|, 0 ≤ u < ∞,β1 > 0, (1)

and f1(u) = 0 elsewhere, where α1 is a location parameter. Note that β1 can act as a scale parameter or
as a dispersion or scatter parameter. Suppose that this situation is repeated at successive locations and
with the scale parameter β = β1,β2, .... Then the nature of the graph will be that of a sum of Laplace
densities. If the location parameters are sufficiently farther apart then the graph will look like that in
Figure 1b. If such blips are occurring sufficiently close together then we have a graph of the type in
Figure 1a. In these graphs we have taken only five to six locations for simplicity. However, by taking
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successive locations we can generate many of the phenomena that are seen in nature, especially in time
series data. When the locations are sufficiently closer we get the graph with several local maxima/spikes
and a continuous curve. This is the type of behavior seen in solar neutrino observations as discussed
under various physical aspects [1,3–7]. Cyclic patterns can also arise depending upon the location and
scale parameters. Here β1 measures the intensity of the blip and α1 the location where it happens, and
each blip is the residual effect of an exponential type input and an independent exponential type output
of the same strength. If α1,α2, ... are farther apart then the contributions coming from other blips will
be negligible and if α1,α2, ... are close together then there will be contributions from other blips. The
function will be of the following form:

f(u) =
k∑

j=1

βj

2
e−βj |u−αj |, 0 ≤ u < ∞,βj > 0, j = 1, ..., k < ∞. (2)

If one requires f(u) to be a density within a number of spikes then divide the sum by k so that we
have a convex combination of Laplace densities, which will again be a density. The model does not
require that we create a density out of the pattern. If the arrival of the location points (αj) is governed
by a Poisson process then we will have a Poisson mixture of Laplace densities.

(a) (b)

Figure 1. Sample paths of sums of Laplace densities.

A symmetric Laplace density will be of the following form:

f2(u) =
1

2β
e−

|u|
β , −∞ < u < ∞ (3)

and the graph is of the form shown in Figure 2.
This is the symmetric case where u < 0 behaves the same way as u ≥ 0. If the behavior of u is

different for u < 0 and u ≥ 0 then we get the asymmetric Laplace case which can be written as (graphic
shown in Figure 3)

g(u) =

 1
(β1+β2)

e
u
β1 , −∞ < u < 0,

1
(β1+β2)

e
− u

β2 , 0 ≤ u < ∞.
(4)
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Figure 2. Symmetric Laplace density.

Figure 3. Asymmetric Laplace case.

When α1 > 1,α2 > 1,α1 = α2 = α,β1 = β2 = β we have independently and identically distributed
gamma random variables for x and y and u = x− y is the difference between them. Then g1(u) can be
seen to be the following:

g1(u) =
u2α−1e−

u
β

β2αΓ2(α)

∫ ∞

z=0

(1 + z)α−1zα−1e−
1
β
(2uz)dz (5)

for u ≥ 0, α > 0,β > 0. This behaves like a gamma density and provides a symmetric model for u ≥ 0

and u < 0. The nature of the graph is shown in Figure 4.
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Figure 4. g1(u) in the symmetric gamma type input-output variables.

2. Models with Thicker and Thinner Tails

For a large number of processes a gamma type model may be appropriate. A two parameter gamma
density has the form

f(x) =
1

βαΓ(α)
xα−1e−

x
β , x ≥ 0,α > 0,β > 0. (6)

Sometimes a member from this parametric family of functions may be appropriate to describe a data
set. Sometimes the data require a slightly thicker-tailed model due to chances of higher probabilities
or more area under the curve in the tail. Two of such models developed by the authors’ groups will be
described here. One type is where the model in Equation (6) is appended with a Mittag-Leffler series
and another type is where Equation (6) is appended with a Bessel series, see also [8–11].

2.1. Gamma Model with Appended Mittag-Leffler Function

Consider a gamma density of the type

g3(x) = c1 x
γ−1e−

x
δ , δ > 0, γ > 0, x ≥ 0.

Suppose that we append this g3(x) with a Mittag-Leffler function Eβ
α,γ(−axα), where

Eβ
α,γ(−axα) =

∞∑
k=0

(β)k
k!

(−a)k
xαk

Γ(γ + αk)
, α > 0, γ > 0.

Consider the function

f ∗(x) = c

∞∑
k=0

(β)k
k!

(−a)k
xαk+γ−1e−

x
δ

Γ(γ + αk)
, x ≥ 0,
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where c is the normalizing constant. Let us evaluate c. Since the total integral is 1,

1 =

∫ ∞

0

f ∗(x)dx = c

∞∑
k=0

(β)k
k!

