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Abstract: The root mean square (RMS) value of a vibration signal is an important 

indicator used to represent the amplitude of vibrations in evaluating the quality of high-

speed spindles. However, RMS is unable to detect a number of common fault 

characteristics that occur prior to bearing failure. Extending the operational life and quality 

of spindles requires reliable fault diagnosis techniques for the analysis of vibration signals 

from three axes. This study used empirical mode decomposition to decompose signals into 

intrinsic mode functions containing a zero-crossing rate and energy to represent the 

characteristics of rotating elements. The MSE curve was then used to identify a number of 

characteristic defects. The purpose of this research was to obtain vibration signals along 

three axes with the aim of extending the operational life of devices included in the product 

line of an actual spindle manufacturing company. 

Keywords: machine tool spindle; empirical mode decomposition (EMD); multiscale 

entropy (MSE); ball bearing; fault diagnosis 
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1. Introduction 

Spindle manufacturers use a variety of fault diagnosis techniques based on temperature, vibration 

and acoustics, to enhance the reliability, stability and lifespan of their devices [1–3]. Root mean square 

(RMS) values and temperature monitoring systems are used to examine the quality of the spindle 

before leaving the factory. Unfortunately, the RMS value reveals only the amplitude of vibration, 

giving no indication of fault characteristics.  

Some vibration analysis methods have been proposed [4,5] for the diagnosis of fault characteristics 

in rotational machinery. Fourier transform and time-domain statistical analysis methods [6] are widely 

used to analyze the non-stationary characteristics of vibration signals in rotating machinery. 

Unfortunately, Fourier analysis can only be used in linear system and stationary data. It is very 

difficult to extract fault characteristics directly from original measurement data in a complex vibration 

signal due to the wide frequency spectrum and spurious harmonics. Furthermore, Fourier analysis is 

unable to separate useful signals from noise and external disturbances [7]. A number of advanced 

signal processing algorithms, such as empirical mode decomposition (EMD) and multiscale entropy 

(MSE), have been developed to remedy this problem. 

Huang [8] developed an adaptive time-frequency data analysis method called empirical mode 

decomposition, which can decompose complex non-linear and non-stationary signals into to a number 

of intrinsic mode functions (IMFs) with specific physical representation. Peng [9] proposed two 

methods to detect tool breakage: (1) using the Hilbert spectrum; and (2) using the energies of 

characteristic IMFs during the milling process. Analysis of individual IMF components enables the 

extraction of specific fault characteristics from the original signal. For this reason, EMD has been 

successfully employed to rotating machinery fault diagnosis and tool health condition monitoring, such as 

misalignment diagnosis [10], rolling bearing defect diagnosis and tool breakage detection. Yu et al. [11] 

used the Hilbert–Huang transform (HHT) to diagnose faults in roller bearings. Cheng et al. [12] 

proposed a method for the extraction of fault characteristics of roller bearings using an autoregressive 

(AR) model based on the EMD method. Since that time, EMD has been applied in the analysis of 

vibration signals in diagnosing bearing faults [13], monitoring the condition of machine tools [14] and 

diagnosing faults in built-in motors [15].  

Multiscale entropy (MSE) is a new approach measuring the complexity of systems in order to 

quantify irregularities in a time series. Pincus [16] introduced approximate entropy (ApEn), which is a 

statistical measure used to quantify the regularity or predictability of a time series. ApEn has been 

successfully applied in the analysis of vibration signals [17] and biomedical signals [18]. However, 

ApEn has two fundamental drawbacks: a heavy dependence on the length of records and an estimated 

value consistently below that expected of short records. Second, it lacks relative consistency. To 

overcome these shortcomings, Richman et al. [19] proposed sample entropy (SampEn), which requires 

a much shorter record length than does ApEn. Costa et al. [20] proposed the use of multiscale entropy 

(MSE) to differentiate individual signals associated with the human heartbeat. Zhang et al. [21] used 

MSE and adaptive neuro-fuzzy inference to detect faults in bearings and to determine their severity.  

Lin et al. [22] utilized MSE to reveal features capable of differentiating vibration signals in shafts 

under normal and misalignment conditions.  
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Measurements of radial vibration and position [23] are fundamental to collect vibration signals. 

However, a range of factors can affect the behavior and position of the shaft in the axial direction  

(e.g., excessive axial load, bearing lubrication failure). An accelerometer can be mounted above the 

bearing on the housing to collect signals related to vibration in three directions in order to identify the 

fault characteristics of the spindle.  

