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Abstract: A financial time series agent-based model is reproduced and investigated by

the statistical physics system, the finite-range interacting voter system. The voter system

originally describes the collective behavior of voters who constantly update their positions

on a particular topic, which is a continuous-time Markov process. In the proposed model,

the fluctuations of stock price changes are attributed to the market information interaction

amongst the traders and certain similarities of investors’ behaviors. Further, the complexity

of return series of the financial model is studied in comparison with two real stock indexes,

the Shanghai Stock Exchange Composite Index and the Hang Seng Index, by composite

multiscale entropy analysis and recurrence analysis. The empirical research shows that the

simulation data for the proposed model could grasp some natural features of actual markets

to some extent.
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1. Introduction

In recent decades, the modeling of the dynamics of price fluctuation behaviors in the financial market

has sparked considerable interest in both the finance and physics community, which is becoming a key

problem in risk management, physical asset valuation and derivatives pricing. It is also becoming
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increasingly important for understanding the mechanisms of dynamical financial price variations that

have exhibited some interesting statistical properties, such as the fat tails phenomenon, power law of

logarithmic return and volume, volatility clustering, multifractality of volatility, etc. [1–9]. Various

agent-based models have been introduced to make an empirical study of the fluctuations in the market;

for instance, see [10–27]. Some of these models are created by applying the interacting particle,

system theories and methods, such as the percolation network [11,17,20,23,24,28], the Ising dynamic

system [12,13], the contact model [10,25,26] and the voter system [19]. For example, Lux and

Marchesi [14] introduced an agent-based model in which chartist agents compete with fundamentalists

agents, leading to power law distributed returns as observed in real markets, which contradicts the

popular efficient market hypothesis. Fang and Wang [12] developed an interacting-agent model of

speculative activity explaining price formation in financial market that is based on the stochastic Ising

dynamic system. Through computer simulation and empirical study, it shows that the established

financial model can reproduce the main factors and reveal certain statistical characteristics of asset

returns. Actually, it is widely accepted that the financial market is an evolving dynamic system that

reacts to external investment information to determine the best price for a given asset. It consists of a

great number of agents interacting with one another in complicated ways. In modeling of the financial

fluctuations, one of the most important thing is to find or define a proper mechanism for interacting

information that the market investors hold. This is also what many economists are dedicated to. The

establishment of a modeling process enriches the theoretical study of financial stock pricing. The

practical relevance of a thorough understanding of the mechanism governing market fluctuation lies

in the benefits that this induces in the processes of asset allocation and risk management. The dynamic

voter interacting system is the famous statistical physics model, which can be also viewed as a model

for non-equilibrium statistical mechanics [29–32]. In the voter process, the voters constantly update

their attitudes at independent exponential random variables. At times of reconsideration, a voter chooses

one neighbor uniformly from amongst all neighbors and takes that neighbor’s opinion. In this case, the

voter theory could be taken to describe the decision making mechanism amongst economic agents in the

market. In this paper, a financial price model is introduced by the finite-range voter system, in which

we also assume that the investors’ attitudes towards markets lend to the fluctuations of stock prices and

suppose that the interacting particles in the voter system represent the investment opinions. Applying

the voter system to the financial modeling may provide a good potential link between economics and

physics and give a beneficial way to depict the mechanism of market agents.

Afterwards, we make an empirical study of the statistical behaviors of logarithmic returns for

the proposed price model in comparison with two important Chinese stock indexes, the Shanghai

Stock Exchange (SSE) Composite Index and the Hang Seng Index (HSI). We mainly focus on the

exploration of the complexity of the financial time series. The multiscale entropy (MSE) method

was one such method developed to quantify the relative complexity of normalized time series across

multiple scales [33], which consists of two steps: (1) a coarse-graining procedure is used to derive the

representations of a system’s dynamics at different time scales; and (2) the sample entropy (SampEn)

algorithm is used to quantify the regularity of a coarse-grained time series at each time scale factor.

