

Article

A Criterion for Topological Close-Packed Phase Formation in High Entropy Alloys

Yiping Lu^{1,2,†} Yong Dong^{1,†}, Li Jiang¹, Tongmin Wang^{1,*}, Tingju Li^{1,3} and Yong Zhang^{4,*}

- ¹ School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China; E-Mails: luyiping@dlut.edu.cn (Y.L.); dongyong5205@mail.dlut.edu.cn (Y.D.); jiangli@mail.dlut.edu.cn (L.J.); tjuli@dlut.edu.cn (T.L.)
- ² State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
- ³ Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024, China
- ⁴ State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
- [†] These authors contributed equally to this work.
- * Author to whom correspondence should be addressed; E-Mail: tmwang@dlut.edu.cn (T.W.); drzhangy@ustb.edu.cn (Y.Z.); Tel.: +86-411-84709400 (T.W.).

Academic Editor: Kevin H. Knuth

Received: 19 January 2015 / Accepted: 15 April 2015 / Published: 20 April 2015

Abstract: The stability of topological close-packed (TCP) phases were found to be well related to the average value of the d-orbital energy level (\overline{Md}) for most reported high entropy alloys (HEAs). Excluding some HEAs that contain high levels of the elements aluminum and vanadium, the results of this study indicated that the TCP phases form at $\overline{Md} > 1.09$. This criterion, as a semi-empirical method, can play a key role in designing and preparing HEAs with high amounts of transitional elements.

Keywords: high entropy alloys; TCP phases; d-orbital energy level; alloy design

1. Introduction

New types of alloy, which include high entropy alloys (HEAs) and multi-component alloys with equiatomic and near-equiatomic compositions, are garnering much research attention in the metallic materials community [1–3]. Compared to conventional metallic alloys based on one or two major elements, these new alloys generally contains 5–13 principal elements [2]. These alloys were named multi-component alloys by Cantor *et al.* [1] and defined as HEAs by Yeh *et al.* [2]. To date, many promising properties have been reported, including highly wear-resistant HEAs like Co_{1.5}CrFeNi_{1.5}Ti and Al_{0.2}Co_{1.5}CrFeNi_{1.5}Ti [4,5]; high-strength body-centered-cubic (BCC) structured AlCoCrFeNiTi_{0.5} and AlCrFeNiMo_{0.2} HEAs (at room temperature) [6,7], and NbMoTaV HEA (at elevated temperatures) [8,9], and high corrosion resistant Cu_{0.5}NiAlCoCrFeSi HEA [10]. Researchers are drawn to HEAs due to their unique compositions, microstructures, and adjustable properties. To date, many studies have been performed on HEAs, and they have become a hot topic for research in the materials community [11–32].

HEAs generally consist of simple solid solutions of face centered cubic (FCC) structures, body centered cubic (BCC) structurs or a combination of the two. Research findings show that a small quantity of intermetallic compound phase/metastable particles often form in HEAs after solidification or the completion of an aging treatment at intermediate temperatures [3,25,33]. These intermetallic compound phases/metastable particles, especially the topological close-packed (TCP) phases, are closely related to the mechanical properties of HEAs. Therefore, it is necessary to predict the occurrence of TCP phases which include the Laves phase, σ phase, R phase, μ phase, P phase, and so on.

In the past, most HEAs contained the elements Co, Fe, and Ni as their primary elements. Usually, some alloying elements, such as Al, B, Cr, Mo, Nb, Si, Ti, V, are added to HEAs that contain Co, Fe and Ni, forming alloy systems such as Alo.5CoCrCuFeNiTix [34], Alo.5CoCrCuFeNiBx [35], AlosCoCrCuFeNiV_x [36], AlCoCrFeNiMo_x [37], AlCoCrCuFeNiMo_x [38], AlCoCrFeNiTi_x [6], AlCoCrFeNiNb_x [39], AlCoCrFeNiSi_x [40], and AlCoCrFeNiTi_{0.5} [41]. It is worth noting that when the concentrations of Al, B, Cr, Mo, Nb, Si, Ti, and V exceed a critical value, some ordered phases might form, which could deteriorate the plasticity of the HEAs. For example, the plastic strain of as-cast AlCoCrFeNiNb_{0.25} alloy is remarkably lower than that of as-cast AlCoCrFeNi alloy due to the formation of the Laves phase [39]. Taking AlCoCrFeNiNb_x alloys [39] as an example again, with the increase of x, the crystal structure of the alloys can transform from BCC to BCC + Laves phase. Although both the yield strength and hardness increase, the plasticity decreases dramatically. Another case to illustrate this point includes the structural transformation sequence for the CoCrFeNiMox system, where with the increase of x, it has been observed that FCC \rightarrow FCC + $\sigma \rightarrow$ FCC + $\sigma + \mu$ [42]. The formation of the σ phase is considered to be due to two factors, one of which is the identical crystal structure and the similar electron configuration between Cr and Mo, and the other is the substitution capability among Co, Fe, and Ni elements. Similarly, in AlCoCrFeNiNb_x and CoCrFeNiTi_x HEAs, the TCP phase forms with an increased content of Nb and Ti elements, which is explained by the large atomic size of Nb and Ti elements as well as its large negative enthalpies of mixing with other alloying elements [6,43]. However, the experimental results are far from proving this satisfactorily.