The remainder of this paper is organized as follows. Section 2 discusses the experiment setup. 

Section 3 presents a flow chart of signal analysis, EMD and MSE approaches. Section 4 discusses the 

creation of artificial defects. Section 5 presents experiment and analysis results. Conclusions are drawn 

in Section 6. 

2. Experiment Setup and Measurement System 

Investigating defects in spindles requires health monitoring and fault diagnosis. The experiment 

configuration comprises a shaft, constant pressure device and two bearing sets (SKF 71908CD and 

7010CE). Spindle rotation speed was controlled using an AC inverter capable of operating at up to 

24,000 rpm. Constant pressure devices can be used over a wide range of loads in the axial direction. 

Three 352C65 ICP accelerometers (sensitivity: 100 mV/g) were mounted on the front-side bearing of 

the spindle to collect vibration signals in the radial and axial directions as shown in Figure 1 (sampling 

frequency = 51,200 Hz). Vibration signals of the spindle were collected by the data acquisition device 

(NI-9234). The validity and effectiveness of the experiment configuration is shown in Figure 2.  

 

Figure 1. Experiment setup. 

 

Figure 2. Schematic diagram of the PC-based measurement system. 

The experiment parameters were as follows [15]: 

(a) the data sampling rate was set to 51,200 Hz (maximum achievable) for the acquisition system 

for the extraction of vibration signals; 
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(b) a maximum rotational speed of 24,000 RPM (400 Hz); 

(c) three accelerometers mounted using magnets on the front-side bearings of the spindle; 

(d) total measurement time of 10 s. 

Figure 3 presents an actual example of the signal measured from a mass-unbalanced shaft. The 

Fourier spectrum corresponding to the measured vibration signal is presented in Figure 4, showing that 

the first-order frequency (rotation speed of 400 Hz) is the dominant constituent in the spectrum. 

Despite the fact that the spectrum extended to 25,600 Hz (one half of the sampling rate), the usable 

range was only from 0 to 5,000 Hz [24,25], after taking into account the mounting method and its 

associated natural frequency. 

 

Figure 3. Vibration signals of the mass-unbalanced shaft. 

 

Figure 4. Fourier spectrum of the mass-unbalanced shaft. 

3. Rotating Machinery Fault Diagnosis Method 

Vibration signals were collected along three axes and then analyzed using EMD and MSE for the 

detection and diagnosis of faults. The process used for the analysis of vibration signals is illustrated in 

Figure 5.  

 

Figure 5. Process used in the analysis of vibration signals.  
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Signal analysis involves the extraction of the vibration signal in order to calculate the zero-crossing 

rate and energy percentage of each IMF according to EMD. The second step is to judge the horizontal 

and axial signal existence vibration amplitude at a 1× or 2× running frequency. Mass unbalance exists 

at 1× running frequency and misalignment exists at 2× running frequency. The third step is to 

determine whether the end scale is higher than 400 from the axial signal, which would verify the 

existence error in the parallel alignment of the bearing spacer ring. The fourth step involves calculating 

the total area under the MSE curve with the end scale below 400 in order to estimate the amount of 

grease. The fifth step involves calculating the end scale and total area under the MSE curve in order to 

deduce the preload value from the vertical signal.  

3.1. Brief Outline of the EMD Method 

HHT was used as a feature extraction method to detect specific physical meanings [26]. The HHT 

consists of two main parts: EMD and Hilbert transform. The EMD method can decompose any 

multicomponent signal into a set of monocomponent signals, which are referred to as intrinsic mode 

functions (IMFs) [27]. Each IMF is unique and satisfies the following two conditions [8]: (1) within 

the entire dataset, the number of extrema and the number of zero-crossings must either equal or differ 

at most by one; and (2) at any point, the mean value of the envelope defined by the local maxima and 

the envelope defined by the local minima is zero.  

 

Figure 6. Methodology used for the identification of fault conditions in specimens [15].  

3.1.1. Characteristics of the Intrinsic Mode Function 

The decomposition of the time series by EMD into a number of IMFs with physical meanings has 

been demonstrated [28]. An IMF represents a simple oscillatory mode embedded in the signal [4]. To 

gain insight into the characteristics of IMFs, the zero-crossing rate Zri (Equation (1)) and average 

energy Ei (Equation (2)) associated with the i-th IMF are calculated as follows:  
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where N represents the length of the signal and Ci[k] represents the k-th element of the i-th IMF. 

