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1. Preface: Information Integration and Complexity

Since the publication of Shannon’s pioneering work in 1948 [1], it has been hypothesized that
his information theory provides means for understanding information processing and learning in the
brain. Already in the 1950s, the principle of redundancy reduction has been proposed independently
by Attneave [2] and Barlow [3]. In 1981, Laughlin has provided some experimental evidence for the
redundancy reduction principle in terms of the maximization of the output entropy of large monopolar
cells of the fly’s compound eye [4]. As only deterministic response functions have been considered, this
principle turns out to be equivalent to the mutual information maximization between the input and the
output. Later, Linsker [5] has demonstrated that the maximization of mutual information in a layered
feed-forward network leads to feature detectors that are similar to those observed by Hubel and Wiesel
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in the visual system of the cat and the monkey [6,7]. He coined his information-theoretic principle of
learning the infomax principle.

The idea that an information-theoretic principle, such as the infomax principle, governs learning
processes of neuronal systems has attracted many researchers. A highly recognized contribution in
this regard is the work by Bell and Sejnowski [8] which applies the infomax principle to the source
separation problem. An exhaustive review of all relevant contributions to that field is not within the
scope of this short discussion. I shall focus on approaches that aim at relating such information based
principles to the overall complexity of the system. In particular, I shall concentrate on the theory of
information integration and complexity, initially proposed by Tononi, Sporns, and Edelman [9], and
further developed and analyzed in a series of papers [10–15]. I shall compare this line of research
with my own information-geometric approach to complexity, initially proposed in my manuscript [16],
entitled Information Geometry on Complexity and Stochastic Interaction, which led to various lines of
research that I am going to outline below. This manuscript constitutes the main body of the present
paper, starting with Section 2. It quantifies complexity as the extent to which the whole is more than the
sum of its parts using information geometry [17]. Thereby, it extends the notion of multi-information
[18,19], also called information integration in [9], to the setting of discrete time stochastic processes,
in particular Markov chains. This article was originally accepted for publication in IEEE Transactions
on Information Theory, subject to minor revision. However, by the end of the unusually long reviewing
process I had come to the conclusion that my geometric approach has to be further improved in order
to address important aspects of complexity (I shall be more concrete on that). Recent developments, on
the other hand, suggest that this work is of relevance in the context of information integration already in
its present form [12–15,20,21]. Therefore, it should be useful to provide it together with a discussion of
its strengths and shortcomings, thereby relating it to similar work that has been developed since its first
publication.

Let us first consider the so-called multi-information [18,19] of a random vector X = (Xv)v∈V , taking
values in a finite set:

I(X) :=
∑
v∈V

H(Xv)−H(X) , (1)

where H denotes the Shannon entropy (we assume V to be a non-empty and finite set).
The multi-information vanishes if and only if the variables Xv, v ∈ V , are stochastically independent.
In their original paper [9], Tononi, Sporns, and Edelman call this quantity integration. Following their
intuition, however, the notion of integration should rather refer to a dynamical process, the process
of integration, which is causal in nature. In later works, the dynamical aspects have been more
explicitly addressed in terms of a causal version of mutual information, leading to improved notions
of effective information and information integration, denoted by Φ [10,11]. In fact, most formulated
information-theoretic principles are, in some way or another, based on (conditional) mutual information.
This directly fits into Shannon’s classical sender-receiver picture [1], where the mutual information has
been used in order to quantify the capacity of a communication channel. At first sight, this picture
suggests to treat only feed-forward networks, in which information is transmitted from one layer to the
next, as in the context of Linsker’s infomax principle. In order to overcome this apparent restriction,
however, we can simply unfold the dynamics in time and consider corresponding temporal information
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flow measures, which allows us to treat also recurrent networks. In what follows, I am going to explain
this idea in more detail, thereby providing a motivation of the quantities that are derived in Section 2 in
terms of information geometry.

We consider again a non-empty and finite set V of nodes and assume that each v ∈ V receives signals
from a set of nodes which we call parents of v and denote by pa(v). Based on the received signals, the
node v updates its state according to a Markov kernel K(v), the mechanism of v, which quantifies the
conditional probability of its new state ω′v given the current state ωpa(v) of its parents. If v ∈ pa(v), this
update will involve also ωv for generating the new state ω′v . How much information is involved from
“outside”, that is from ∂(v) := pa(v) \ v, in addition to the information given by ωv? We can define the
local information flow from this set as

IF (X∂(v) → X ′v) := H(X ′v |Xv)−H(X ′v |Xv, X∂(v)) = MI(X ′v;X∂(v) |Xv) , (2)

where MI stands for the (conditional) mutual information. Note that this is the uncertainty reduction
that the node v gains through the knowledge of its parents’ state, in addition to its own state. Now let
us define the total information flow in the network. In order to do so, we have to consider the overall
transition kernel. Because the nodes update their states in parallel, the global transition kernel is given as

K(ω′ |ω) =
∏
v∈V

K(v)(ω′v |ωpa(v)) . (3)

In order to quantify the total information flow in the network, we simply add all the local information
flows, defined by Equation (2), and obtain

IF (X → X ′) :=
∑
v∈V

IF (X∂(v) → Xv) . (4)

It is easy to see that the total information flow vanishes whenever the global transition kernel has the
following structure which encodes the dynamics of isolated non-communicating nodes:

K(ω′ |ω) =
∏
v∈V

K(v)(ω′v |ωv) . (5)

Referring to these kernels as being split, we are now ready to give our network information flow measure,
defined by Equation (4), a geometric interpretation. If K has the structure Equation (3) then

IF (X → X ′) =
∑
v∈V

H(X ′v |Xv)−H(X ′ |X) (6)

= min
K′ split

Dp(K ‖K ′) . (7)

Here, Dp(K ‖K ′) is a measure of “distance”, in terms of the Kullback-Leibler divergence, between
K and K ′ with respect to the distribution p (see definition by Equation (23)). The expression on the
right-hand side of Equation (6) can be considered as an extension of the multi-information (1) to the
temporal domain. The second equality, Equation (7), gives the total information flow in the network
a geometric interpretation as the distance of the global dynamics K from the set of split dynamics.
Stated differently, the total information flow can be seen as the extent to which the whole transition
X → X ′ is more than the sum of its individual transitions Xv → X ′v, v ∈ V . Note, however, that
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Equation (6) follows from the additional structure (3) which implies H(X ′ |X) =
∑

v∈V H(X ′v |X).
This structure encodes the consistency of the dynamics with the network. Equation (7), on the other
hand, holds for any transition kernelK. Therefore, without reference to a particular network, the distance
minK′ split Dp(K ‖K ′) can be considered as a complexity measure for any transition X → X ′, which
we denote by C(1)(X → X ′). The information-geometric derivation of C(1)(X → X ′) is given in
Section 2.4.1. Restricted to kernels that are consistent with a network, the complexity C(1)(X → X ′)

reduces to the total information flow in the network (see Proposition 2 (iv)).
In order to consider the maximization of the complexity measure C(1)(X → X ′) as a valid

information-theoretic principle of learning in neuronal systems, I analyzed the natural gradient field on
the manifold of kernels that have the structure given by Equation (3) (see [17,22] for the natural gradient
method within information geometry). In [23] I proved the consistency of this gradient in the sense that
it is completely local: If every node v maximizes its own local information flow, defined by Equation (2),
in terms of the natural gradient, then this will be the best way, again with respect to the natural gradient,
to maximize the complexity of the whole system. This suggests that the infomax principle by Linsker
and also Laughlin’s ansatz, applied locally to recurrent networks, will actually lead to the maximization
of the overall complexity. We used geometric methods to study the maximizers of this complexity
analytically [24,25]. We have shown that they are almost deterministic, which has quite interesting
implications, for instance for the design of learning systems that are parametrized in a way that allows
them to maximize their complexity [26] (see also [27] for an overview of geometric methods for systems
design). Furthermore, evidence has been provided in [25] that the maximization of C(1)(X → X ′) is
achieved in terms of a rule that mimics the spike-timing-dependent plasticity of neurons in the context
of discrete time. Together with Wennekers, we have studied complexity maximization as first principle
of learning in neural networks also in [28–33].