Recently, the valence electron concentration (VEC) was used to predict the existence of the σ phase, a TCP phase, in Cr- and/or V-containing HEAs [33] where the criterion worked well. Electronegativity was also successfully used to predict TCP phases in HEAs [44]. Yang *et al.* successfully used a simple

thermodynamic rule, *i.e.*, the entropic and the average heat of mixing, to predict phase selection in multicomponent alloys [45]. Liu *et al.* proposed an effective atomic size parameter to predict the phase stability in multicomponent systems [46]. These semi-empirical modes have achieved great success in predicting the stability of solid solution phases of HEAs. The d-orbital energy level (*Md*) physically correlates with electronegativity and metallic radius of elements, both of which are parameters used in the classical approach by Hume-Rothery and Darken and Gurry [47]. For example, the *Md* value will increase with the increase of metallic radius, and it will reduce with the increase of electronegativity, so the parameter *Md* has great potential for dealing with the stability of TCP, especially in those HEAs containing high mounts of certain transitional elements. Therefore, in this paper, another parameter was used: the average value of the energy level of d-orbital (\overline{Md}) parameters to predict all types of TCP phases of HEAs.

2. Results and Discussion

It is generally accepted that d-electron bonding is of great significance to the metallurgical properties of transition metals. The average value of the d-orbital energy level was proposed as:

$$\overline{Md} = \sum_{i=1}^{n} C_i (Md)_i$$

where C_i is the atomic fraction of component *i* in the alloy, and $(Md)_i$ is the d-orbital energy level of element *i* in the *M*-element centered cluster in the *i*-*M* binary solid solution alloy, in which *i* is a solvent and *M* is a solute. This was proposed to design superalloys by Morinaga, *et al.* [47–51], who found that all of the Ni-based, Co-based, and Fe-based superalloys with the σ phase formed displayed higher \overline{Md} values (about 0.915) than those of alloys without forming the σ phase. To data, the \overline{Md} parameter has been successfully used to design superalloys. In HEAs, most principle elements are transition elements similar to superalloys. Therefore, in this paper, the parameters \overline{Md} can be adopted to study the stability of the TCP phase in HEAs that contain more transitional elements.

In HEAs, the matrix and commonly added alloying elements, including Ni, Fe, Co, Cr, and so on, have FCC, BCC, or a combination of the two as a structure. Previous research shows that the $(Md)_i$ value of transition metals in the BCC-structured Fe is slightly higher than that of transition metals in the FCC-structured Ni₃Al, although they display the same variation trend [50,52]. It seems possible to establish a semi-empirical model to predict the presence of TCP phases in HEAs. When a new HEA is designed, the accurate structure was not known before testing, so in order to calculate its \overline{Md} value, it was necessary to assume a single structure for HEAs. According to previous research results, whether adopting the FCC structure or BCC structure, the $(Md)_i$ value was almost the same. Therefore, the assumed single structure may be a FCC or BCC structure, regardless of the real structure the HEA. For calculation convenience, all HEAs in this study were assumed to have a single FCC Ni₃Al structure when the \overline{Md} values were calculated. Thereunto, the $(Md)_i$ value was the individual element which was calculated based on the FCC Ni₃Al structure, which is shown in Figure 1a. An Al atom is surrounded by twelve Ni atoms as its nearest neighbours, and surrounded by six Al atoms in its second nearest neighbours. The cluster used in the calculation was [MNi₁₂Al₆], which is shown in Figure 1b. An Al

atom in the center was substituted for the various alloying elements of M (M = Ti, Cr, Mn, Fe, Co, Ni, Cu, V, Mo, and so on). More details can be found in Refs. [47,48].

Figure 1. The calculation of $(Md)_i$ value: (a) Crystal structure of Ni₃Al; and (b) Cluster model used in the calculation.

Although the $(Md)_i$ values calculated in BCC/(BCC + FCC)-structured HEAs were slightly lower than the actual data, this approach could successfully predict the stability of the TCP phase by providing a reasonable guideline.

According to the methods reported by Morinaga [47–50], the value of the parameter Md was calculated for the reported HEA system that contained TCP phases. The values are shown in Table 1 [5,6,34,36–38,39,42,43,53–65]. It was found that all the HEAs in Table 1 were synthesized by arc melting and then solidified in a water-cooled copper hearth. As can be seen, a rule emerges in that TCP phases occurred when the value of \overline{Md} reached 1.09.