3.1.2. Order-Energy Plot 

Peng [9] and Junsheng [12] revealed that the energy distribution of IMFs is closely related to the 

conditions found in machine tool systems. Lin et al. [15] proposed the order-energy plot to represent 

this energy distribution as shown in Figure 6. The order-energy plot of the shaft with the target IMFs is 

presented in Figure 7, in which the X-axis presents the order (equal to the zero-crossing rate divided by 

the working speed) and the Y-axis is the average energy percentage of each IMF component.  
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Figure 7. Order-energy plot of the shaft [15]. 

3.2. MSE Approach  

In MSE analysis, we consider a one-dimensional discrete time series of length N: { }nxxxX ...... 21= . 

We then construct a consecutive coarse-grained time series, ( ){ }τyX =  , which is divided by the scale 

factor τ , and the data points inside each window are averaged. Each element j of a coarse-grained 
time series τ

jy  is then calculated according to the following equation [29]: 
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When the scale factor equals one, the coarse-grained time series ( ){ }1y  is simply the original time 

series. The length of the original time series is equal to the length of the coarse-grained one divided by 

the scale factor τ .  
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This is then used to calculate the sample entropy SE for each coarse-grained time series, which is 

plotted as a function of the scale factor τ .  

4. Types of Artificial Defect 

Using statistics compiled by one manufacturer of spindles, this study assembled seven models to 

represent the following fault categories: mass unbalance, shaft misalignment, inappropriate grease 

content [30], inappropriate preload [31] and errors in the parallel alignment of the bearing spacer ring.  

4.1. Unbalanced 

Mass unbalance is a common problem, defined as an uneven distribution in the mass of the rotor, 

which can cause severe problems, particularly at high operating speeds. Optimizing shaft alignment is 

meant to extend the life of the device; however, process variation in manufacturing makes it difficult to 

ensure the balance of a rotor [32]. 

4.2. Misalignment 

Shaft misalignment is the most common fault encountered in rotating machinery. Geometric and 

assembly-related tolerances are extremely difficult to control, which makes it hard to ensure perfect 

alignment between the shaft and housing. Therefore, this study applied a gauge to measure the 

concentricity of the rotating machinery in order to ensure shaft misalignment.  

4.3. Lubricant  

A dearth or excess of lubricant can lead to bearing failure. The correct amount of lubricant in 

bearings can be determined based on vibration signals. This study followed guidelines in the SKF 

manual [33] in which 50% of the recommended value was considered insufficient grease content and 

double the recommended value was considered excessive grease content as shown in Table 1. 

Table 1. Grease charges. 

Bearing Specification 
Grease Charge for Bearings 

Less Grease Recommended Amount Over-Grease 

7010CE 0.8 cc 1.2 cc 1.6 cc 
71908CD 0.4 cc 0.48 cc 0.8 cc 

4.4. Preload 

The initial preload enhances accuracy in rotation, determines the stiffness and lifespan of the 

spindle and helps to decrease noise and vibration. Two methods have been developed for the 

adjustment of bearing preload: (1) constant position preload; and (2) constant force preload (spring 

preload). Constant position preload is applied using a constant relative displacement between the inner 

and outer spacer rings. Unfortunately, thermal deformation within the spindle system can affect the 

preload of bearings [34] by altering the relative position of inner and outer spacer rings. As mentioned 
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previously, this research developed a spring-force mechanism, which allows the user to control the 

preload value.  

4.5. Error in Parallel Positioning of Bearing Spacer Ring 

The bearing spacer ring plays an important role in system rigidity and the lifespan of bearings by 

allowing grease to escape from the bearing to reduce running temperature. The spacer must be sufficiently 

hard to resist deformation during bearing rotation. However, it is difficult to ensure the parallel 

alignment of the spacer (within 1–2 µm), as shown in Figure 8 [33], particularly in mass 

manufacturing. Most cases of bearing failure without warning can be attributed to variations in this 

parameter.  

 

Figure 8. Geometric tolerance in the placement of the spacer. 

5. Result 

This research proposes EMD and MSE algorithms to extract common fault types signals, such as 

mass unbalance, misalignment, less and over-grease, light and heavy preload and the parallelism error 

of the spacer.  

5.1. Unbalance 

In this study, the rotor was subject to the effects of gravity, because the high-speed motor was 

placed in a vertical place (Figure 1). This study used EMD to detect mass-unbalance faults. Previous 

researchers have indicated [35] that 1× (rotation speed) energy represents mass unbalance. As shown 

in Figure 9, the 1× energy is largest in the horizontal vibration signal. The EMD was able to diagnose 

an unbalanced shaft from the vibration signal. 
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Figure 9. EMD profile (mass unbalance). 
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5.2. Misalignment 

Geometric and dimensional errors are difficult to control due to process variations inherent in mass 

production methods. Accumulated tolerance was defined as the sum of geometrical tolerance and 

dimension tolerance. As mentioned above, shaft alignment is difficult to achieve. A number of 

researchers [35] have reported that 2× (rotation speed) energy is an indication of shaft misalignment. 