Even though I implicitly assumed that a natural notion of information flow has to reflect the causal
interactions of the nodes, I should point out that the above definition of information flow has a
shortcoming in this regard. If Xv and X∂(v) contain the same information, due to a strong stochastic
dependence, then the conditional mutual information in Equation (2) will vanish, even though there
might be a strong causal effect of ∂(v) on v. Thus, correlation among various potential causes can
hide the actual causal information flow. The information flow measure of Equation (2) is one instance
of the so-called transfer entropy [34] which is used within the context of Granger causality and has,
as a conditional mutual information, the mentioned shortcoming also in more general settings (see a
more detailed discussion in [35]). In order to overcome these limitations of the (conditional) mutual
information, in a series of papers [35–39] we have proposed the use of information theory in combination
with Pearl’s theory of causation [40]. Our approach has been discussed in [41] where a variant of
our notion of node exclusion, introduced in [36], has been utilized for an alternative definition. This
definition, however, is restricted to direct causal effects and does not capture, in contrast to [35], mediated
causal effects.

Let us now draw a parallel to causality issues of the complexity measure introduced in the original
work [9], which we refer to as TSE-complexity. In order to do so, consider the following representation
of the original TSE-complexity as weighted sum of mutual informations:
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CTSE(X) :=
∑
A⊆V

αAMI(XA;XV \A) , (8)

where αA = k

N(Nk)
. Interpreting the mutual information between A and its complement V \ A in this

sum as an information flow is clearly misleading. These terms are completely associational and neglect
the causal nature of information flow. In [10,11], Tononi and Sporns avoid such inconsistencies by
injecting noise (maximum entropy distribution) into A and then measuring the effect in V \A. They use
the corresponding interventional mutual information in order to define effective information. Note that,
although their notion of noise injection is conceptually similar to the notion of intervention proposed
by Pearl, they formalize it differently. However, the idea of considering a post-interventional mutual
information is similar to the one formalized in [35,36] using Pearl’s interventional calculus.

Clearly, the measure C(1)(X → X ′) does not account for all aspects of the system’s complexity. One
obvious reason for that can be seen by comparison with the multi-information, defined by Equation (1),
which also captures some aspects of complexity in the sense that it quantifies the extent to which the
whole is more than the sum of its elements (parts of size one). On the other hand, it attains its (globally)
maximal value, if and only if the nodes are completely correlated. Such systems, in particular completely
synchronized systems, are generally not considered to be complex. Furthermore, it turns out that these
maximizers are determined by the marginals of size two [42]. Stated differently, the maximization of
the extent to which the whole is more than the sum of its parts of size one leads to systems that are not
more than the sum of their parts of size two (see for a more detailed discussion [43,44]). Therefore,
the multi-information does not capture the complexity of a distribution at all levels. The measure
C(1)(X → X ′) has the same shortcoming as the multi-information. In order to study different levels of
complexity, one can consider coarse-grainings of the system at different scales in terms of corresponding
partitions Π = {S1, . . . , Sn} of V . Given such a partition, we can define the information flows among its
atoms Si as we already did for the individual elements v of V . For each Si, we denote the set of nodes
that provide information to Si from outside by ∂(Si) :=

⋃
v∈Si (pa(v) \ Si). We quantify the information

flow into Si as in Equation (2):

IF (X∂(Si) → XSi) := H(X ′Si |XSi)−H(XS′i
|XSi , X∂(Si)) = MI(X ′Si ;X∂(Si) |XSi) . (9)

For a transition that satisfies Equation (3), the total information flow among the parts Si is then given by

IF (X → X ′ |Π) :=
n∑
i=1

IF (X∂(Si) → XSi) . (10)

We can now define the Π-complexity of a general transition, as we already did for the complete partition:

C(X → X ′ |Π) :=
n∑
i=1

H(X ′Si |XSi)−H(X ′ |X) . (11)

Obviously, the Π-complexity coincides with the information flow IF (X → X ′ |Π) in the case
where the transition kernel is compatible with the network. The information-geometric derivation of
C(X → X ′ |Π) is given in Section 2.4.1. In the early work [10,11], a similar approach has been
proposed where only bipartitions have been considered. Later, an extension to arbitrary partitions has
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been proposed by Balduzzi and Tononi [12,13] where the complexity defined by Equation (11) appears
as measure of effective information. Note, however, that there are important differences. First, the
proposed measure by Tononi and his coworkers is reversed in time, so that their quantity is given by
Equation (11) where X and X ′ have exchanged roles. This time-reversal of the effective information
is motivated by its intended role as a measure relevant to conscious experience. This does not make
any difference in the case where a stationary distribution is chosen as input distribution. However, in
order to be consistent with causal aspects of conscious experience, the authors choose a uniform input
distribution, which models the least informative prior about the input.

Note that there is also a closely related measure, referred to as synergistic information in the
works [15,45]:

SI(X → X ′ |Π) := MI(X ′;X)−
n∑
i=1

MI(X ′Si ;XSi) (12)

= C(X → X ′ |Π)− I(XS1 , . . . , XSn) . (13)

The last equation directly follows from Proposition 1 (iii) (see the derivation of Equation (29)).
Interpreting the mutual informations as (one-step) predictive information [46–48], the synergistic
information quantifies the extent to which the predictive information of the whole system exceeds the
sum of predictive informations of the elements.

Now, having for each partition of the system the corresponding Π-complexity of Equation (11),
how should one choose among all these complexities the right one? Following the proposal made in
[10–13], one should identify the partition (or bipartition) that has the smallest, appropriately normalized,
Π-complexity. Although the overall complexity is not explicitly defined in these works, the notion
of information integration, denoted by Φ, seems to directly correspond to it. This is confirmed
by the fact that information integration is used for the identification of so-called complexes in the
system. Loosely speaking, these are defined to be subsets S of V with maximal information integration
Φ(S). This suggests that the authors equate information integration with complexity. In a further
refinement [12,13] of the information integration concept, this is made even more explicit. In [13],
Tononi writes: “In short, integrated information captures the information generated by causal interactions
in the whole, over and above the information generated by the parts.”