Alloys	Structure	Md (eV)	Refs
AlCoCrFe _{0.6} NiMo _{0.5}	BCC + σ phase	1.1423	5
AlCoCrFe _{1.0} NiMo _{0.5}	BCC + σ phase	1.1216	5
AlCoCrFe _{1.5} NiMo _{0.5}	BCC + σ phase	1.0997	5
AlCoCrFe _{2.0} NiMo _{0.5}	BCC + σ phase	1.0811	5
AlCo _{0.5} CrFeMo _{0.5}	BCC + σ phase	1.2659	53
AlCo _{1.0} CrFeMo _{0.5}	BCC + σ phase	1.2116	53
AlCo _{1.5} CrFeMo _{0.5}	BCC + σ phase	1.1681	53
AlCo _{2.0} CrFeMo _{0.5}	FCC + BCC + σ phase	1.1325	53
AlCoFeNiMo _{0.5}	BCC + σ phase	1.1171	54
AlCoCr _{0.5} FeNiMo _{0.5}	BCC + σ phase	1.1196	54
AlCoCr _{1.0} FeNiMo _{0.5}	BCC + σ phase	1.1216	54
AlCoCr _{1.5} FeNiMo _{0.5}	BCC + σ phase	1.1233	54
AlCoCr _{2.0} FeNiMo _{0.5}	BCC + σ phase	1.1248	54
AlCoCrFeNiTi _{1.5}	BCC + Laves phase	1.3539	6
Al _{0.5} CoCrCuFeNi	FCC	0.9198	34
Al _{0.5} CoCrCuFeNiTi _{0.2}	FCC	0.9672	34
Al _{0.5} CoCrCuFeNiTi _{0.4}	FCC + BCC1	1.0114	34
Al _{0.5} CoCrCuFeNiTi _{0.6}	FCC + BCC1 + BCC2	1.0527	34
Al _{0.5} CoCrCuFeNiTi _{0.8}	FCC + BCC1 + BCC2 + CoCr-like phase	1.0914	34

Table 1. The crystal structure and the parameters, Md, for typical reported multi-component HEAs.

Alloys \overline{Md} (eV) Structure Refs Al_{0.5}CoCrCuFeNiTi_{1.0} FCC + BCC1 + BCC2 + CoCr-like phase 1.1277 34 Al_{0.5}CoCrCuFeNiTi_{1.2} FCC + BCC1 + BCC2 + CoCr-like + Ti₂Ni-like phase 34 1.1618 Al_{0.5}CoCrCuFeNiTi_{1.4} $FCC + BCC1 + BCC2 + Ti_2Ni$ -like phase 1.194 34 Al_{0.5}CoCrCuFeNiTi_{1.6} FCC + BCC1 + BCC2 + Ti₂Ni-like phase 1.2243 34 Al_{0.5}CoCrCuFeNiTi_{1.8} $FCC + BCC1 + BCC2 + Ti_2Ni$ -like phase 1.253 34 Al_{0.5}CoCrCuFeNiTi_{2.0} $FCC + BCC1 + BCC2 + Ti_2Ni$ -like phase 1.2801 34 0.9417 Al_{0.5}CoCrCuFeNiV_{0.2} FCC 36 Al_{0.5}CoCrCuFeNiV_{0.4} FCC + BCC 0.9621 36 $FCC + BCC + \sigma$ phase 0.9811 Al_{0.5}CoCrCuFeNiV_{0.6} 36 Al_{0.5}CoCrCuFeNiV_{0.8} FCC + BCC + σ phase 0.999 36 Al_{0.5}CoCrCuFeNiV_{1.0} FCC + BCC + σ phase 1.0157 36 FCC + BCC Al_{0.5}CoCrCuFeNiV_{1.2} 1.0314 36 Al_{0.5}CoCrCuFeNiV_{1.4} FCC + BCC 36 1.0463 Al_{0.5}CoCrCuFeNiV_{1.6} FCC + BCC 1.0603 36 Al_{0.5}CoCrCuFeNiV_{1.8} FCC + BCC 1.0735 36 FCC + BCC Al_{0.5}CoCrCuFeNiV_{2.0} 1.086 36 AlCoCrFeNiMo_{0.1} BCC 1.088 37 BCC + unidentified σ phase 1.0969 37 AlCoCrFeNiMo₀₂ AlCoCrFeNiMo₀₃ BCC + unidentified σ phase 1.1055 37 AlCoCrFeNiMo_{0.4} BCC + unidentified σ phase 1.1137 37 BCC + unidentified σ phase AlCoCrFeNiMo_{0.5} 1.1216 37 AlCoCrCuFeNiMo₀₂ FCC + BCC 38 1.0192 BCC + unidentified α phase 38 AlCoCrCuFeNiMo₀₄ 1.0358 BCC + unidentified α phase 38 AlCoCrCuFeNiMo_{0.6} 1.0514 BCC + unidentified α phase 38 AlCoCrCuFeNiMo_{0.8} 1.066 BCC + unidentified α phase AlCoCrCuFeNiMo_{1.0} 1.0799 38 BCC 39 AlCoCrFeNiNb_{0.1} 1.0992 AlCoCrFeNiNb_{0,25} BCC + (Laves phase + BCC) 39 1.1282 BCC+ (Laves phase + BCC) 39 AlCoCrFeNiNb_{0.5} 1.1732 AlCoCrFeNiNb_{0 75} Laves phase + (Laves phase + BCC) 1.2142 39 CoCrFeNi FCC 0.8735 42 FCC 42 CoCrFeNiMo₀₃ 0.9207 CoCrFeNiMo_{0.5} FCC + σ phase 0.9487 42 CoCrFeNiMo_{0.85} FCC + σ + + μ phase 0.9921 42 CoCrFeNi FCC 0.8735 43 CoCrFeNiTi_{0.3} FCC 0.971 43 43 CoCrFeNiTi_{0.5} FCC + Laves + σ + R phase 1.0288 Co_{1.5}CrFeNi_{1.5}Ti_{0.5} FCC 0.9775 55 FCC 55 Co_{1.5}CrFeNi_{1.5}Ti_{0.5}Mo_{0.1} 0.9878 Co1.5CrFeNi1.5Ti0.5Mo0.5 FCC + σ phase 1.0253 55 Co1.5CrFeNi1.5Ti0.5Mo0.8 FCC + σ phase 1.0502 55 AlCoCrFeMo_{0.5} BCC + σ phase 1.2116 56 AlCoCrFeMo_{0.5}Ni_{0.5} BCC + σ phase 1.1621 56 AlCoCrFeMo_{0.5}Ni_{1.0} BCC + σ phase 1.1216 56