(−a)k
∫ ∞

0

xαk+γ−1e−
x
δ

Γ(γ + αk)
dx

= c
∞∑
k=0

(β)k
k!

(−a)kδαk+γ = c δγ(1 + aδα)−β, |aδα| < 1

for β > 0, α > 0, δ > 0, aβδα < 1, |aδα| < 1. Therefore the density is

f ∗(x) =
(1 + aδα)β

δγ
xγ−1e−

x
δ

∞∑
k=0

(β)k
k!

(−a)kδαk

Γ(γ + αk)

for 0 ≤ x < ∞,α > 0, γ > 0, δ > 0,β > 0, |aδα| < 1, aβδα < 1. That is,

f ∗(x) =
(1 + aδα)β

δγ
xγ−1e−

x
δ [

1

Γ(γ)
+

∞∑
k=1

(β)k
k!

(−1)kδαk

Γ(γ + αk)
].

Note that a = 0 corresponds to the original gamma density. Figure 5 shows graphs of the appended
Mittag-Leffler-gamma density. When a < 0 we have thinner tail and when a > 0 we have thicker tails
compared to the gamma tail.

Figure 5. Gamma density with Mittag-Leffler function appended.

2.2. Bessel Appended Gamma Density

Consider the model of the type of a basic gamma density appended with a Bessel function,
see also [8–10].

f̃(x) = c xγ−1e−
x
δ

∞∑
k=0

xk(−a)k

k!Γ(γ + k)
, δ > 0, γ > 0, x ≥ 0,
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where c is the normalizing constant. The appended function is of the form
1

Γ(γ)
0F1( ; γ : −ax)

which is a Bessel function. Let us evaluate c.

1 = c
∞∑
k=0

(−a)k

k!

∫ ∞

0

xγ+k−1

Γ(γ + k)
e−

x
δ dx

= c δγ
∞∑
k=0

(−a)kδk

k!
= c δγe−aδ.

Hence the density is of the form, also shown in Figure 6,

f̃(x) =
eaδ

δγ
xγ−1e−

x
δ

∞∑
k=0

xk(−a)k

k!Γ(γ + k)
, x ≥ 0, γ > 0, δ > 0.

Figure 6. Gamma appended with Bessel function.

Note: Instead of appending with Bessel function one could have appended with a general hypergeometric
series. However, a general hypergeometric series does not simplify into a convenient form. We have
chosen specialized parameters as well as suitable functions so that the normalizing constants simplify to
convenient forms thereby general computations will be much easier and simpler.

3. Pathway Idea

Here we consider a model which can switch to three functional forms covering almost all statistical
densities in current use, see [9,10,12]. Let

f ∗
1 (x) = c∗1|x|γ[1− a(1− α)|x|δ)

η
1−α ,α < 1, η > 0, a > 0, δ > 0, (7)

and 1 − a(1 − α|x|δ > 0, where c∗1 is the normalizing constant. When α < 1 the model in
Equation (7) stays as the generalized type-1 beta family, extended over the real line. When α > 1

write 1− α = −(α− 1) with α > 1. Then the functional form in Equation (7) changes to

f ∗
2 (x) = c∗2|x|γ[1 + a(α− 1)|x|δ]−

η
α−1 (8)
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for α > 1, a > 0, η > 0,−∞ < x < ∞. Note that Equation (8) is the extended generalized type-2 beta
family of functions. When α → 1 then both Equations (7) and (8) go to

f ∗
3 (x) = c∗3 |x|γe−aη|x|δ , a > 0, η > 0, δ > 0,−∞ < x < ∞. (9)

Equation (9) is the extended generalized gamma family of functions. Thus Equation (7) is capable of
switching to three families of functions. This is the pathway idea and α is the pathway parameter.
Through this parameter α one can reach the three families of functions in Equations (7)–(9). The
normalizing constants can be seen to be the following:

c∗1 =
δ

2

[a(1− α)]
γ+1
δ Γ(γ+1

δ
+ η

1−α
+ 1)

Γ(γ+1
δ
)Γ( η

1−α
+ 1)

(10)

for a > 0, α < 1, δ > 0, γ > −1, η > 0,

c∗2 =
δ

2

[a(α− 1)]
γ+1
δ Γ( η

α−1
)

Γ(γ+1
δ
)Γ( η

α−1
− γ+1

δ
)