Defining the overall complexity simply as the minimal one, with respect to all partitions, will ensure
that a complex system has a considerably high complexity at all levels. I refer to this choice as the
weakest link approach. This is not the only approch to obtain an overall complexty measure from
individual ones defined for various levels. In order to give an instructive example for an alternative
approach, let us highlight another representation of the TSE-complexity. Instead of the atoms of a
partition, this time we consider the subsets of V with a given size k ∈ {1, . . . , N} and define the
following quantity:

C(k)(X) :=
N

k
(
N
k

) ∑
A⊆V
|A|=k

H(XA)−H(X) . (14)

Let us compare this quantity with the multi-information of Equation (1). For k = 1, they are identical.
While the multi-information quantifies the extent to which the whole is more than the sum of its elements
(subsets of size one), its generalization C(k)(X) can be interpreted as the extent to which the whole is
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more than the sum of its parts of size k. Now, defining the overall complexity as the minimal C(k)(X)

would correspond to the weakest link approach which I discussed above in the context of partitions.
A complex system would then have considerably high complexity C(k)(X) at all levels k. However,
the TSE-complexity is not constructed according to the weakest link approach, but can be written as a
weighted sum of the terms C(k)(X):

CTSE(X) =
N∑
k=1

α(k)C(k)(X) , (15)

where α(k) = k
N

. The right choice of the weights is important here. I refer to this approach as the
average approach. Clearly, one can interpolate between the weakest link approach and the average
approach using the standard interpolation between the L∞-norm (maximum) and the L1-norm (average)
in terms of the Lp-norms, p ≥ 1. However, Lp-norms appear somewhat unnatural for entropic quantities.

The TSE-complexity has also an information-geometric counterpart which has been developed in
a series of papers [43,44,49,50]. It is instructive to consider this geometric reformulation of the
TSE-complexity. For a distribution p, let p(k) be the maximum-entropy estimation of p with fixed
marginals of order k. In particular, p(N) = p, and p(1) is the product of the marginals pv, v ∈ V ,
of order one. In some sense, p(k) encodes the structure of p that is contained only in the parts of
size k. The deviation of p from p(k) therefore corresponds to C(k)(X), as defined in Equation (14).
This correspondence can be made more explicit by writing this deviation in terms of a difference
of entropies:

D(p ‖ p(k)) = Hp(k)(X)−Hp(X) , (16)

where D denotes the Kullback-Leibler divergence. If we compare the Equations (16) and (14), then
we see that N

k(Nk)

∑
A⊆V
|A|=k

H(XA) corresponds to Hp(k)(X). Indeed, both terms quantify the entropy that

is contained in the marginals of order k. From the information-geometric point of view, however, the
second term appears more natural. The first term seems to count marginal entropies multiple times so
that we can expect that this mean value is larger than Hp(k)(X). In [43], we have shown that this is
indeed true, which implies

D(p ‖ p(k)) ≤ C(k)(X) . (17)

If we replace the C(k)(X) in the definition (15) of the TSE-complexity by D(p ‖ p(k)), then we obtain
with the Pythagorean theorem of information geometry the following quantity:

Iβ(X) :=
N−1∑
k=1

β(k)D(p(k+1) ‖ p(k)) , (18)

where β(k) = k(k+1)
2

. Let us compare this with the multi-information. Following [18], we can
decompose the multi-information as

I(X) = D(p ‖ p(1)) =
N−1∑
k=1

D(p(k+1) ‖ p(k)) . (19)

I already mentioned that high multi-information is achieved for strongly correlated systems, which
implies that the global maximizers can be generated by systems that only have pairwise interactions [42],
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that is p = p(2). It follows that in the above decompsition of Equation (19), only the first term
D(p(2) ‖ p(1)) is positive while all the other terms vanish for maximizers of the multi-information.
This suggests that the multi-information does not weight all contributions D(p(k+1) ‖ p(k)) to the
stochastic dependence in a way that would qualify it as a complexity measure. The measure defined
by Equation (18), which I see as an information-geometric counterpart of the TSE-complexity, weights
the higher-order contributions D(p(k+1) ‖ p(k)), k ≥ 2, more strongly. In this geometric picture, we can
interpret the TSE-complexity as a rescaling of the multi-information in such a way that its maximization
will emphasize not only pairwise interactions.

Concluding this preface, I compared two lines of research, the one pursued by Tononi and coworkers
on information integration, and my own information-geometric research on complexity. The fact that
both research lines independently identified closely related core concepts of complexity confirms that
these concepts are quite natural. The comparison of the involved ideas suggests the following intuitive
definition of complexity: The complexity of a system is the extent to which the whole is more than the
sum of its parts at all system levels. I argue that information geometry provides natural methods for
casting this intuitive definition into a formal and quantitative theory of complexity. My paper [16],
included here as Section 2, exemplifies this way of thinking about complexity. It is presented with only
minor changes compared to its initial publication, except that the original reference list is replaced by
the largely extended up-to-date list of references. This implies repetitions of a few standard definitions
which I already used in this preface.

2. “Information Geometry on Complexity and Stochastic Interaction”, Reference [16]

2.1. Introduction

“The whole is more than the sum of its elementary parts.” This statement characterizes the present
approach to complexity. Let us put it in a more formal setting. Assume that we have a system consisting
of elementary units v ∈ V . With each non-empty subsystem S ⊂ V we associate a set OS of objects
that can be generated by S. Examples for such objects are (deterministic) dynamical systems, stochastic
processes, and probability distributions. Furthermore, we assume that there is a “composition” map
⊗ :

∏
v∈V O{v} ↪→ OV that defines how to put objects of the individual units together in order to describe

a global object without any interrelations. The image of ⊗ consists of the split global objects which
are completely characterized by the individual ones and therefore represent the absence of complexity.
In order to quantify complexity, assume that there is given a function D : (x, y) 7→ D(x ‖ y), that
measures the divergence of global objects x, y ∈ OV . We define the complexity of x ∈ OV to be the
divergence from being split:

Complexity (x) := inf
y split

D(x ‖ y) . (20)

Of course, this approach is very general, and there are many ways to define complexity
following this concept. Is there a canonical way? At least, within the probabilistic setting,
information geometry [17,51] provides a very convincing framework for this. In the context of random
fields, it leads to a measure for “spatial” interdependencies: Given state sets Ωv, v ∈ V , we define
the set OS of objects that are generated by a subsystem S ⊂ V to be the probability distributions
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on the product set
∏

v∈S Ωv. A family of individual probability distributions p(v) on Ωv can be
considered as a distribution on the whole configuration set

∏
v∈V Ωv by identifying it with the product

⊗v∈V p(v) ∈ OV . In order to define the complexity of a distribution p ∈ OV on the whole system,
according to Equation (20) we have to choose a divergence function. A canonical choice for D is given
by the Kullback-Leibler divergence [52,53]:

Complexity (p) := I(p) := inf
p(v)∈Ov , v∈V

D
(
p ‖ ⊗v∈V p(v)

)
. (21)

It is well known that I(p) quantifies spatial interdependencies [18]. It vanishes exactly when the units
are stochastically independent with respect to p. Such split distributions are called factorizable in this
context. In Figure 1, the example of two binary units with the state sets {0, 1} is illustrated.

δ(1,1)

1
2

(
δ(0,0) + δ(1,1)

)

1
2

(
δ(1,0) + δ(0,1)

)
δ(1,0)

δ(0,1)

δ(0,0)

F

Figure 1. F denotes the set of factorizable distributions on {0, 1} × {0, 1}.