 Table 1. Cont.

Alloys	Structure	Md (eV)	Refs
AlCoCrFeMo _{0.5} Ni _{1.5}	FCC+BCC + σ phase	1.0879	56
AlCoCrFeMo _{0.5} Ni _{2.0}	FCC+BCC + σ phase	1.0594	56
CoCrCuFeNi	FCC	0.8218	57
CoCrCuFeNiTi _{0.5}	FCC	0.9535	57
CoCrCuFeNiTi _{0.8}	FCC + Laves phase	1.0217	57
CoCrCuFeNiTi _{1.0}	FCC + Laves phase	1.0633	57
CoCrFeNiTi	FCC + BCC + Laves phase	1.153	58
Al _{0.5} CoCrFeNiTi	BCC1 + BCC2 + Laves phase	1.2209	58
Al _{1.0} CoCrFeNiTi	BCC1 + BCC2 + Laves phase	1.2775	58
$Ni_{0.2}Co_{0.6}Fe_{0.2}CrSi_{0.2}AlTi_{0.2}$	$BCC + Cr_3Si$	1.3698	59
NiCo _{0.6} Fe _{0.2} CrSiAlTi _{0.2}	$BCC + Cr_3Si$	1.3502	59
NiCo _{0.6} Fe _{0.2} Cr _{1.5} SiAlTi _{0.2}	$BCC + Cr_3Si$	1.3313	59
CoFeNi ₂ V _{0.5}	FCC	0.853	60
CoFeNi ₂ V _{0.5} Nb _{0.2}	FCC + Laves phase	0.907	60
CoFeNi ₂ V _{0.5} Nb _{0.4}	FCC + Laves phase	0.9566	60
CoFeNi ₂ V _{0.5} Nb _{0.6}	FCC + Laves phase	1.002	60
CoFeNi ₂ V _{0.5} Nb _{0.65}	FCC + Laves phase	1.0129	60
$CoFeNi_2V_{0.5}Nb_{0.7}$	FCC + Laves phase	1.0235	60
CoFeNi ₂ V _{0.5} Nb _{0.75}	FCC + Laves phase	1.0339	60
$CoFeNi_2V_{0.5}Nb_{0.8}$	FCC + Laves phase	1.0442	60
CoFeNi ₂ V _{0.5} Nb	FCC + Laves phase	1.0832	60
CoCrFeMnNbNi	FCC + Laves phase	1.095	61
CoCrCuFeNiNb	FCC + Laves phase	1.038	62
Al _{0.5} CoCrNiTi _{0.5}	FCC + BCC + B2 + σ phase	1.1804	63
CoCrFeMo _{0.5} Ni	FCC + σ phase	0.949	64
Al _{0.5} CoCrFeMo _{0.5} Ni	FCC + σ phase	1.0438	64
AlCoCrFeMo _{0.5} Ni	FCC + σ phase	1.1216	64
Al _{1.5} CoCrFeMo _{0.5} Ni	FCC + σ phase	1.1865	64
Al ₂ CoCrFeMo _{0.5} Ni	FCC + σ phase	1.2414	64
CoCrFeMnNi	FCC	0.8902	65
CoCrFeMnNiV _{0.25}	FCC	0.8823	65
CoCrFeMnNiV _{0.5}	FCC + σ phase	0.9495	65
CoCrFeMnNiV _{0.75}	FCC + σ phase	0.9753	65
CoCrFeMnNiV	FCC + σ phase	0.999	65

Table 1. Cont.

To further illustrate this point, the \overline{Md} values for the HEA systems containing TCP phases were plotted in Figures 2 and 3, which clearly show the capability of \overline{Md} to quantitatively predict the formation of TCP phases in HEAs. It was found that when $\overline{Md} > 1.09$, stable TCP phases appeared except in a few exceptions where no TCP phases formed at $\overline{Md} < -0.95$. In the range of $\overline{Md} = -0.95$ to 1.09, the existence of TCP phases was unknown.