Various literature has seen the applications of this method to many research areas [33–36]. However, the

reliability of SampEn is reduced as a time scale factor is increased. More specifically, the variance of the
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entropy estimator grows very quickly as the number of data points is reduced, and in the real application,

the data length is not often long enough, which will lead to less reliability in distinguishing time series.

A modified algorithm in [37], called composite multiscale entropy (CMSE), was introduced to overcome

this weakness, in which the experimental results showed that the CMSE presented better performance

on short time series than the MSE and could provide a more reliable entropy estimation by the analysis

of both white and 1/f noise series. In the present paper, the CMSE analysis is adopted as a measure

of the complexity of simulated data and real ones. Furthermore, nonlinear determinism can potentially

explain large movements in financial data that linear stochastic models cannot account for [38]. Thus, we

here apply the recurrence plots (which provide visual insight into the complex nonlinear deterministic

patterns in time series data [39,40]) and the recurrence quantification analysis (RQA) method (that is

able to quantify structure in the recurrence plots through different recurrence measures [41,42]) to the

nonlinear analysis of the real market data and the simulated data derived from the financial price model.

In sum, there are two main contributions in this paper. One is to provide a financial price modeling

process, in which the information interaction mechanism of agents in the stock market is described by the

long-range voter system. The other is to study the complexity behaviors of simulation time series by the

CMSE method (a recent proposed method in engineering) and the famous RQA technique, respectively.

We hope that our study could enrich the modeling and statistical analysis of the financial market.

2. Price Process Modeling by a Finite-Range Voter System

In this section, we intend to construct a price simulation process according to the mechanisms

of a finite-range-biased voter interacting system. First, we give a mathematical description of the

finite-range-biased voter model. The voter model is an interacting particle system [29–32], describing

the collective behavior of voters who constantly update their political positions. Individuals placed at

the points of Zd might have one of two possible opinions on a political issue (in favor or against), at

independent exponential times; an individual reassesses his view by choosing a neighbor at random with

certain probabilities and then adopting his position. Let ηs(x) be the position of voter x at time s (s ≥ 0);

the political position of the voters can be denoted by ηs = {ηs(x) : x ∈ Z
d}, which is a mapping function

from Z
d to {0, 1}, i.e., ηs(x) = 1 if x ∈ ηs and ηs(x) = 0 if x /∈ ηs. Then, the dynamics of the voter

model can be formulated as follows: (i) if x ∈ ηs, then x becomes vacant at a rate equal to the number

of vacant neighbors; (ii) if x /∈ ηs, then x becomes occupied at a rate equal to λ times the number of

occupied neighbors, where λ(> 1) is an intensity called the “carcinogenic advantage”. When λ = 1,

the model is called the basic voter model, and it is called the biased voter model when λ > 1. Let ηAs
denote the state at time s with the initial state set ηA0 = A and η

{0}
s (x) be the state of x ∈ Z

d at time

s for η
{0}
0 = {0}. More generally, we consider the initial distribution as υθ, the product measure with

density θ (each site is independently occupied with probability θ) and let ηθs denote the voter model with

initial distribution υθ. More formally, the stochastic dynamics of voter model ηs is a Markov process on

a configuration space {0, 1}Z
d

, whose generator has the form:

Ωg(η) =
∑

x∈ Zd

c(x, η) [g(ηx)− g(η)] (1)
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where the functions g is on {0, 1}Z
d

that depend on finitely many coordinates, and ηx(z) = η(z) if z 6= x,

ηx(z) = 1 − η(x) if z = x, for x, z ∈ Z
d. c(x, η) is the transition rate function for the process, which

is given by the following (see [30–32]). For any x ∈ Z
d, the state of x ∈ Z

d flips according to the

transition rates:

0 → 1 at rate λ
∑

y∈ Zd

p(x, y) I{η(y)=1} (2)

1 → 0 at rate
∑

y∈ Zd

p(x, y) I{η(y)=0} (3)

where I is the indicative function, p(x, y) ≥ 0 for x, y ∈ Z
d and

∑

y∈Zd p(x, y) = 1 for all x ∈ Z
d. Here,

we suppose that the transition probability p(x, y) is translation invariant and symmetric and such that the