The distributions with maximal interdependence (complexity) are given by

1

2

(
δ(0,0) + δ(1,1)

)
and

1

2

(
δ(1,0) + δ(0,1)

)
.

Spatial interdependence has been studied by Amari [18] and Ay [23,55] from the
information-geometric point of view, where it is referred to as (stochastic) interaction and discussed
in view of neural networks. The aim of the present paper is to use the concept of complexity that
is formalized by Equation (20) in order to extend spatial interdependence to a dynamical notion
of interaction, where the evolution in time is taken into account. Therefore, the term “stochastic
interaction” is mainly used in the context of spatio-temporal interdependence.

The present paper is organized as follows. After a brief introduction into the information-geometric
description of finite probability spaces in Section 2.2, the general notion of separability is introduced
for Markovian transition kernels, and information geometry is used for quantifying non-separability as
divergence from separability (Section 2.3). In Section 2.4, the presented theoretical framework is used to
derive a dynamical version of the definition in Equation (21), where spatio-temporal interdependencies
are quantified and referred to as stochastic interaction. This is illustrated by some simple but instructive
examples.
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2.2. Preliminaries on Finite Information Geometry

In the following, Ω denotes a non-empty and finite set. The vector space RΩ of all functions Ω → R
carries the natural topology, and we consider subsets as topological subspaces. The set of all probability
distributions on Ω is given by

P̄(Ω) :=

{
p = (p(ω))ω∈Ω ∈ RΩ : p(ω) ≥ 0 for all ω ∈ Ω,

∑
ω∈Ω

p(ω) = 1

}
.

Following the information-geometric description of finite probability spaces, its interior P(Ω) can be
considered as a differentiable submanifold of RΩ with dimension |Ω|−1 and the basis-point independent
tangent space

T(Ω) :=

{
x ∈ RΩ :

∑
ω∈Ω

x(ω) = 0

}
.

(If one considers P(Ω) as an “abstract” differentiable manifold, there are many ways to represent it as
a submanifold of RΩ. In information geometry, the natural embedding presented here is called (−1)-
respectively (m)-representation)

With the Fisher metric 〈·, ·〉p : T(Ω)× T(Ω)→ R in p ∈ P(Ω) defined by

(x, y) 7→ 〈x, y〉p :=
∑
ω∈Ω

1

p(ω)
x(ω)y(ω) ,

P(Ω) becomes a Riemannian manifold [56] (In mathematical biology this metric is also known as
Shahshahani metric [57]). The most important additional structure studied in information geometry
is given by a pair of dual affine connections on the manifold. Application of such a dual structure to the
present situation leads to the notion of (−1)- and (+1)-geodesics: Each two points p, q ∈ P(Ω) can be
connected by the geodesics γ(α) =

(
γ

(α)
ω

)
ω∈Ω

: [0, 1]→ P(Ω), α ∈ {−1,+1}, with

γ(−1)
ω (t) := (1− t) p(ω) + t q(ω) and γ(+1)

ω (t) := r(t) p(ω)1−t q(ω)t .

Here, r(t) denotes the normalization factor.
A submanifold E of P(Ω) is called an exponential family if there exist a point p0 ∈ P(Ω) and vectors

v1, . . . , vd ∈ RΩ, such that it can be expressed as the image of the map Rd → P(Ω), θ = (θ1, . . . , θd) 7→
pθ, with

pθ(ω) :=
p0(ω) exp

(∑d
i=1 θi vi(ω)

)
∑

ω′∈Ω p0(ω′) exp
(∑d

i=1 θi vi(ω
′)
) . (22)

Let p be a probability distribution in P(Ω). An element p′ ∈ E is called (−1)-projection of p onto
E iff the (−1)-geodesic connecting p and p′ intersects E orthogonally with respect to the Fisher metric.
Such a point p′ is unique ([51], Theorem 3.9, p. 91) and can be characterized by the Kullback-Leibler
divergence [52,53] (This is a special case of Csiszár’s f -divergence [54])

D : P(Ω)× P(Ω)→ R+, (p, q) 7→ D(p ‖ q) :=
∑
ω∈Ω

p(ω) ln
p(ω)

q(ω)
.
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We define the distance D(· ‖ E) : P(Ω)→ R+ from E by

p 7→ D(p ‖ E) := inf
q∈E

D(p ‖ q) .

It is well known that a point p′ ∈ E is the (−1)-projection of p onto E if and only if it satisfies the
minimizing property D(p ‖ E) = D(p ‖ p′) ([51], Theorem 3.8, p. 90; [17], Corollary 3.9, p. 63).

In the present paper, the set of states is given by the Cartesian product of individual state sets Ωv,
v ∈ V , where V denotes the set of units. In the following, the unit set and the corresponding state sets
are assumed to be non-empty and finite. For a subsystem S ⊂ V , ΩS :=

∏
v∈S Ωv denotes the set of all

configurations on S. The elements of P̄(ΩS) are the random fields on S. One has the natural restriction
XS : ΩV → ΩS , ω = (ωv)v∈V 7→ ωS := (ωv)v∈S , which induces the projection P̄(ΩV ) → P̄(ΩS),
p 7→ pS , where pS denotes the image measure of p under the variable XS . If the subsystem S consists of
exactly one unit v, we write pv instead of p{v}.

The following example, which allows us to put the definition of Equation (21) into the
information-geometric setting, represents the main motivation for the present approach to stochastic
interaction. It will be generalized in Section 2.4.

Example 1 (FACTORIZABLE DISTRIBUTIONS AND SPATIAL INTERDEPENDENCE). Let V be a finite
set of units and Ωv, v ∈ V , corresponding state sets. Consider the tensorial map∏

v∈V

P(Ωv) ↪→ P(ΩV ), (p(v))v∈V 7→ ⊗v∈V p(v) ,

with (
⊗v∈V p(v)

)
(ω) :=

∏
v∈V

p(v)(ωv) .

The image F := F(ΩV ) :=
{
⊗v∈V p(v) : p(v) ∈ P(Ωv), v ∈ V

}
of this map, which consists of

all factorizable and strictly positive probability distributions, is an exponential family in P(ΩV ) with
dimF =

∑
v∈V (|Ωv| − 1). For the particular case of binary units, that is |Ωv| = 2 for all v, the

dimension of F is equal to the number |V | of units. The following statement is well known [18]: The
(−1)-projection of a distribution p ∈ P(ΩV ) on F is given by ⊗v∈V pv (the pv, v ∈ V , are the marginal
distributions), and one has the representation

I(p) = D(p ‖F) =
∑
v∈V

H(pv)−H(p) ,

where H denotes the Shannon entropy [1]. As stated in the introduction, I(p) is a measure for the spatial
interdependencies of the units. It vanishes exactly when the units are stochastically independent.

Before extending the spatial notion of interaction to a dynamical one, in Section 2.3 we consider the
more general concept of separability of transition kernels.
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2.3. Quantifying Non-Separability

2.3.1. Manifolds of Separable Transition Kernels

Consider a finite set V of units, corresponding state sets Ωv, v ∈ V , and two subsets A,B ⊂ V with
B 6= ∅. A function

K : ΩA × ΩB → [0, 1], (ω, ω′) 7→ K(ω′ |ω) ,

is called Markovian transition kernel if K(· |ω) ∈ P̄(ΩB) for all ω ∈ ΩA, that is∑
ω′∈ΩB

K(ω′ |ω) = 1, for all ω ∈ ΩA .