This is a novel method to predict the formation of TCP phases of HEAs. It must be pointed out that the theory may work well only in HEAs with high amounts of transition elements, especially, when these transition elements are Co, Cr, Cu, Fe, Ni, Mo, Ti, Mn, and Nb elements. It was found that the Laves

phase vanished in Al_xCoCrFeNiTi_{0.5} alloys with high Al contents [66] and that the σ phase vanished in Al_{0.5}CoCrCuFeNiV_x alloys with high V contents [36].

Figure 2. Relationship between the *Md* and the TCP phase stability for the HEA systems containing Al, Co, Cr, Fe, Ni, and Mo elements. Note on the legend: fully closed symbols and top-half closed symbols represent solid solution phase plus TCP phase; fully open symbols represent sole solid solution phases.

Figure 3. Relationship between the *Md* and the TCP phase stability for the HEA systems containing Al, Co, Cr, Cu, Fe, Ni, Mo, Si, Ti, V, Nb, and *etc.* elements. Note on the legend: fully closed symbols and top-half closed symbols represent solid solution phase plus TCP phase; fully open symbols represent sole solid solution phases.

This shows that the criterion Md > 1.09 is invalid when the HEAs contain high levels of Al and V elements. The mechanisms of Al and V elements on the stability of TCP phases require further research. It should be noted that all statistic HEAs are nominal compositions in the paper. Therefore, in part of designed HEAs' composition there may be a deviation in the actual active content after melting. The target of this paper is to use some parameters to predict the phase formation in high-entropy alloys, and

from the prediction point of view only nominal compositions can be used, as actual compositions are only known after the materials are prepared. In this sense, the difference between the nominal composition and the actual composition is not a concern for the prediction we intend to make.

3. Conclusions

In this study, the average value of the energy level of the d-orbital (*Md*) was used to predict the stability of TCP phases in HEAs. A TCP phase formation rule was proposed by calculating the \overline{Md} value for HEAs containing Al, Co, Cr, Cu, Fe, Ni, Mo, Si, Ti, Nb and other transition elements. TCP phases were found to be stable at $\overline{Md} > 1.09$ except for some HEAs containing high levels of the elements Al and V. Specifically, it was discovered that the applicable alloying elements were limited to some transition elements (such as Co, Cr, Cu, Fe, Ni, Mn, Mo, Ti, and Nb), particularly as these elements easily formed the TCP phase. A novel method was used to predict the formation of TCP phases in HEAs. However, the significant impact of large amounts of Al and V elements on the stability of the TCP phase remains unclear, and therefore, more research is needed in order to fully understand it.

Acknowledgments

This work was supported by the National Natural Science Foundation of China Nos. (51104029, 51134013, and 51471044) respectively, the Fundamental Research Funds for the Central Universities, Key Laboratory of Basic Research Projects of Liaoning Province Department of Education (LZ2014007) and the Natural Science Foundation of Liaoning Province (2014028013). We would like to thank Prof. Zhijun Wang for helpful discussions.

Author Contributions

Yiping Lu and Yong Dong designed the research and wrote the paper. Li Jiang, Tingju Li and Tongmin Wang performed the data analysis. Yiping Lu, Tongmin Wang and Yong Zhang contributed to the results analysis and discussion. All authors have read and approved the final manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

- 1. Cantor, B.; Chang, I.T.H.; Knight, P.; Vincent, A.J.B. Microstructural development in equiatomic multicomponent alloys. *Mater. Sci. Eng. A* **2004**, *375*, 213–218.
- Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.S.; Shun, T.T.; Tsau, C.H.; Chang, S.Y. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. *Adv. Eng. Mater.* **2004**, *6*, 299–303.
- 3. Zhang, Y.; Zuo, T.T.; Tang, Z.; Gao, M.C.; Dahmen, K.A.; Liaw, P.K.; Lu, Z.P. Microstructures and properties of high-entropy alloys. *Prog. Mater Sci.* **2014**, *61*, 1–93.
- 4. Chuang, M.-H.; Tsai, M.-H.; Wang, W.-R.; Lin, S.-J.; Yeh, J.-W. Microstructure and wear behavior of Al_xCo_{1.5}CrFeNi_{1.5} Tiy high-entropy alloys. *Acta Mater.* **2011**, *59*, 6308–6317.