Markov chain with those transition probabilities is irreducible [15,43]. If a site x ∈ Z
d is occupied by

a one (resp. zero), then at rate one (resp. λ), it picks a site y ∈ Z
d with probability p(x, y) and adopts

the state of the individual at y. For the biased voter model (λ > 1), there exists a “critical value” for

the process, which is defined as λc = inf{λ : P (|η
{0}
s | > 0, for all s ≥ 0) > 0}, where |η

{0}
s | is the

cardinality of η
{0}
s . Assume λ > λc, then there is a convex set C, so that on Ω∞ = {η

{0}
s 6= ∅, for all s},

we have for any ǫ > 0 and for all s sufficiently large, (1 − ǫ)sC ∩ Z
d ⊂ η

{0}
s ⊂ (1 + ǫ)sC ∩ Z

d. If

λ < λc, for some positive ρ(λ), we have P (η
{0}
s 6= ∅) ≤ e−ρs. The above results imply that, on a

d-dimensional lattice, the process becomes vacant exponentially for λ < λc; the process survives with

the positive probability for λ > λc.

We introduce the graphical representation of a one-dimensional-biased voter model on the

configuration space {0, 1}Z [31,32], since the graphical representation is very useful to illustrate and

simulate the model. We start by constructing the process ηs from a collection of Poisson processes in

the case λ ≥ 1. For each pair x, y ∈ Z with |x − y| ≤ R (R is the finite-range), let {T
(x,y)
n : n ≥ 1}

and {U
(x,y)
n : n ≥ 1} be independent Poisson processes with rate one and λ − 1, respectively. At times

T
(x,y)
n , we draw an arrow from y to x and put a δ at x. At times U

(x,y)
n , we just draw an arrow from y to

x. Then, the process is obtained from the graphical representation as follows: At time T
(x,y)
n , the state

of site x imitates the state of site y, i.e., becomes occupied by a one (resp. zero) if site y is occupied

by a one (resp. zero). At time U
(x,y)
n , the site x becomes occupied by a one if y is occupied by a one,

and the state of site x is not affected if y is occupied by a zero. A figure illustration of the construction

of the graphical representation for a one-dimensional-biased voter model with neighbor range R = 3 is

presented in Figure 1. We imagine fluid entering the bottom and flowing up the structure. The δ’s are

like dams, and the arrows are like pipes, which allow the fluid to flow in the indicated direction.

In the following, a financial price simulation process model is developed by applying the

finite-range-biased voter dynamic system with neighbor range R. In this model, we assume that

the investors’ investment attitudes towards the financial market lead to fluctuations of stock prices

and suppose that the investment attitudes are represented by the interacting particles in the biased

voter model. We may classify the investment attitudes into buying, selling and neural ones, which

correspondingly sort the investors’ into three groups according to the attitudes that they hold. We

assume that each trader can trade the stock several times at each day t ∈ {1, 2, · · · , N}, but at most

a unit number of the stock at each time. Let l be the time length of trading day; we denote the stock

price at time s in the t-th trading day by Pt(s), where s ∈ [0, l]. Suppose that the stock market consists
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of 2M + 1 (M is large enough) traders, who are located in a line {−M, · · · ,−1, 0, 1, · · · ,M} ⊂ Z

(similarly for a d-dimensional lattice Z
d). At the very beginning of each trading day, we select a certain

proportion of traders (with the initial distribution υθ) randomly in the system and consider them as those

who receive some market news. We define a random variable ζt with the values +1, −1, 0 to represent

that these investors hold a buying opinion, selling opinion or neutral opinion with probabilities p+1, p−1

or 1 − (p+1 + p−1), respectively. Then, these investors send a bullish, bearish or neutral signal to their

finite-range neighbors. According to the d-dimensional voter process system, investors can affect each

other or the news can be spread, which is supposed as the main factor of price fluctuations for the market.