The set of all such kernels is denoted by K̄(ΩB |ΩA). We write K(ΩB |ΩA) for its interior and K̄(ΩA)

respectively K(ΩA) as abbreviation in the case A = B. If A = ∅, then ΩA consists of exactly one
element, namely the empty configuration ε. In that case, K̄(ΩB |Ω∅) = K̄(ΩB | ε) can naturally be
identified with P̄(ΩB) by p(ω) := K(ω | ε), ω ∈ ΩB.

Given a probability distribution p ∈ P̄(ΩA) and a transition kernel K ∈ K̄(ΩB |ΩA), the conditional
entropy for (p,K) is defined as

H(p,K) :=
∑
ω∈ΩA

p(ω)H
(
K(· |ω)

)
.

For two random variables X, Y with Prob{X = ω} = p(ω) for all ω ∈ ΩA, and Prob{Y = ω′ |X =

ω} = K(ω′ |ω) for all ω ∈ ΩA with p(ω) > 0 and all ω′ ∈ ΩB, we set H(Y |X) := H(p,K).
In the present paper, the set K̄(ΩV ) is interpreted as a model for the dynamics of interacting units, and

the information flow associated with this dynamics is studied in Section 2.4. In the present section, we
introduce a general notion of separability of transition kernels in order to capture all examples that are
discussed in the paper in a unified way.

Consider a family S := {(A1, B1), (A2, B2), . . . , (An, Bn)} where the Ai and Bi are subsets of V .
We assume that {B1, . . . , Bn} is a partition of V , that is Bi 6= ∅ for all i, Bi ∩ Bj = ∅ for all i 6= j, and
V = B1 ] · · · ]Bn. Now consider the corresponding tensorial map

⊗S :
∏

(A,B)∈S

K(ΩB |ΩA) ↪→ K(ΩV ),
(
KA
B

)
(A,B)∈S

7→ ⊗(A,B)∈SK
A
B ,

with (
⊗(A,B)∈SK

A
B

)
(ω′ |ω) :=

∏
(A,B)∈S

KA
B(ω′B |ωA), for all ω, ω′ ∈ ΩV .

The image KS (ΩV ) of ⊗S is a submanifold of K(ΩV ) with

dimKS (ΩV ) =
∑

(A,B)∈S

|ΩA|
(
|ΩB| − 1

)
.

Its elements are the separable transition kernels with respect to S .
Here are the most important examples:
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Examples and Definitions 1.
(1) If we set S := {(V, V )}, the tensorial map is nothing but the identity K(ΩV ) → K(ΩV ), and
therefore one has KS (ΩV ) = K(ΩV ).

(2) Consider the case where no temporal information is transmitted but all spatial information:
S := ind := {(∅, V )}. In that case the tensorial map ⊗S reduces to the natural embedding

K(ΩV |Ω∅) = P(ΩV ) ↪→ K(ΩV )

which assigns to each probability distribution p the kernel

K(ω′ |ω) := p(ω′), ω, ω′ ∈ ΩV .

Therefore, we write Kind(ΩV ) = P(ΩV ).

(3) In addition to the splitting in time which is described in example (2), consider also a complete splitting
in space: S := fac := {(∅, {v}) : v ∈ V }. Then we recover the tensorial map of Example 1. Thus,
Kfac(ΩV ) can be identified with F(ΩV ).

(4) To model the important class of parallel information processing, we set S := par := {(V, {v}) :

v ∈ V }. Here, each unit “computes” its new state on the basis of all current states according to a kernel
K(v) ∈ K(Ωv |ΩV ). The transition from a configuration ω = (ωv)v∈V of the whole system to a new
configuration ω′ = (ω′v)v∈V is done according to the following composed kernel in K(ΩV ):

K(ω′ |ω) =
∏
v∈V

K(v)(ω′v |ω), ω, ω′ ∈ ΩV .

(5) In applications, parallel processing is adapted to a graph G = (V,E) – here, E ⊂ V × V denotes the
set of edges – in order to model constraints for the information flow in the system. This is represented by
S := S (G) := {(pa(v), {v}) : v ∈ V }. Each unit v is supposed to process only information from its
parents pa(v) = {µ ∈ V : (µ, v) ∈ E}, which is modeled by a transition kernel K(v) ∈ K(Ωv |Ωpa(v)).
The parallel transition of the whole system is then described by

K(ω′ |ω) =
∏
v∈V

K(v)(ω′v |ωpa(v)), ω, ω′ ∈ ΩV .

(6) Now, we introduce the example of parallel processing that plays the most important role in the present
paper: Consider non-empty and pairwise distinct subsystems S1, . . . , Sn of V with V = S1]· · ·]Sn and
define S := S (S1, . . . , Sn) := {(Si, Si) : i = 1, . . . , n}. It describes {S1, . . . , Sn}-split information
processing, where the subsystems do not interact with each other. Each subsystem Si only processes
information from its own current state according to a kernel K(i) ∈ K(ΩSi). The composed transition of
the whole system is then given by

K(ω′ |ω) =
n∏
i=1

K(i)(ω′Si |ωSi), ω, ω′ ∈ ΩV .

For the completely split case, where the subsystems are the elementary units, we define spl :=

S ({v}, v ∈ V ) = {({v}, {v}) : v ∈ V }.
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2.3.2. Non-Separability as Divergence from Separability

Consider a Markov chain Xn = (Xv, n)v∈V , n = 0, 1, 2, . . . , that is given by an initial distribution
p ∈ P̄(ΩV ) and a kernel K ∈ K̄(ΩV ). The probabilistic properties of this stochastic process are
determined by the following set of finite marginals:

Prob{X0 = ω0, X1 = ω1, . . . , Xn = ωn}
= p(ω0)K(ω1 |ω0) · · ·K(ωn |ωn−1), n = 0, 1, 2, . . .

Thus, the set of Markov chains on ΩV can be identified with

MC(ΩV ) := P̄(ΩV )× K̄(ΩV )

and we also use the notation {Xn} = {X0, X1, X2, . . . } instead of (p,K). The interior MC(ΩV ) of the
set of Markov chains carries the natural dualistic structure from P(ΩV × ΩV ), which is induced by the
diffeomorphic composition map ⊗ : MC(ΩV )→ P(ΩV × ΩV ),

(p,K) 7→ p⊗K, with (p⊗K)(ω, ω′) := p(ω)K(ω′ |ω)

(⊗ can be extended to a continuous surjective map MC(ΩV ) → P̄(ΩV × ΩV )). Thus, we can talk
about exponential families and (−1)-projections in MC(ΩV ). The “distance” D((p,K) ‖ (p′, K ′)) from
a Markov chain (p,K) to another one (p′, K ′) is given by

D(p⊗K ‖ p′ ⊗K ′) = D(p ‖ p′) +Dp(K ‖K ′) ,

with
Dp(K ‖K ′) :=

∑
ω∈Ω

p(ω)D
(
K(· |ω) ‖K ′(· |ω)

)
. (23)

For a set S = {(A1, B1), (A2, B2), . . . , (An, Bn)}, we introduce the exponential family (see
Proposition 3)

MCS (ΩV ) := P(ΩV )×KS (ΩV ) ⊂ MC(ΩV ),

which has dimension
(
|ΩV | − 1

)
+
∑

(A,B)∈S |ΩA|
(
|ΩB| − 1

)
.