(11)

for α > 1, a > 0, δ > 0, η > 0, δ > 0, η
α−1

− γ+1
δ

> 0,

c∗3 =
δ

2

(aη)
γ+1
δ

Γ(γ+1
δ
)
, a > 0, δ > 0, η > 0, γ > −1. (12)

Note that Equation (7) is a finite range model, suitable to describe processes where the tails are
cut off. When α comes closer and closer to 1 then the cut-off point moves away from the origin and
eventually goes to ±∞. When α → 1 then model Equation (7) goes to model Equation (9) which is an
extended generalized gamma model. The model in Equation (8) is type-2 beta form, spreads out over
the whole real line and the shape will be closer to that of a gamma type model when α approaches 1.
Thus the pathway models in Equations (7)–(9) cover all types of processes where the tails are cut off,
tails are made thinner or thicker compared to a gamma type model. The extended gamma type model in
Equation (9) also contains the Gaussian model, Brownian motion, Maxwell-Boltzmann density etc. If
Gaussian or Maxwell-Boltzmann is the stable or required form in a physical process then the unstable
neighborhoods are covered by Equations (7) and (8) or the paths leading to this stable form is described
by Equations (7) and (8).

Here it is important to note that Equation (7) for x > 0, γ = 0, a = 1, δ = 1,η = 1 is the
Tsallis statistics of non-extensive statistical mechanics [13,14]. Also note that Equation (8) for a = 1,

δ = 1, η = 1 is superstatistics. This superstatistics can also be derived as the unconditional density when
both the conditional density of x given a parameter θ and the marginal density of θ are gamma densities
or exponential type densities, the details may be seen from Mathai and Haubold [15–19].

4. Reaction Rate Probability Integral Model

Starting in the 1980s, the authors had pursued mathematical models for reaction-rate theory for
processes such as non-resonant reactions and resonant reactions under conditions such as depletion and
high energy tail cut off, see [1,20–25]. The basic model is an integral of the following form:

I(1) =

∫ ∞

0

xγ−1e−axδ−zx−ρ

, a > 0, z > 0, ρ > 0, δ > 0. (13)
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For ρ = 1
2
, δ = 1 one has the basic probability integral in the non-resonant case, see [22]. For

γ = 0, ρ = 1 one has the Krätzel integral [26]. For γ = 0, δ = 1, ρ = 1 one has the inverse Gaussian
density. Computational aspect of Equation (13) is discussed in [27] and related material may be seen
from [28]. Since the integral in Equation (13) is a product of integrable functions one can evaluate the
integral in Equation (13) with the help of Mellin convolution of a product because the integrand can be
written as ∫ ∞

0

1

v
f1(v)f2(

u

v
)dv, f1(x) = xγe−axδ

, f2(y) = e−yρ (14)

for u = z
1
ρ , u = xy. Then the Mellin convolution of the integral in Since the integral in Equation (13),

denoting the Mellin transform of a function f with Mellin parameter s as Mf (s), we have from
Equation (13)

MI(1)(s) = Mf1(s)Mf2(s), (15)

where

Mf1(s) =

∫ ∞

0

xs−1f1(x)dx =

∫ ∞

0

xγ+s−1e−axδ

dx =
1

δ

Γ( s+γ
δ
)

a
s+γ
δ

, ℜ(s+ γ) > 0

Mf2(s) =

∫ ∞

0

ys−1e−yρdy =
1

ρ
Γ(

s

ρ
), ℜ(s) > 0.

Hence

MI(1)(s) = Mf1(s)Mf2(s) =
1

ρδ a
γ
δ

Γ( s+γ
δ
)Γ( s

ρ
)

a
s
δ

.

Therefore the integral in Equation (13) is the inverse Mellin transform of Equation (15). That is,

I(1) =
1

2πi

∫ c+i∞

c−i∞

1

ρδa
γ
δ

Γ(
s+ γ

δ
)Γ(

s

ρ
)(ua

1
δ )−sds, u = z

1
ρ , i =

√
−1

=
1

ρδa
γ
δ

H2,0
0,2 [z

1
ρa

1
δ

∣∣
(0, 1

ρ
),( γ

δ
, 1
δ
)
] (16)

where H(·) is the H-function, see [9,10]. From the basic result in Equation (16) we can evaluate the
reaction-rate probability integrals in the other cases of non-relativistic reactions.