The aggregate excess demand for the asset at time t is defined by:

Bt(s) = ζt · |η
θ
s |
/

(2M + 1) (4)

where |ηθs | =
∑M

z=−M ηθs(z), and M may depend on the trading days N . From the above description

and [15,43,44], we define the simulation formula of a discrete time stock price as follows:

Pt(s) = Pt−1(s) exp{βBt(s)}, Pt(s) = P0 exp{β
t

∑

i=1

Bi(s)} (5)

where β(> 0) represents the depth parameter of the market, which measures the sensitivity of price

fluctuation in response to the change in excess demand, and P0 is the stock price at Time 0. The

corresponding stock logarithmic return and absolute return from t− 1 to t are defined by:

r(t) = lnPt(s)− lnPt−1(s), |r(t)| = | lnPt(s)− lnPt−1(s)|. (6)
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Figure 1. Graphical representation of the biased voter model with finite-range R = 3.

According to the above definition and description of the model, we perform the simulation of stock

price series and return series with different values of the parameters [45,46], finite-range R and intensity

λ in the voter dynamic system. We set the number of traders M = 500 and the initial density of the

model θ = 0.01. Three different simulation data are considered for fluctuation behavior analysis with

parameter settings {λ = 1.3, R = 1}, {λ = 1.5, R = 2} and {λ = 1.7, R = 3}, respectively, which
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cover 6000 data points. In selecting the parameters, we first set the finite range of the voter model

R = 1, 2, 3, respectively. For λ, we consider the case of λ > λc and gradually change the value to make

the simulated returns be as close as possible to the real market indices. For each setting, 20 repetitions

are performed, and the averaged time series is the simulation data for analysis. Meanwhile, we select

the daily prices of two important actual market stock indexes in comparison with the simulation ones,

the Hang Seng Index (HSI) from 31 December 1990 to 18 March 2013, with 5530 data points, and the

Shanghai Stock Exchange (SSE) Composite Index from the period 3 March 1993 to 22 February 2013,

with 5142 data points. The normalized plots of these prices and the logarithmic return for simulation

data with parameter setting {λ = 1.7, R = 3} are shown in Figure 2.
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Figure 2. (a) Normalized price series for simulation data and actual data; (b) return and

absolute return series for simulation data with parameter {λ = 1.7, R = 3}.

3. Comparison Empirical Analysis of Complexity Behaviors

3.1. Composite Multiscale Entropy Analysis

In this section, we adopt a modified new multiscale entropy analysis algorithm, the composite

multiscale entropy (CMSE) method, for complexity analysis of the above-mentioned three simulation

data and two actual financial market indexes, which was proposed to overcome the problem that

the reliability of the sample entropy of a coarse-grained series is reduced as a time scale factor is

increased [37]. The difference between the CMSE and MSE is in the coarse-graining procedure, and

the CMSE can be carried out on a time series in the following two steps:

(1) For an one-dimensional time series x = {x1, x2, · · · , xN}, consecutive coarse-grained time

series are constructed by averaging a successively increasing number of points within non-overlapping

windows. Unlike the MSE algorithm in which each of the coarse-grained time series {y(τ)} is computed

as y
(τ)
j = 1

τ

jτ
∑

i=(j−1)τ+1

xi, the k-th coarse-grained time series in the CMSE method for a scale factor τ ,

y
(τ)
k = {y

(τ)
k,1, y

(τ)
k,2, · · · , y

(τ)
k,p} is defined as:
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y
(τ)
k,j =

1

τ

jτ+k−1
∑

i=(j−1)τ+k

xi, 1 ≤ j ≤ N/τ, 1 ≤ k ≤ τ. (7)

Note that for τ = 1, the coarse-grained time series is simply the original time series. Figure 3 shows

a schematic illustration of the coarse-graining procedure for both MSE (a) and CMSE (b) with τ = 2

and τ = 3, respectively, from which a clear difference between these two methods can be seen.
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Figure 3. (a) Schematic illustrations of the MSE and (b) composite multiscale entropy

(CMSE) procedures, respectively.