The set of all these exponential families is partially ordered by inclusion with MC(ΩV ) as the greatest
element and MCfac(ΩV ) as the least one. This ordering is connected with the following partial ordering
� of the sets S : Given S = {(A1, B1), . . . , (Am, Bm)} and S ′ = {(A′1, B′1), . . . , (A′n, B

′
n)}, we write

S � S ′ (S ′ coarser than S ) iff for all (A,B) ∈ S there exists a pair (A′, B′) ∈ S ′ with A ⊂ A′

and B ⊂ B′. One has
S � S ′ ⇒ KS (ΩV ) ⊆ KS ′(ΩV ) . (24)

Thus, coarsening enlarges the corresponding manifold (the proof is given in the appendix).
Now, we describe the (−1)-projections on the exponential families MCS (ΩV ):
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Proposition 1. Let (p,K) be a Markov chain in MC(ΩV ) and S � S ′. Then:

(i) (PROJECTION) The (−1)-projection of (p,K) on MCS (ΩV ) is given by (p,KS ) with
KS := ⊗(A,B)∈SK

A
B . Here, the kernels KA

B ∈ K(ΩB |ΩA) denote the corresponding marginals of K:

KA
B(ω′ |ω) :=

∑
σ,σ′∈ΩV

σA=ω, σ′
B

=ω′
p(σ)K(σ′ |σ)∑

σ∈ΩV
σA=ω

p(σ)
, ω ∈ ΩA, ω

′ ∈ ΩB .

KS is the projection of K on KS (ΩV ) with respect to p.

(ii) (ENTROPIC REPRESENTATION) The corresponding divergence is given by

D
(
(p,K) ‖MCS (ΩV )

)
= Dp(K ‖KS )

=
∑

(A,B)∈S

H
(
pA, K

A
B

)
− H(p,K) .

(iii) (PYTHAGORIAN THEOREM) One has

Dp(K ‖KS ) = Dp(K ‖KS ′) +Dp(KS ′ ‖KS ) .

If K ∈ P(ΩV ), that is K(ω′ |ω) = p(ω), ω, ω′ ∈ ΩV , with a probability distribution p ∈ P(ΩV ), then
the divergence Dp(K ‖Kfac) is nothing but the measure I(p) for spatial interdependencies that has been
discussed in the introduction and in Example 1. More generally, we interpret the divergenceDp(K ‖KS )

as a natural measure for the non-separability of (p,K) with respect to S . The corresponding function
IS : (p,K) 7→ IS (p,K) := Dp(K ‖KS ) has a unique continuous extension to the set MC(ΩV ) of all
Markov chains which is also denoted by IS (see Lemma 4.2 in [55]). Thus, non-separability is defined
for not necessarily strictly positive Markov chains.

2.4. Application to Stochastic Interaction

2.4.1. The Definition of Stochastic Interaction

As stated in the introduction we use the concept of complexity that is described by the formal
definition in Equation (20) in order to define stochastic interaction.

Let V be a set of units and Ωv, v ∈ V , corresponding state sets. Furthermore, consider non-empty
and pairwise distinct subsystems S1, . . . , Sn ⊂ V with V = S1 ] · · · ] Sn. The stochastic interaction
of S1, . . . , Sn with respect to (p,K) ∈ MC(ΩV ) is quantified by the divergence of (p,K) from the set
of Markov chains that represent {S1, . . . , Sn}-split information processing, where the subsystems do not
interact with each other (see Examples and Definitions 1 (6)). More precisely, we define the stochastic
interaction (of the subsystems S1, . . . , Sn) to be the function IS1,...,Sn : MC(ΩV )→ R+ with

IS1,...,Sn(p,K) := IS (S1,...,Sn)(p,K) = inf
K′ {S1, . . . , Sn}-split

Dp(K ‖K ′) . (25)

In the case of complete splitting of V = {v1, . . . , vn} into the elementary units, that is Si := {vi},
i = 1, . . . , n, we simply write I instead of I{v1},...,{vn}.
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The definition of stochastic interaction given by Equation (25) is consistent with the complexity
concept that is discussed in the introduction.

Here are some basic properties of I , which are well known in the spatial setting of Example 1:

Proposition 2. Let V be a set of units, Ωv, v ∈ V , corresponding state sets, and Xn = (Xv, n)v∈V ,
n = 0, 1, 2, . . . , a Markov chain on ΩV . For a subsystem S ⊂ V , we write XS, n := (Xv, n)v∈S . Assume
that the chain is given by (p,K) ∈ MC(ΩV ), where p is a stationary distribution with respect to K.
Then the following holds:

(i)

I{Xn} =
∑
v∈V

H(Xv, n+1 |Xv, n) − H(Xn+1 |Xn) . (26)

(ii) A,B ⊂ V, A,B 6= ∅, A ∩B = ∅, A ]B = V ⇒

I{Xn} = I{XA,n}+ I{XB,n}+ IA,B{Xn} .

(iii) If the process is parallel, then

I{Xn} =
∑
v∈V

(
H(Xv, n+1 |Xv, n)−H(Xv, n+1 |Xn)

)
(27)

=
∑
v∈V

MI(Xv, n+1;XV \v, n |Xv, n) .

(iv) If the process is adapted to a graph (V,E) then

I{Xn} =
∑
v∈V

(
H(Xv, n+1 |Xv, n)−H(Xv, n+1 |Xpa(v), n)

)
(28)

=
∑
v∈V

MI(Xv, n+1;Xpa(v)\v, n |Xv, n) .

In the statements (iii) and (iv), the conditional mutual information MI(X;Y |Z) of two random
variables X, Y with respect to a third one Z is defined to be the difference H(X |Z) − H(X |Y, Z)

(see p. 22 in [58]).
If Xn+1 and Xn are independent for all n, the stochastic interaction I{Xn} reduces to the measure

I(p) for spatial interdependencies with respect to the stationary distribution p of {Xn} (see Example 1).
Thus, the dynamical notion of stochastic interaction is a generalization of the spatial one. Geometrically,
this can be illustrated as follows. In addition to the projection Kspl of the kernel K ∈ MC(ΩV ) with
respect to a distribution p ∈ P(ΩV ) on the set of split kernels, we consider its projections Kind and Kfac

on the set P(ΩV ) of independent kernels and on the subset F(ΩV ), respectively. From Proposition 1
we know

Dp(K ‖Kind) = H(Xn+1)−H(Xn+1 |Xn) ,

((global) transinformation)

I(p) = Dp(Kind ‖Kfac) =
∑
v∈V

H(Xv, n+1) − H(Xn+1) ,

(spatial interdependence)
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Dp(Kspl ‖Kfac) =
∑
v∈V

(
H(Xv, n+1)−H(Xv, n+1 |Xv, n)

)
.

(sum of individual transinformations)

According to the Pythagorian relation (Proposition 1 (iii)), we get the following representation of
stochastic interaction:

I{Xn} = Dp(K ‖Kspl)

= I(p) + Dp(K ‖Kind)−Dp(Kspl ‖Kfac) . (29)

In the particular case of an independent process, the divergences Dp(K ‖Kind) and Dp(Kspl ‖Kfac) in
Equation (29) vanish, and the stochastic interaction coincides with spatial interdependence.