- 5. Hsu, C.Y.; Sheu, T.S.; Yeh, J.W.; Chen, S.K. Effect of iron content on wear behavior of AlCoCrFexMo_{0.5}Ni high-entropy alloys. *Wear* **2010**, *268*, 653–659.
- 6. Zhou, Y.J.; Zhang, Y.; Wang, Y.L.; Chen, G.L. Solid solution alloy of AlCoCrFeNiTi_x with excellent room-temperature mechanical properties. *Appl. Phy. Lett.* **2007**, *90*, 181904.
- Dong, Y.; Lu, Y.P.; Kong, J.R.; Zhang, J.J.; Li, T.J. Microstructure and mechanical properties of multi-component AlCrFeNiMox high-entropy alloys *J. Alloys Compd.* 2013, 573, 96–101.
- Senkov, O.N.; Scott, J.M.; Senkova, S.V.; Meisenkothen, F.; Miracle, D.B.; Woodward, C.F. Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy. *J. Mater. Sci.* 2012, 47, 4062–4074.
- Senkov, O.N.; Senkova, S.V.; Woodward, C.; Miracle, D.B. Low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system: Microstructure and phase analysis. *Acta Mater.* 2013, *61*, 1545–1557.
- Chen, Y.Y.; Duval, T.; Hong, U.T.; Yeh, J.W.; Shih, H.C.; Wang, L.H.; Oung, J.C. Corrosion properties of a novel bulk Cu_{0.5}NiAlCoCrFeSi glassy alloy in 288 °C high-purity water. *Mater. Lett.* 2007, *61*, 2692–2696.
- 11. Otto, F.; Yang, Y.; Bei, H.; George, E.P. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. *Acta Mater.* **2013**, *61*, 2628–2638.
- 12. Gludovatz, B.; Hohenwarter, A.; Catoor, D.; Chang, E.H.; George, E.P.; Ritchie, R.O. A fracture-resistant high-entropy alloy for cryogenic applications. *Science* **2014**, *345*, 1153–1158.
- 13. Hemphill, M.A.; Yuan, T.; Wang, G.Y.; Yeh, J.W.; Tsai, C.W.; Chuang, A.; Liaw, P.K. Fatigue behavior of Al_{0.5}CoCrCuFeNi high entropy alloys. *Acta Mater.* **2012**, *60*, 5723–5734.
- 14. Takeuchi, A.; Amiya, K.; Wada, T.; Yubuta, K.; Zhang, W.; Makino, A. Entropies in alloy design for high-entropy and bulk glassy alloys. *Entropy* **2013**, *15*, 3810–3821.
- Koželj, P.; Vrtnik, S.; Jelen, A.; Jazbec, S.; Jagličić, Z.; Maiti, S.; Feuerbacher, M.; Steurer, W.; Dolinšek, J. Discovery of a superconducting high-entropy alloy. *Phys. Rev. Lett.* 2014, *113*, 107001.
- 16. Senkov, O.N.; Wilks, G.B.; Miracle, D.B.; Chuang, C.P.; Liaw, P.K. Refractory high entropy alloys. *Intermetallics* **2010**, *18*, 1758–1765.
- 17. Lin, S.Y.; Chang, S.Y.; Chang, C.J.; Huang, Y.C. Nanomechanical properties and deformation behaviors of multi-component (AlCrTaTiZr)N_xSi_y high-entropy coatings. *Entropy* **2014**, *16*, 405–417.
- 18. Lin, C.-M.; Tsai, H.-L.; Bor, H.-Y. Effect of aging treatment on microstructure and properties of high-entropy Cu_{0.5}CoCrFeNi alloy. *Intermetallics* **2010**, *18*, 1244–1250.
- Lu, Y.P.; Dong, Y.; Guo, S.; Jiang, L.; Kang, H.J.; Wang, T.M.; Wen, B.; Wang, Z.J.; Jie, J.C.; Cao, Z.Q.; *et al.* A promising new class of high-temperature alloys: Eutectic high-entropy alloys. *Sci. Rep.* 2014, *4*, doi: 10.1038/srep06200.
- He, J.Y.; Liu, W.H.; Wang, H.; Wu, Y.; Liu, X.J.; Nieh, T.G.; Lu, Z.P. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. *Acta Mater.* 2014, 62, 105–113.
- 21. Guo, S.; Ng, C.; Lu, J.; Liu, C.T. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. *J. Appl. Phys.* **2011**,*109*, 103505.
- 22. Raghavan, R.; Kumar, K.C.H.; Murty, B.S. Analysis of phase formation in multi-component alloys. *J. Alloy. Compd.* **2012**, *544*,152–158.