(2) The entropy measure, the sample entropy (SampEn), is calculated for each coarse-grained time

series and then plotted as a function of the scale factor. SampEn quantifies the regularity or predictability

of a time series, which is defined as the negative logarithm of the conditional probability that a point

that repeats itself within a tolerance of ǫ in an m-dimensional phase space will repeat itself in an m +

1-dimensional phase space:

SampEn = − log[C(m+ 1, ǫ)/C(m, ǫ)] (8)

where C(m, ǫ) is the number of repeating points in the m-dimensional phase space, repeating is defined

as points closer than ǫ in a Euclidean sense to the examined points; for details, see [35–37,47]. Finally,

the CMSE value is defined as the means of the sample entropies of all coarse-grained time series, that is:

CMSE(x, τ,m, ǫ) =
1

τ

τ
∑

k=1

SampEn(y
(τ)
k , m, ǫ) (9)

while the MSE is computed by only using the first coarse-grained time series y
(τ)
1 , i.e., MSE(x, τ,m, ǫ) =

SampEn(y
(τ)
1 , m, ǫ).
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Figure 4. Composite multiscale entropy of return series r and absolute return form |r|q with

q = 0.25, 0.5, 0.75, 1, 1.5, 2 for simulation data and actual indexes, respectively.

In Figure 4, we calculate the CMSE values of returns and absolute returns with different power

exponents, labeled as |r(t)|q, for simulation data and actual data from Scale 1 to Scale 30 (τ = 1 to

30), where q is taken as 0.25, 0.5, 0.75, 1, 1.5 and 2, respectively. It is known that the absolute return is

a proxy of the volatility of time series, and |r|q exhibit obvious different volatility behaviors for different

q [19]. The entropy value of each coarse-grained time series is calculated with phase space embedding

dimension m = 6 for minimizing the fraction of false neighbors [38] and ǫ = 0.15σ, where σ denotes

the standard deviation of the original time series. From the figure, we find that values of the composite

multiscale entropy of return series monotonically decrease as the scale factor increases for either actual
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indexes or simulation data from the financial price model. For the absolute return with different power

exponents |r(t)|q, it is observable that the entropy values decrease gradually and, finally, remain almost

constant as the scale factor becomes larger, which indicate that each of these time series, unlike the return

series, contains correlations and complex structures across multiple time scales. The behavior for each

of these volatility time series is similar to that of 1/f series, which has the correlated fluctuations (but

the degrees of correlations are different). Meanwhile, it is observed that the entropy values for all given

scales become smaller with the power exponents q becoming larger, suggesting decreasing complex

structures. The simulative data for the financial price model show similar fluctuation behaviors to the

actual SSE and HSI data.

To find some relationships between the correlations and the complexity of time series, we adopt the

well-known detrended fluctuation analysis (DFA) method, which was proposed to explore the long-range

correlations of nonstationary time series [19], to calculate the Hurst exponents of return series and |r(t)|q

series for both the financial price model and actual market indexes. The results can be found in Table 1.

It is seen that the Hurst exponents of return series for both the simulation data and the actual ones are

around 0.5, indicating weak correlations. The Hurst exponents for |r(t)|q are all much larger than 0.5,

which means that the time series are long-range auto-correlated. However, for each time series, the Hurst

exponents do not show the obvious monotonic relationship with power exponent q. Therefore, we cannot

intuitively conclude that the stronger correlations of time series correspond to higher complex structures

or entropy values.

Table 1. Hurst exponent of |r|q for simulation data and actual data. HSI, Hang Seng Index;

SSE, Shanghai Stock Exchange.

data return q = 0.25 q = 0.5 q = 0.75 q = 1 q = 1.5 q = 2

{λ = 1.3, R = 1} 0.52026 0.63220 0.74669 0.81593 0.85684 0.88665 0.87644

{λ = 1.5, R = 2} 0.51066 0.65271 0.68973 0.76012 0.80596 0.84566 0.84251

{λ = 1.7, R = 3} 0.44587 0.63266 0.74921 0.82767 0.87982 0.92975 0.93350

HSI 0.52570 0.85341 0.88780 0.89769 0.89280 0.85217 0.79179

SSE 0.52271 0.72742 0.79722 0.81659 0.81297 0.76844 0.70621

In Figure 5, we present the CMSE results for return series, absolute returns and their corresponding