K

Kspl

Kfac

Kind
P(ΩV )

Kspl(ΩV )

F(ΩV )

Figure 2. Illustration of the two ways of projecting K onto F(ΩV ). Corresponding
application of the Pythagorean theorem leads to Equation (29).

2.4.2. Examples

Example 2 (SOURCE AND RECEIVER). Consider two units 1 = source and 2 = receiver with the state
sets Ω1 and Ω2. Assume that the information flow is adapted to the graph G = {{1, 2}, {(1, 2)}}, which
only allows a transmission from the first unit to the second. In each transition from time n to n + 1, a
state X1, n+1 of the first unit is chosen independently from X1, n according to a probability distribution
p ∈ P(Ω1). The state X2, n+1 of the second unit at time n + 1 is “computed” from X1, n according to a
kernel K ∈ K(Ω2 |Ω1). Using formula Equation (28), we have

I{Xn} = H(X2, n+1)−H(X2, n+1 |X1, n) .

This is the well-known mutual information of the variables X2, n+1 and X1, n, which has a
temporal interpretation within the present approach. It plays an important role in coding and information
theory [58].
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Example 3 (TWO BINARY UNITS I). Consider two units with the state sets {0, 1}. Each unit copies the
state of the other unit with probability 1 − ε. The transition probabilities for the units are given by the
following tables:

K(1)(x′ | (x, y)) 0 1

(0, 0) 1− ε ε

(0, 1) ε 1− ε
(1, 0) 1− ε ε

(1, 1) ε 1− ε

K(2)(y′ | (x, y)) 0 1

(0, 0) 1−ε ε

(0, 1) 1− ε ε

(1, 0) ε 1− ε
(1, 1) ε 1− ε

The transition kernel K ∈ K̄par({0, 1} × {0, 1}) for the corresponding parallel dynamics of the whole
system is then given by

K((x′, y′) | (x, y)) (0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) (1− ε)2 (1− ε)ε ε(1− ε) ε2

(0, 1) ε(1− ε) ε2 (1− ε)2 (1− ε)ε
(1, 0) (1− ε)ε (1− ε)2 ε2 ε(1− ε)
(1, 1) ε2 ε(1− ε) (1− ε)ε (1− ε)2

Note that for ε ∈ {0, 1}, K corresponds to the deterministic transformations

ε = 0 : (x, y) 7→ (y, x) and ε = 1 : (x, y) 7→ (1− y, 1− x) ,

which in an intuitive sense describe complete information exchange of the units. With the unique
stationary probability distribution p = (1

4
, 1

4
, 1

4
, 1

4
) one can easily compute the marginal kernels

K1(x′ |x) 0 1

0 1
2

1
2

1 1
2

1
2

K2(y′ | y) 0 1

0 1
2

1
2

1 1
2

1
2

which describe the split dynamics according to Kspl = K1 ⊗K2. With Equation (27) we finally get

I{Xn} = 2
(

ln 2 + (1− ε) ln(1− ε) + ε ln ε
)
.

The shape of this function is shown in Figure 3.
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0 1
2

1

Figure 3. Illustration of the stochastic interaction I{Xn} as a function of ε. For the
extreme values of εwe have maximal stochastic interaction, which corresponds to a complete
information exchange in terms of (x, y) 7→ (y, x) for ε = 0 and (x, y) 7→ (1 − y, 1 − x)

for ε = 1. For ε = 1
2
, the dynamics is maximally random, which is associated with no

interaction of the nodes.

This function is symmetric around ε = 1
2

where it vanishes. In ε = 0 and ε = 1 it attains its maximal
value 2 ln 2. As stated above, this corresponds to the deterministic transformations with complete
information exchange.

Example 4 (TWO BINARY UNITS II). Consider again two binary units with the state sets {0, 1} and the
transition probabilities

K(1)(x′ | (x, y)) 0 1

(0, 0) 1 0

(0, 1) 1− ε ε

(1, 0) ε 1− ε
(1, 1) 0 1

K(2)(y′ | (x, y)) 0 1

(0, 0) 0 1

(0, 1) 1− ε ε

(1, 0) ε 1− ε
(1, 1) 1 0

The transition kernel K ∈ K̄({0, 1} × {0, 1}) of the corresponding parallel dynamics is given by

K((x′, y′) | (x, y)) (0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) 0 1 0 0

(0, 1) (1− ε)2 (1− ε)ε ε(1− ε) ε2

(1, 0) ε2 ε(1− ε) (1− ε)ε (1− ε)2

(1, 1) 0 0 1 0

Note that for ε ∈ {0, 1}, K corresponds to the deterministic transformations

ε = 0 : (x, y) 7→ (x, 1− y) and ε = 1 : (x, y) 7→ (y, 1− x) .
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Thus in an intuitive sense, for ε = 1 the units completely interact with each other, and for ε = 0

there is no interaction. For ε ∈]0, 1[ we compute the interaction with respect to the unique stationary
probability distribution

p = 1
4(ε2−ε+1)

(2ε2 − 2ε+ 1 , 1 , 1 , 2ε2 − 2ε+ 1) .

With the corresponding marginal kernels

K1(x′ |x) 0 1

0 1− ε
2(ε2−ε+1)

ε
2(ε2−ε+1)

1 ε
2(ε2−ε+1)

1− ε
2(ε2−ε+1)

K2(y′ | y) 0 1

0 ε
2(ε2−ε+1)

1− ε
2(ε2−ε+1)

1 1− ε
2(ε2−ε+1)

ε
2(ε2−ε+1)

and Equation (27), we get

I{Xn} =
ε

ε2 − ε+ 1

(
− (2ε2 − 3ε+ 2) ln(2ε2 − 3ε+ 2)

+ 2(ε2 − ε+ 1) ln 2(ε2 − ε+ 1) + (1− ε) ln(1− ε)
)
.

0 1
2

1

Figure 4. Illustration of the stochastic interaction I{Xn} as a function of ε. For ε = 0, the
two units update their states with no information exchange: (x, y) 7→ (x, 1− y). For ε = 1,
there is maximal information exchange in terms of (x, y) 7→ (y, 1− x).

This function is monotonically increasing from the minimal value 0 (no interaction) in ε = 0 to its
maximal value 2 ln 2 (complete interaction) in ε = 1.

3. Conclusions

Following the general concept that complexity is characterized by the divergence of a composed
system from the superposition of its elementary parts, information geometry has been used to derive
a measure for spatio-temporal interdependencies among a finite set of units, which is referred to as
stochastic interaction. This generalizes the well-known measure for spatial interdependence that is
quantified by the Kullback-Leibler divergence of a probability distribution from its factorization [18,55].
Thereby, previous work by Ay [23] is continued, where the optimization of dependencies among
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stochastic units has been proposed as a principle for neural organization in feed-forward networks. Of
course, the present setting is much more general and provides a way to consider also recurrent networks.
The dynamical properties of strongly interacting units in the sense of the present paper are studied
by Ay and Wennekers in [24], where the emergence of determinism and structure in such systems is
demonstrated.

Appendix: Proofs

Proposition 3. The manifold MCS (ΩV ) is an exponential family in MC(ΩV ).