- 23. Singh, A.K.; Kumar, N.; Dwivedi A.; Subramaniam, A. A geometrical parameter for the formation of disordered solid solutions in multi-component alloys. *Intermetallics* **2014**, *53*, 112–119.
- 24. Tsai, K.Y.; Tsai, M.H.; Yeh, J.W. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys. *Acta Mater.* **2013**, *61*, 4887–4897.
- Otto, F.; Dlouhy, A.; Somsen, C.; Bei, H.; Eggler, G.; George, E.P. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. *Acta Mater*. 2013, *61*, 5743–5755.
- Bhattacharjee, P.P.; Sathiaraj, G.D.; Zaid, M.; Gatti, J.R.; Lee, C.; Tsai, C.W.; Yeh, J.W. Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy. *J. Alloys Compd.* 2014, 587, 544–552.
- 27. Zhang, F.; Zhang, C.; Chen, S.L.; Zhu, J.; Cao, W.S. An understanding of high entropy alloys from phase diagram calculations. *Calphad* **2014**, *45*, 1–10.
- Singh, A.K.; Subramaniam, A. On the formation of disordered solid solutions in multi-component. J. Alloys Compd. 2014, 587, 113–119.
- 29. Lee, C.P.; Chang, C.C.; Chen, Y.Y.; Yeh, J.W.; Shih, H.C. Effect of the aluminium content of Al_xCrFe_{1.5}MnNi_{0.5} high-entropy alloys on the corrosion behaviour in aqueous environments. *Corros. Sci.* **2008**, *50*, 2053–2060.
- Senkov, O.N.; Zhang, F.; Miller, J.D. Phase composition of a CrMo_{0.5}NbTa_{0.5}TiZr high entropy alloy: Comparison of experimental and simulated data. *Entropy* 2013, *15*, 3769–3809.
- Gao, M.C.; Alman, D.E. Searching for next single-phase high-entropy alloy compositions. *Entropy* 2013, *15*, 4504–4519.
- Miracle, D.B.; Miller, J.D.; Senkov, O.N.; Woodward, C.; Uchic, M.D.; Tiley, J. exploration and development of high entropy alloys for structural applications. *Entropy* 2014, *16*, 494–525.
- 33. Tsai, M.H.; Tsai, K.Y.; Tsai, C.W.; Lee, C.; Juan, C.C.; Yeh, J.W. Criterion for sigma phase formation in Cr- and V-containing high-entropy alloys. *Mater. Res. Lett.* **2013**, *1*, 207–212.
- 34. Chen, M.R.; Lin, S.J.; Yeh, J.W.; Chen, S.K.; Huang, Y.S.; Tu, C.P. Microstructure and properties of Al_{0.5}CoCrCuFeNiTi_x (x = 0–2.0) high-entropy alloys. *Mater. Trans.* **2006**, *47*, 1395–1401.
- Lee, C.P.; Chen, Y.Y.; Hsu, C.Y.; Yeh, J.W.; Shih, H.C. The effect of Boron on the corrosion resistance of the high entropy alloys Al_{0.5}CoCrCuFeNiB_x. J. Electrochem. Soc. 2007, 154, 424–430.
- Chen, M.R.; Lin, S.J.; Yeh, J.W.; Chen, S.K.; Huang, Y.S.; Chuang, M.H. Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al_{0.5}CoCrCuFeNi high-entropy alloy. *Metall. Mater. Trans. A* 2006, *37*, 1363–1369.
- 37. Zhu, J.M.; Fu, H.M.; Zhang, H.F.; Wang, A.M.; Li, H.; Hu, Z.Q. Microstructures and compressive properties of multicomponent AlCoCrFeNiMo_x alloys. *Mater. Sci. Eng. A* **2010**, *527*, 6975–6979.
- 38. Zhu, J.M.; Zhang, H.F.; Fu, H.M.; Wang, A.M.; Li, H.; Hu, Z.Q. Microstructures and compressive properties of multicomponent AlCoCrCuFeNiMox alloys. *J. Alloys Compd.* **2010**, *497*, 52–56.
- 39. Ma, S.G.; Zhang, Y. Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy. *Mater. Sci. Eng. A* **2012**, *532*, 480–486.
- 40. Zhu, J.M.; Fu, H.M.; Zhang, H.F.; Wang, A.M.; Li, H.; Hu Z.Q. Synthesis and properties of multiprincipal component AlCoCrFeNiSix alloys. *Mater. Sci. Eng. A* **2010**, *527*, 7210–7214.