4.1. Generalization of Reaction-Rate Models

A companion integral corresponding to Equation (13) is the integral

I(2) =

∫ ∞

0

xγe−axδ−zxρ

dx, a > 0, δ > 0, ρ > 0, z > 0. (17)

In Equation (13) we had x−ρ with ρ > 0 whereas in Equation (17) we have xρ with ρ > 0. For δ = 1,
Equation (17) corresponds to the Laplace transform or moment generating function of a generalized
gamma density in statistical distribution theory. The integral in Equation (17) can be written in the form
of an integral as follows ∫ ∞

0

vf1(v)f2(uv)dv, f1(x) = xγ−1e−axδ

, f2(y) = e−yρ (18)
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for u = z
1
ρ . The integral in Equation (18) is in the structure of a Mellin transform of a ratio u = y

x
, so

that the Mellin transform of I(2) is then

MI(2)(s) = Mf2(s)Mf1(2− s). (19)

The inverse Mellin transform in Equation (19) gives the integral I(2). The pair of integrals I(1) and
I(2) belong to a particular case of a general versatile model considered by the authors earlier [25].

A generalization of I(1) and I(2) is the pathway generalized model, which results in the versatile
integral. The pathway generalization is done by replacing the two exponential functions by the
corresponding pathway form. Consider the integrals of the following types:

Ip =

∫ ∞

0

xγ[1 + a(q1 − 1)xδ]
− 1

q1−1 [1 + b(q2 − 1)xρ]
− 1

q2−1dx, (20)

where q1 > 1, q2 > 1, a > 0, b > 0. We will keep ρ free, could be negative or positive. Note that

lim
q1→1

[1 + a(q1 − 1)xδ]
− 1

q1−1 = e−axδ

and
lim
q2→1

[1 + b(q2 − 1)xρ]
− 1

q2−1 = e−bxρ

.

Hence

lim
q1→1,q2→1

Ip =

∫ ∞

0

xγe−axδ−bxρ

dx

which is the integral in Equation (17) and if ρ < 0 then it is the integral in Equation (13). The general
integral in Equation (20) belongs to the general family of versatile integrals. The factors in the integrand
in Equation (20) are of the generalized type-2 beta form. We could have taken each factor in type-1
beta or type-2 beta form, thus providing 6 different combinations. For each case, we could have the
situation of ρ > 0 or ρ < 0. The whole collection of such models is known as the versatile integrals.
Integral transforms, known as P -transforms, are also associated with the integrals in Equation (20), see
for example [29,30].

4.2. Fractional Calculus Models

In a series of papers the authors [9,15,31–35] have shown recently that fractional integrals can be
classified into the forms in Equations (14) and (18) or fractional integral operators of the second kind
or right-sided fractional integral operators can be considered as Mellin convolution of a product as in
Equation (14) and left-sided or fractional integral operators of the first kind can be considered as Mellin
convolution of a ratio where the functions f1 and f2 are of the following forms:

f1(x) = ϕ1(x)(1− x)α−1, 0 ≤ x ≤ 1, f2(y) = ϕ2(y)f(y) (21)

where ϕ1 and ϕ2 are pre-fixed functions, f(y) is arbitrary and f1(x) = 0 outside the interval 0 ≤ x ≤ 1.
Thus, essentially, all fractional integral operators belong to the categories of Mellin convolution of a
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product or ratio where one function is a multiple of type-1 beta form and the other is arbitrary. The
right-sided or type-2 fractional integral of order α is denoted by D−α

2,uf and defined as

D−α
2,uf =

∫
v

1

v
f1(

u

v
)f2(v)dv (22)

and the left-sided or type-1 fractional integral of order α is given by

D−α
1,uf =

∫
v

v

u2
f1(

v

u
)f2(v)dv (23)

where f1 and f2 are as given in Equation (21). Let n be a positive integer such that ℜ(n − α) > 0.
The smallest such n is [ℜ(α)] + 1 = m where [ℜ(α)] denotes the integer part of ℜ(α). Here D−α

2,uf and
D−α

1,uf are defined as in Equations (22) and (23) respectively. Let D = d
du

the integer order derivative with
respect to u and Dn be the n-th order derivative. Then the fractional derivative of order α is defined as

Dαf = Dn[D
−(n−α)
i,u f ] in the Riemann-Liouville sense (24)

Dαf = [D
−(n−α)
i,u Dnf ] in the Caputo sense (25)

for i = 1, 2, see also [36,37].
The input-output model that we started with, when applied to reaction-diffusion problems can result

in fractional order reaction-diffusion differential equations. Such fractional order differential equations
are seen to provide solutions which are more relevant to practical situations compared to the solutions
coming from differential equations in the conventional sense or involving integer-order derivatives. Some
of the relevant papers in this direction may be seen from [31,32,35,38–40].
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