shuffled time series. From Figure 5a, it is seen that the CMSE values of shuffled returns for the price

model and the actual indexes are decreasing as the time scale increases, similar to the trends of original

returns. In Figure 5b, it is shown that the CMSE values of shuffled absolute return series are also

reducing with the time scale enlarging, but the trends are quite different from the original absolute

returns. These statistical behaviors may be understand as follows. In the shuffling procedure, the values

of time series are put into random order, and thus, all correlations are destroyed; therefore, the composite

multiscale sample entropy of shuffled time series presents behaviors similar to the uncorrelated or weak

correlated series.
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Figure 5. (a) CMSE of return series and the corresponding shuffled time series; (b) CMSE

of absolute returns and the corresponding shuffled time series.

3.2. Recurrence Plot and Recurrence Quantification Analysis

In this section, we utilize the recurrence plot and recurrence quantification analysis to explore the

complex determinism of return time series for the price model, SSE and HSI. The recurrence plot (RP)

is a qualitative tool for visualizing nonlinear dynamics in time series data. RP shows when a point in the

phase space is near (at a distance lower than a certain threshold) to another point [39,40]. To perform the

recurrence plot analysis, a phase space from a single observation is constructed. The state of the system

can be represented by the discrete time delay vector xt = {xt, xt−△t, xt−2△t, · · · , xt−(m−1)△t}, where

m denotes the embedding dimension and △t is the time delay. Then, the Euclidean distance matrix R

using the independence time-delayed coordinates is calculated:

Rij = Θ(h− ||xi − xj ||), i, j = 1, 2, · · · , NR = N − (m− 1)△t, (10)

where || · || is a norm, Θ(·) is the Heaviside step function and h is a threshold value, which has the

meaning of the tolerance of recurrence. The distance matrix consists of zeros and ones and corresponds

to the state of the system (one, recurrence and zero, no recurrence).

In this paper, the embedding dimension is selected through the false nearest neighbors method [38],

and a value m = 6 seems appropriate for the time series under study. The time delay is fixed to △t = 1

by the average mutual information method [48]. Concerning the recurrence threshold h, we adopt the

5% (h ≈ 0.02) and 10% (h ≈ 0.04) of the maximal phase space diameter of the discussed time series. In

Figure 6 and Figure 7, the recurrence plots of returns for the simulated data and two actual market data

are depicted in the case of h = 0.02 and h = 0.04, respectively. In Figure 6, more of the recurrence points

are observed in the main diagonal lines for these time series, while the recurrence structure consisting of

roughly vertical (horizontal) patterns can be found in the plots of Figure 7.
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Figure 6. Recurrence plots of returns for simulation data and actual data in the case of

h = 0.02.
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Figure 7. Recurrence plots of returns for simulation data and actual data in the case of

h = 0.04.
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Since the graphical representation may be difficult to evaluate, recurrence quantification analysis

(RQA) [41,42,49] was developed to provide numerical measures that allow for the quantification of the

structure and complexity of RPs. These quantities are based on recurrence points densities, diagonal and

vertical line structure. The recurrence rate:

RR =
1

NR

NR
∑

i,j=1

Ri,j (11)

which measures the density of recurrence points in an RP and can be interpreted as the probability

that any state may recur. One of the RQA measures based on the line parallel to the main diagonal is

determinism (DET), which is defined by:

DET =

∑NR

l=lmin
lP (l)

∑NR

l=1 lP (l)
(12)

where P (l) is a histogram of diagonal lines of the length l, and lmin is the minimal length of a diagonal

line that is defined by lmin = 2. DET provides an indication of determinism and predictability in the

system; thus the larger the value of DET, the more predictable the system with diagonal lines in RP.

Another measure on the diagonal line is the Shannon information entropy (LENT ) defined for diagonal

line collections:

LENT = −
NR
∑

l=lmin

p(l) ln p(l) (13)

where the probability of the line distribution is p(l) = P (l)/
∑

l≥lmin
P (l). The rise in LENT refers

to the increase of complexity of the time series. Moreover, the mean length of the diagonal lines

Lmean =
∑NR

l=lmin
lp(l) is a parameter indicating the system stability. Instead of considering diagonal

lines, we measure vertical recurrence lines. In analogy to determinism, the laminarity (LAM) is defined

for vertical line patterns:

LAM =

∑NR

v=vmin
vP (v)

∑NR

v=1 vP (v)
(14)

where P (v) denotes a histogram of vertical lines of the length v with the minimum line length vmin = 2.