Proof. To see this, consider the functions ΩV × ΩV → R

vσ(ω, ω′) :=

{
1, if ω = σ

0, otherwise
, σ ∈ ΩV ,

and

vσ, σ′(ω, ω
′) :=

{
1, if ωA = σ, ω′B = σ′

0, otherwise
, (A,B) ∈ S , σ ∈ ΩA, σ

′ ∈ ΩB .

It is easy to verify that the image of MCS (ΩV ) under the map ⊗ is the following exponential family in
P(ΩV × ΩV ):

exp

∑
σ∈ΩV

λσ vσ +
∑

(A,B)∈S

∑
σ∈ΩA, σ′∈ΩB

λσ,σ′ vσ,σ′ − Θ

 , λσ, λσ,σ′ ∈ R .

Here, Θ denotes the normalization factor, which depends on the λ-parameters. In particular, each element
in MCS (ΩV ) can be expressed in the following way

p(ω)
∏

(A,B)∈S

KA
B(ω′B |ωA)

= exp

ln p(ω) +
∑

(A,B)∈S

lnKA
B(ω′B |ωA)


= exp

∑
σ∈ΩV

ln p(σ) vσ(ω, ω′) +
∑

(A,B)∈S

∑
σ∈ΩA, σ′∈ΩB

lnKA
B(σ′ |σ) vσ,σ′(ω, ω

′)

 .

2

Proof of Implication (24). If

S = {(A1, B1), . . . , (Am, Bm)} � S ′{(A′1, B′1), . . . , (A′n, B
′
n)} ,

then there exists a partition Mi, i = 1, . . . , n, of the index set {1, . . . ,m} such that

B′i =
⊎
j∈Mi

Bj, i = 1, . . . , n .
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Let (p,K) be a Markov chain in MCS (ΩV ). Then there exist KA
B ∈ K(ΩB |ΩA) with

K(ω′ |ω) =
∏

(A,B)∈S

KA
B(ω′B |ωA)

=
n∏
i=1

∏
(Aj,Bj)∈S

j∈Mi

K
Aj
Bj

(ω′Bj |ωAj)

︸ ︷︷ ︸
=: K

A′
i

B′
i
(ω′
B′
i
|ωA′

i
)

, ω, ω′ ∈ ΩV .

The kernels KA′i
B′i

are contained in KS ′ , and therefore we get (p,K) ∈ MCS ′(ΩV ). 2

Proof of Proposition 1.
(i) Consider the following strictly convex function (R∗+ denotes the set of positive real numbers)

F :
(
R∗+
)ΩV ×

 ∏
(A,B)∈S

(
R∗+
)ΩA×ΩB

 → R ,

(x, y) = (xω, ω ∈ ΩV ; yωA,ωB , ωA ∈ ΩA, ωB ∈ ΩB) 7→

F (x, y) :=
∑
ω∈ΩV

p(ω) ln
p(ω)

xω
+

∑
ω, ω′∈ΩV

p(ω)K(ω′ |ω) ln
K(ω′ |ω)∏

(A,B)∈S yωA,ω′B

+ λ

(∑
ω∈ΩV

xω − 1

)
+

∑
(A,B)∈S

∑
ωA∈ΩA

λBωA

 ∑
ω′B∈ΩB

yωA,ω′B − 1

 .

Here, λ and the λBωA are Lagrangian parameters. Note that in the case x ∈ P(ΩV ) and
y ∈

∏
(A,B)∈S K(ΩB |ΩA), the value F (x, y) is nothing but the divergence of (p,K) from (x,⊗S (y)).

In order to get the Markov chain that minimizes the divergence we have to compute the partial derivatives
of F :

∂F

∂xσ
(x, y) = −

∑
ω∈ΩV

p(ω)
1

xω
δσ, ω + λ

= −p(σ)

xσ
+ λ ,

and

∂F

∂yσC ,σ′D
(x, y) = −

∑
ω,ω′∈ΩV

p(ω)K(ω′ |ω)
∑

(A,B)∈S

1

yωA,ω′B
δ(ωA,ω

′
B),(σC ,σ

′
D)

+
∑

(A,B)∈S

∑
ωA∈ΩA

λBωA

∑
ω′B∈ΩB

δ(ωA,ω
′
B),(σC ,σ

′
D)

= −
∑

ω,ω′∈ΩV

p(ω)K(ω′ |ω)
1

yωC ,ω′D
δ(ωC ,ω

′
D),(σC ,σ

′
D) + λDσC

= − 1

yσC ,σ′D

∑
ω,ω′∈ΩV

ωC=σC, ω
′
D

=σ′
D

p(ω)K(ω′ |ω) + λDσC .
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For a critical point (x, y), the partial derivatives vanish. We get the following solution:

xσ = p(σ), σ ∈ ΩV ,

and
yσC ,σ′D =

1∑
ωC∈ΩC

p(ω)

∑
ω,ω′∈ΩV

ωC=σC, ω
′
D

=σ′
D

p(ω)K(ω′ |ω) σC ∈ ΩC , σ
′
D ∈ ΩD .

From Theorem 3.10 in [17] we know that this solution is the (−1)-projection of (p,K) onto MCS (ΩV ).
It is given by the initial distribution p and the corresponding marginals KA

B , (A,B) ∈ S , of K.

(ii) With (i) we get

D
(
(p,K) ‖MCS (ΩV )

)
= Dp(K ‖KS )

=
∑

ω,ω′∈ΩV

p(ω)K(ω′ |ω) ln
K(ω′ |ω)∏

(A,B)∈S KA
B(ω′B |ωA)

= −H(p,K)

−
∑

(A,B)∈S

∑
ω,ω′∈ΩV

p(ω)K(ω′ |ω) lnKA
B(ω′B |ωA)

= −H(p,K)

−
∑

(A,B)∈S

∑
ω∈ΩA,ω′∈ΩB

lnKA
B(ω′ |ω)

∑
σ,σ′∈ΩV

σA=ω, σ′
B

=ω′

p(σ)K(σ′ |σ)

︸ ︷︷ ︸
pA(ω)KA

B (ω′ |ω)

=
∑

(A,B)∈S

H(pA, K
A
B) − H(p,K).

(iii) According to Equation (24) we have MCS (ΩV ) ⊆ MCS ′(ΩV ), and the statement follows from the
Pythagorian theorem ([17], p. 62, Theorem 3.8). 2

Proof of Proposition 2.
(i) This follows from Proposition 1 (ii).

(ii) We apply (i):

I{Xn}
(i)
=

∑
v∈V

H(Xv, n+1 |Xv, n) − H(Xn+1 |Xn)

=

(∑
v∈A

H(Xv, n+1 |Xv, n) − H(XA,n+1 |XA,n)

)

+

(∑
v∈B

H(Xv, n+1 |Xv, n) − H(XB,n+1 |XB,n)

)
+
(
H(XA,n+1 |XA,n) +H(XB,n+1 |XB,n)−H(Xn+1 |Xn)

)
(i)
= I{XA,n}+ I{XB,n}+ IA,B{Xn} .
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(iii) For parallel processing, one has

H(Xn+1 |Xn) =
∑
v∈V

H(Xv, n+1 |Xn) .

The statement is then implied by (i).

(iv) This follows from (iii) and the Markov property for (V,E)-adapted Markov chains. 2
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