- 41. Zhou, Y.J.; Zhang, Y.; Kim, T.N.; Chen, G.L. Microstructure characterizations and strengthening mechanism of multi-principal component AlCoCrFeNiTi_{0.5} solid solution alloy with excellent mechanical properties. *Mater. Lett.* **2008**, *62*, 2673–2676.
- 42. Shun, T.T.; Chang, L.Y.; Shiu, M.H. Microstructure and mechanical properties of multiprincipal component CoCrFeNiMo_x alloys. *Mater. Charact.* **2012**, *70*, 63–67.
- 43. Shun, T.T.; Chang, L.Y.; Shiu, M.H. Microstructures and mechanical properties of multiprincipal component CoCrFeNiTi_x alloys. *Mater. Sci. Eng. A* **2012**, *556*, 170–174.
- 44. Dong, Y.; Lu, Y.P.; Jiang, L.; Wang, T.M.; Li, T.J. Effects of electro-negativity on the stability of topologically close packed phase in high entropy alloys. *Intermetallic* **2014**, *52*, 105–109.
- 45. Ye, Y.F.; Wang, Q.; Lu, J.; Liu, C.T.; Yang, Y. The generalized thermodynamic rule for phase selection in multicomponent alloys. *Intermetallics* **2015**, *59*, 75–80.
- Wang, Z.J.; Huang, Y.H.; Yang, Y.; Wang, J.C.; Liu, C.T. Atomic-size effect and solid solubility of multicomponent alloys. *Scr. Mater.* 2015, *94*, 28–31.
- Morinaga, M.; Yukawa, N.; Adachi, H. Superalloys. New PHACOMP and its application to alloy design. In Proceedings of the Fifth International Symposium Superalloys (1984), Seven Springs, PA, USA, 7–11 October 1984.
- Morinaga, M.; Yukawa, N.; Adachi, H. Alloying effect on the electronic structure of Ni₃Al (γ'). *J. Phys. Soc. Jpn.* **1984**, *53*, 653–663.
- 49. Morinaga, M.; Yukawa, N.; Ezaki, H. Solid solubilities in transition-metal-based fcc alloys. *Phils. Mag. A* **1985**, *51*, 223–246.
- 50. Morinaga, M.; Yukawa, N.; Adachi, H. Alloying effect on the electronic structure of BCC Fe. *J. Phys. F* **1985**, *15*, 1071–1084.
- Inoue, S.; Saito, J.; Morinaga, M.; Kano, S. Alloying effect on the electronic structures of Nb and Mo. J. Phys. Condens. Matter. 1994, 6, 5081–5096.
- 52. Pauling, L. Nature of the Chemical Bond; Cornell University press: Ithaca, NY, USA, 1960.
- 53. Hsu, C.Y.; Wang, W.R.; Tang, W.Y.; Chen, S.K.; Yeh, J.W. Microstructure and mechanical properties of new AlCo_xCrFeMo_{0.5}Ni high-entropy alloys. *Adv. Eng. Mater.* **2010**, *12*, 44–49.
- Hsu, C.Y.; Juan C.C.; Wang, W.R.; Sheu, T.S.; Yeh, J.W.; Chen S.K. On the superior hot hardness and softening resistance of AlCoCrxFeMo_{0.5}Ni high entropy alloys. *Mater. Sci. Eng. A* 2011, *528*, 3581–3588.
- Chou, Y.L.; Yeh, J.W.; Shih, H.C. The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co_{1.5}CrFeNi_{1.5}Ti_{0.5}Mo_x in aqueous environments. *Corros. Sci.* 2010, *52*, 2571–2581.
- Juan C.C.; Hsu, C.Y.; Tsai, C.W.; Wang, W.R.; Sheu, T.S.; Yeh, J.W.; Chen, S.K. On microstructure and mechanical performance of AlCoCrFeMo_{0.5}Ni_x high-entropy alloys. *Intermetallics* 2013, *32*, 401–407.
- 57. Wang, X.F.; Zhang, Y.; Qiao, Y.; Chen, G.L. Novel microstructure and properties of multicomponent CoCrCuFeNiTi_x alloys. *Intermetallics* **2007**, *15*, 357–362.
- 58. Zhang, K.B.; Fu, Z.Y. Effects of annealing treatment on phase composition and microstructure of CoCrFeNiTiAl_x high-entropy alloys. *Intermetallics* **2012**, *22*, 24–32.

- Wang, L.M.; Chen, C.C.; Yeh, J.W.; Ke, S.T. The microstructure and strengthening mechanism of thermal spray coating Ni_xCo_{0.6}Fe_{0.2}Cr_ySi_zAlTi_{0.2} high-entropy alloys. *Mater. Chem. Phys.* 2011, *126*, 880–885.
- 60. Jiang, L.; Lu, Y.P.; Dong, Y.; Wang, T.M.; Cao, Z.Q.; Li, T.J. Effects of Nb addition on structural evolution and properties of the CoFeNi₂V_{0.5} high-entropy alloy. *Appl. Phys. A* **2015**, *119*, 291–297.
- Huo, W.Y.; Shi, H.F.; Ren, X.; Zhang, J.Y. Microstructure and wear behavior of CoCrFeMnNbNi high-entropy alloy coating by TIG cladding. *Adv. Mater. Sci. Eng.* 2015, 2015, doi: 10.1155/2015/ 647351.
- Cheng, J.B.; Liu, D.; Liang, X.B.; Xu, B.S. Microstructure and electrochemical properties of CoCrCuFeNiNb high-entropy alloys coatings. *Acta. Metall. Sin.* 2014, 27, 1031–1037.
- 63. Lee, C.F.; Shun, T.T. Age hardening of the Al_{0.5}CoCrNiTi_{0.5} high-entropy alloy. *Metall. Mater. Trans. A* **2014**, *45A*, 191–195.
- Hsu, C.Y.; Juan, C.C.; Sheu, T.S.; Chen, S.K.; Yeh, J.W. Effect of aluminum content on microstructure and mechanical properties of Al_xCoCrFeMo_{0.5}Ni high-entropy alloys. *JOM* 2013, 65, 1840–1847.
- Stepanov, N.D.; Shaysultanov, D.G.; Salishchev, G.A.; Tikhonovsky, M.A.; Oleynik, E.E.; Tortika, A.S.; Senkov, O.N. Effect of V content on microstructure and mechanical properties of the CoCrFeMnNiV_x high entropy alloys. *J. Alloys. Compd.* 2015, 628, 170–185.
- 66. Dong, Y.; Lu, Y.P.; Zhang, J.J.; Li, T.J. Microstructure and properties of multi-component Al_xCoCrFeNiTi_{0.5} high-entropy alloys. *Mater. Sci. Forum.* **2013**, *745–746*, 775–780.

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).