The larger the laminarity parameter, the more stable the behavior of the system. Finally, the average

vertical line length (TT) is given as TT =
∑NR

v=vmin
vp(v), and it estimates the mean time that the system

remains at a specific state.

The estimated results of RQA measures are presented in Table 2. It is found that for each of these three

simulated data and two actual stock indexes, the recurrence rate (RR) for recurrence threshold h = 0.04

is larger than that for h = 0.02; especially, the value for HSI is observed as a higher increase than those

for other series. The DET and Lmean values decrease when the h changes from 0.02 to 0.04, except the

DET value for HSI, which becomes 0.7793 for h = 0.04 from 0.7685 for h = 0.02. Since the higher

DET and Lmean correspond to a more predictable and stable system, thus the results imply the reduction

of determinism of these return series in the case of h = 0.04. It is also noticed that the Lmean for HSI

under h = 0.02 is much smaller than those for other series, indicating the weakest predictability among

them. Furthermore, it is observable that all of the values of LENT have increased for h = 0.04, and its

value for the return series with R = 1 has a relatively considerable rise, which indicate the increasing of
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the complexity of these time series. In terms of measures of vertical recurrence lines, the values of LAM

and TT enlarge when h becomes 0.04, which means a rise in the fraction of recurrence points forming

vertical lines, and it can also obviously be seen in Figure 7.

Table 2. Recurrence quantification analysis (RQA) measures of simulative data and actual data.

RR DET Lmean

Data (h = 0.02, 0.04) (h = 0.02, 0.04) (h = 0.02, 0.04)

R = 1 0.0005 0.0027 0.9044 0.6649 46.7234 3.6071

R = 2 0.0007 0.0046 0.8373 0.6817 15.6688 3.2662

R = 3 0.0005 0.0018 0.9336 0.6779 51.0233 4.5073

HSI 0.0010 0.0163 0.7685 0.7793 7.2597 3.5210

SSE 0.0006 0.0021 0.8503 0.5994 20.4435 3.9045

LENT LAM TT

Data (h = 0.02, 0.04) (h = 0.02, 0.04) (h = 0.02, 0.04)

R = 1 0.3921 1.1084 0.0049 0.0671 2.0000 2.3217

R = 2 0.7699 1.2140 0.0095 0.0989 2.3333 2.4383

R = 3 0.7629 1.1562 0.0000 0.0449 0.0000 2.6015

HSI 1.1184 1.6163 0.0072 0.2814 2.0000 2.8932

SSE 0.4499 0.8834 0.1154 0.1334 2.3116 2.6532

4. Conclusions

In the present paper, we have developed a financial price model by using the mechanisms of the

interacting dynamic finite-range voter system, which is a well-known statistical physics model. The

comparative research of statistical properties of two Chinese stock indexes and the simulated data with

different parameters (intensity and neighbor range parameters) is performed. The composite multiscale

entropy analysis is applied to investigate the complexity of returns and absolute returns with different

power exponents. The findings show that the CMSE for return series decreases as the time scale becomes

larger, while the CMSE values for volatility series first reduce gradually, but finally remain almost stable,

which is consistent with the auto-correlations of the series. The obviously different complexity degrees

of |r(t)|q for different values of q are also observable. Finally, the recurrence plots and recurrence

quantification analysis are utilized to further explore the complexity of the return series. For recurrence

thresholds h = 0.02 and h = 0.04, the RQA measures present apparently different values, indicating

different complex determinism behaviors. Based on the statistical research, we can observe that there

is some evidence of similar complex behaviors of the returns of the financial model derived from the

finite-range voter system to the real stock markets; this shows that the proposed model can grasp some

nature of the real stock market in certain respects and is reasonable for real stock price modeling.
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