As shown in Figure 10, the 2× (rotation speed) energy is largest in the axial vibration signals. 

However, the zero-crossing rate of IMF4 is 797, and the energy percentage is 53.12 percent, as shown 

in Figure 10. Thus, EMD was able to diagnose shaft misalignment based on the axial vibration signal.  
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Figure 10. EMD profile (misalignment). 

5.3. Less and Over-Grease  

This study used the end scale and total area under the MSE curve to analyze the vibration signals in 

order to calculate the amount of grease in the bearings, as shown in Figure 11 and Table. 2. The 

bearing preload is set to a constant value to ensure the reliability of this experiment. The axial 

vibration signal was used to quantify the amount of grease filling, as shown in Figure 11a. The radial 

vibration signal represents the MSE curve coincidence in Figure 11b, which makes it difficult to identify 

the amount of grease in the bearing. The MSE curve in Figure 11c and Table 2 clearly indicates the fault 

feature of insufficient grease.  

Table 2. The total area under the MSE curve and the end scale associated with the lubricant. 

Less Grease Recommended Amount Over-Grease 

End Scale 164 222 230 
Total Area 31 55 60 
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Figure 11. MSE profile (less and over-grease). (a) Axial vibration signal; (b) radial 

vibration signal; (c) MSE curve from the axial vibration signal. 

5.4. Light and Heavy Preload 

Identifying the appropriate preload can affect rotation accuracy and operating temperature. This 

study developed a means to monitor the effects of preload using a constant pressure device to absorb 

changes associated with thermal expansion [34]. The vibration signal under various preload conditions 

was analyzed using MSE, as shown in Figure 12 and Table 3. The difference between the end scale 

and the total area under the MSE curve in Figure 12a represents high and low preload. The MSE curve 

in Figure 12c and Table 3 clearly indicates the fault features associated with heavy preload. 

Table 3. Total area and end scale of the preload MSE curve. 

Heavy Preload Medium Light Preload 

End Scale 234 485 493 
Total Area 69 99 132 
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Figure 12. MSE profile (light and heavy preload). (a) Radial vibration signal; (b) axial 

vibration signal; (c) MSE curve from the radial vibration signal. 

5.5. Parallelism Error of Spacer 

Non-uniform compression force and unequal force distribution across the bearing can lead to 

damage without warning. Ensuring surface flatness in the spacer is crucial to optimizing the 

performance of bearings. This research simulated the parallelism error of a spacer in order to extract 

vibration signals related to this defect. As shown in Figure 13a, the end scale of the parallelism error of 

the spacer is 596, which exceeds the end scale of the excessive grease MSE curve (230) in Figure 11c. 

The end scale of the lubrication MSE curve of the axial vibration signal is less than 400. Thus, this 

study used the axial vibration signal to characterize the parallelism error associated with the spacer.  
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Figure 13. MSE profile (errors in the parallel alignment of the spacer). (a) Axial vibration 

signal; (b) radial vibration signal. 

6. Conclusions 

The objective of this study was to collect information related to common fault vibration signals 

using three accelerometers in the three directions for the diagnosis of faults. This research adopted 

EMD and MSE methods to identify faults according to their characteristics. The EMD method draws 

an order-energy plot to identify mass unbalance and shaft misalignment from horizontal and axial 

vibration signals. The axial vibration signal can also be used to derive information for use in 

determining the amount of lubrication and error in the parallel alignment of the spacer according to the 

end scale and total area under the MSE curve. This study then used the MSE method to diagnose the 

preload value according to the MSE curve from the vertical vibration signal. In this research, the end 

scale and total area of each artificial defect type are obtained by statistical analysis of the data. Hence, 

the MSE curve is able to accurately diagnose the fault type of less grease, heavy preload and the 

parallelism of the spacer. 

Finally, this experiment collected signals from spindles that included noise commonly encountered 

in actual operating environments. This breakthrough technology is able to identify the essential 

operating characteristics of a spindle and, thereby, to prevent sudden breakdowns. This approach was 

then evaluated for its ability to enhance the reliability and quality control of spindles in an existing  

product line. 
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